SOLUTIONS TO CONCEPTS CHAPTER – 2

1. As shown in the figure,

The angle between A and B = $110^{\circ} - 20^{\circ} = 90^{\circ}$ | A | = 3 and | B | = 4m Resultant R = $\sqrt{A^2 + B^2 + 2AB\cos\theta} = 5 \text{ m}$ Let β be the angle between R and A $\beta = \tan^{-1} \left(\frac{4\sin 90^{\circ}}{3 + 4\cos 90^{\circ}} \right) = \tan^{-1} (4/3) = 53^{\circ}$

 \therefore Resultant vector makes angle (53° + 20°) = 73° with x-axis.

- 2. Angle between A and B is $\theta = 60^{\circ} 30^{\circ} = 30^{\circ}$ | A | and | B | = 10 unit R = $10^{2} + 10^{2} + 2.10.10.\cos 30^{\circ} = 19.3$ β be the angle between R and A $\beta = \tan^{-1} \begin{vmatrix} 1 \\ 10 + 10\cos 30^{\circ} \end{vmatrix} = \tan^{-1} \begin{pmatrix} 1 \\ + \\ 2 & 3 \end{vmatrix}$ = $\tan^{-1} (0.26795) = 15^{\circ}$
 - \therefore Resultant makes 15° + 30° = 45° angle with x-axis.

3. x component of A = 100 cos 45° = 100 / 2 unit x component of B = 100 cos 135° = 100 / 2 x component of C = 100 cos 315° = 100 / 2 Resultant x component = 100 / 2 - 100 / 2 + 100 / 2 = 100 / 2 y component of A = 100 sin 45° = 100 / 2 unit y component of B = 100 sin 135° = 100 / 2 y component of C = 100 sin 315° = - 100 / 2 Resultant y component = 100 / $\sqrt{2}$ + 100 / $\sqrt{2}$ = 100 / $\sqrt{2}$ Resultant y component = 100 / $\sqrt{2}$ + 100 / $\sqrt{2}$ = 100 / $\sqrt{2}$ Resultant = 100 Tan $\alpha = \frac{y \text{ component}}{x \text{ component}} = 1$

$$\Rightarrow \alpha = \tan^{-1}(1) = 45^{\circ}$$

The resultant is 100 unit at 45° with x-axis.

4.
$$\vec{a} = 4i + 3j$$
, $b = 3i + 4j$
a) $|\vec{a}| = \sqrt{4^2 + 3^2} = 5$
b) $|b| = \sqrt{9 + 16} = 5$
c) $|\vec{a} + b| = |7i + 7j| = 7\sqrt{2}$
d) $\vec{a} - b = (-3 + 4)\hat{i} + (-4 + 3)\hat{j} = \hat{i} - \hat{j}$

 $|\vec{a} - \vec{b}| \models \sqrt{1^2 + (-1)^2} = \sqrt{2}$.

У В

θ^{60°} Α[¯] 30°

45°

315° 135°

- 5. x component of $\overrightarrow{OA} = 2\cos 30^\circ = \sqrt{3}$ x component of \overrightarrow{BC} = 1.5 cos 120° = -0.75 x component of $\overrightarrow{DE} = 1 \cos 270^\circ = 0$ y component of $\overrightarrow{OA} = 2 \sin 30^\circ = 1$ y component of BC = $1.5 \sin 120^\circ = 1.3$ y component of $\overrightarrow{DE} = 1 \sin 270^\circ = -1$ $R_x = x$ component of resultant = $\sqrt{3} - 0.75 + 0 = 0.98$ m R_y = resultant y component = 1 + 1.3 - 1 = 1.3 m So, R = Resultant = 1.6 m If it makes and angle α with positive x-axis Tan $\alpha = \frac{y \text{ component}}{x \text{ component}} = 1.32$ $\Rightarrow \alpha = \tan^{-1} 1.32$ 6. | a | = 3m | b | = 4 a) If R = 1 unit \Rightarrow 3² + 4² + 2.3.4.cos θ = 1 $\theta = 180^{\circ}$ b) $3^2 + 4^2 + 2.3.4.\cos\theta = 5$ $\theta = 90^{\circ}$ $3^2 + 4^2 + 2.3.4.\cos\theta = 7$ C) $\theta = 0^{\circ}$ Angle between them is 0°. 7. $\overrightarrow{AD} = 2\hat{i} + 0.5\hat{J} + 4\hat{K} = 6\hat{i} + 0.5\hat{i}$ 4m С D 0.5 km 0.5 km $AD = AE^2 + DE^2 = 6.02 \text{ KM}$ Tan θ = DE / AE = 1/12 2m Е A B $\theta = \tan^{-1} (1/12)$ 6m The displacement of the car is 6.02 km along the distance $\tan^{-1}(1/12)$ with positive x-axis.
- 8. In ΔABC, tanθ = x/2 and in ΔDCE, tanθ = (2 x)/4 tan θ = (x/2) = (2 x)/4 = 4x ⇒ 4 - 2x = 4x ⇒ 6x = 4 ⇒ x = 2/3 ft

