SOLUTIONS TO CONCEPTS

 CHAPTER - 2

 CHAPTER - 2}1. As shown in the figure,

The angle between A and $B=110^{\circ}-20^{\circ}=90^{\circ}$
$|A|=3$ and $|B|=4 m$
Resultant $R=\sqrt{A^{2}+B^{2}+2 A B \cos \theta}=5 m$
Let β be the angle between R and A
$\beta=\tan ^{-1}\left(\frac{4 \sin 90^{\circ}}{3+4 \cos 90^{\circ}}\right)=\tan ^{-1}(4 / 3)=53^{\circ}$
\therefore Resultant vector makes angle $\left(53^{\circ}+20^{\circ}\right)=73^{\circ}$ with x-axis.
2. Angle between A and B is $\theta=60^{\circ}-30^{\circ}=30^{\circ}$
$|A|$ and $|B|=10$ unit
$R=10^{2}+10^{2}+2 \cdot 10 \cdot 10 \cdot \cos 30^{\circ}=19 \cdot 3$
$\begin{array}{cc}y & B \\ & 60^{\circ} A^{-} \\ 30^{\circ} \quad x\end{array}$
β be the angle between R
$\left.\left.\beta=\tan ^{-1} \left\lvert\, \begin{array}{c}10 \sin 30^{\circ} \\ 10+10 \cos 30^{\circ}\end{array}\right.\right)=\tan ^{-1} \left\lvert\, \begin{array}{c}1 \\ (2\end{array}\right.\right)=\tan ^{-1}(0.26795)=15^{\circ} .4$
\therefore Resultant makes $15^{\circ}+30^{\circ}=45^{\circ}$ angle with x-axis.
3. x component of $\mathrm{A}=100 \cos 45^{\circ}=100 / 2$ unit
x component of $B=100 \cos 135^{\circ}=100 / 2$
x component of $\mathrm{C}=100 \cos 315^{\circ}=100 / 2$
Resultant x component $=100 / 2-100 / 2+100 / 2=100 / 2$ 315° 135°
y component of $A=100 \sin 45^{\circ}=100 / 2$ unit
y component of $B=100 \sin 135^{\circ}=100 / 2$
y component of $C=100 \sin 315^{\circ}=-100 / 2$
Resultant y component $=100 / \sqrt{2}+100 / \sqrt{2}-100 / \sqrt{2}=100 / \sqrt{2}$
Resultant = 100
Tan $\alpha=\frac{\mathrm{y} \text { component }}{\mathrm{x} \text { component }}=1$
$\Rightarrow \alpha=\tan ^{-1}(1)=45^{\circ}$
The resultant is 100 unit at 45° with x -axis.
4. $\vec{a}=4 i+3 j, b=3 i+4 j$
a) $|\vec{a}|=\sqrt{4^{2}+3^{2}}=5$
b) $|\mathrm{b}|=\sqrt{9+16}=5$
c) $|\vec{a}+b|=|7 i+7 j|=7 \sqrt{2}$
d) $\overrightarrow{\mathrm{a}}-\mathrm{b}=(-3+4) \hat{\mathrm{i}}+(-4+3) \hat{\mathrm{j}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}$

$$
|\vec{a}-\vec{b}|=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2} .
$$

5. x component of $\overrightarrow{\mathrm{OA}}=2 \cos 30^{\circ}=\sqrt{3}$
x component of $\overrightarrow{B C}=1.5 \cos 120^{\circ}=-0.75$
x component of $\overrightarrow{D E}=1 \cos 270^{\circ}=0$
y component of $\overrightarrow{O A}=2 \sin 30^{\circ}=1$

y component of $\overrightarrow{B C}=1.5 \sin 120^{\circ}=1.3$
y component of $\overrightarrow{D E}=1 \sin 270^{\circ}=-1$
$R_{x}=x$ component of resultant $=\sqrt{3}-0.75+0=0.98 \mathrm{~m}$
$R_{y}=$ resultant y component $=1+1.3-1=1.3 \mathrm{~m}$
So, R = Resultant $=1.6 \mathrm{~m}$
If it makes and angle α with positive x-axis
Tan $\alpha=\frac{y \text { component }}{x \text { component }}=1.32$
$\Rightarrow \alpha=\tan ^{-1} 1.32$
6. $|a|=3 m|b|=4$
a) If $R=1$ unit $\Rightarrow 3^{2}+4^{2}+2 \cdot 3 \cdot 4 \cdot \cos \theta=1$
$\theta=180^{\circ}$
b) $3^{2}+4^{2}+2 \cdot 3 \cdot 4 \cdot \cos \theta=5$ $\theta=90^{\circ}$
c) $3^{2}+4^{2}+2 \cdot 3 \cdot 4 \cdot \cos \theta=7$
$\theta=0^{\circ}$
Angle between