 a) In ΔABC, AC = √AB² + BC² = 2/3 10 ft
 b) In ΔCDE, DE = 1 - (2/3) = 4/3 ft
 CD = 4 ft. So, CE = √CD² + DE² = 4/3 10 ft
 c) In ΔAGE, AE = √AG² + GE² = 2 √2 ft.

 9. Here the displacement vector r = 7î + 4ĵ + 3k

 a) magnitude of displacement = √74 ft
 b) the components of the displacement vector are 7 ft, 4 ft and 3 ft.

Chapter-2

For example, if two of the vector are parallel, (fig.2), then also

 $C \times (A \times B) = 0$

So, they need not be mutually perpendicular.

17. The particle moves on the straight line PP' at speed v. From the figure, $OP \times v = (OP)v \sin \theta \hat{n} = v(OP) \sin \theta \hat{n} = v(OQ) \hat{n}$ It can be seen from the figure, $OQ = OP \sin \theta = OP' \sin \theta'$ So, whatever may be the position of the particle, the magnitude and direction of $\overrightarrow{OP} \times \vec{v}$ remain constant. $\therefore \overrightarrow{OP} \times \overrightarrow{V}$ is independent of the position P. 18. Give $F = qE + q(\vec{v} \times B) = 0$ $\Rightarrow E = -(\vec{v} \times B)$ So, the direction of $\vec{v} \times B$ should be opposite to the direction of E . Hence, v should be in the positive yz-plane. Again, E = vB sin $\theta \Rightarrow$ v = $\frac{-}{B \sin \theta}$ Е For v to be minimum, $\theta = 90^{\circ}$ and so $v_{min} = F/B$ So, the particle must be projected at a minimum speed of E/B along +ve z-axis ($\theta = 90^{\circ}$) as shown in the figure, so that the force is zero. 19. For example, as shown in the figure, $A \perp B$ B along west $B \perp C$ A along south С C along north в $\therefore A \cdot B = B \cdot C$ $A \cdot B = 0$ $B \cdot C = 0$ But $B \neq C$ 20. The graph $y = 2x^2$ should be drawn by the student on a graph paper for exact results. To find slope at any point, draw a tangent at the point and extend the line to meet $y=2x^2$ x-axis. Then find tan θ as shown in the figure. Δx It can be checked that, Slope = tan $\theta = \frac{dy}{dt} = \frac{d}{dt}(2x^2) = 4x$ Where x = the x-coordinate of the point where the slope is to be measured. 21. y = sinxУ So, $y + \Delta y = \sin (x + \Delta x)$ $\Delta y = \sin \left(\frac{x}{\pi} + \Delta x \right) - \sin x$ $= \left(\frac{\pi}{\pi} + \frac{-\sin \pi}{\pi} = 0.0157.$ $3 \quad 100 \quad 3$ y = sinx22. Given that, $i = i_0 e^{-t / RC}$ $\therefore \text{ Rate of change of current} = \frac{di}{dt} = \frac{d}{dt} i_0 e^{-i/RC} = i_0 \frac{d}{dt} e^{-t/RC} = \frac{-i_0}{RC} \times e^{-t/RC}$ a) t = 0, $\frac{di}{dt} = \frac{-i}{RC}$ When b) when t = RC, $\frac{di}{dt} = \frac{-i}{RCe}$ c) when t = 10 RC, $\frac{di}{dt} = \frac{-i_0}{RCe^{10}}$

23. Equation $i = i_0 e^{-t / RC}$

$$\begin{split} i_{0} &= 2A, \ R = 6 \times 10^{-5} \ \Omega, \ C = 0.0500 \times 10^{-6} \ F = 5 \times 10^{-7} \ F \\ a) \quad i_{1} &= 2 \times e_{6 \times 0 \times 5 \times 10}^{\left(\frac{3-0.3}{-7}\right)} = 2 \times e_{\left(\frac{1-0.3}{0.3}\right)}^{\left(\frac{1-0.3}{-7}\right)} = 2 \\ e^{2} \ amp. \\ e \\ b) \quad \frac{di}{dt} &= \frac{-i_{0}}{RC} e^{-t / RC} \ when \ t = 0.3 \ sec \Rightarrow \quad \frac{di}{dt} = -\frac{2}{0.30} e^{(-0.3 / 0.3)} = \frac{-20}{3} \\ Amp / sec \\ c) \ At \ t = 0.31 \ sec, \ i = 2e^{(-0.3 / 0.3)} = \frac{5.8}{3e} \\ Amp . \\ 3e \end{split}$$

24. $y = 3x^2 + 6x + 7$

 \therefore Area bounded by the curve, x axis with coordinates with x = 5 and x = 10 is given by,

Area =
$$\int_{0}^{y} dy = \int_{0}^{10} (3x^{2} + 6x + 7)dx = 3\frac{x^{3}}{3} \int_{0}^{10} + 5\frac{x^{2}}{3} \int_{0}^{10} + 7x \int_{0}^{10} = 1135 \text{ sq.units.}$$

25. Area =
$$\int_{0}^{y} dy = \int_{0}^{0} \sin x dx = -[\cos x]^{\pi} = 2$$

х

х

x =1

y

у

0

26. The given function is $y = e^{-x}$

When x = 0, $y = e^{-0} = 1$

x increases, y value deceases and only at $x = \infty$, y = 0.

Х

So, the required area can be found out by integrating the function from 0 to ∞ .

So, Area =
$$\int_{0}^{\infty} e^{-x} dx = -[e^{-x}]^{\infty} = 1.$$

y = sinx

27. $\rho = \frac{\text{mass}}{\text{length}} = a + bx$

- a) S.I. unit of 'a' = kg/m and SI unit of 'b' = kg/m² (from principle of homogeneity of dimensions)
- b) Let us consider a small element of length 'dx' at a distance x from the origin as shown in the figure.

 $\therefore \text{ dm} = \text{mass of the element} = \rho \text{ dx} = (a + bx) \text{ dx}$ $\int bx^2 P \text{ bL}^2$ So, mass of the rod = m = $\int dm = \int (a + bx) \text{ dx} = \left| ax + \frac{b}{2} \right|_0^2 = aL + \frac{b}{2}$

28.
$$\frac{dp}{dt} = (10 \text{ N}) + (2 \text{ N/S})t$$

momentum is zero at t = 0

 \therefore momentum at t = 10 sec will be

dp = [(10 N) + 2Ns t]dt

$$\int_{0}^{p} dp = \int_{0}^{10} 10dt + \int_{0}^{10} (2tdt) = 10t]_{0}^{10} + 2\frac{t^{2}}{2} \int_{0}^{10} = 200 \text{ kg m/s.}$$

29. The change in a function of y and the independent variable x are related as $\frac{dy}{dx} = x^2$.

 \Rightarrow dy = x² dx

Taking integration of both sides,

$$\int dy = \int x^2 dx \Longrightarrow y = \frac{x^3}{3} + c$$

 \therefore y as a function of x is represented by y= $\frac{x^3 + c}{3}$.

30. The number significant digits

a) 1001 No.of significant digits = 4

- b) 100.1 No.of significant digits = 4
- c) 100.10 No.of significant digits = 5
- d) 0.001001 No.of significant digits = 4

31. The metre scale is graduated at every millimeter.

1 m = 100 mm

The minimum no.of significant digit may be 1 (e.g. for measurements like 5 mm, 7 mm etc) and the maximum no.of significant digits may be 4 (e.g.1000 mm)

So, the no.of significant digits may be 1, 2, 3 or 4.

- 32. a) In the value 3472, after the digit 4, 7 is present. Its value is greater than 5.
 - So, the next two digits are neglected and the value of 4 is increased by 1.

: value becomes 3500

b) value = 84

c) 2.6

d) value is 28.

33. Given that, for the cylinder

Length = I = 4.54 cm, radius = r = 1.75 cm

Volume = $\pi r^2 I = \pi \times (4.54) \times (1.75)^2$ Since, the minimum no.of significant digits on a particular term is 3, the result should have

3 significant digits and others rounded off.

So, volume V = $\pi r^2 I = (3.14) \times (1.75) \times (1.75) \times (4.54) = 43.6577 \text{ cm}^3$

Since, it is to be rounded off to 3 significant digits, V = 43.7 cm³.

34. We know that,

Average thickness = $\frac{2.17 + 2.17 + 2.18}{3}$ = 2.1733 mm

Rounding off to 3 significant digits, average thickness = 2.17 mm.

35. As shown in the figure,

Actual effective length = (90.0 + 2.13) cm

But, in the measurement 90.0 cm, the no. of significant digits is only 2.

So, the addition must be done by considering only 2 significant digits of each measurement.

So, effective length = 90.0 + 2.1 = 92.1 cm.

* * * *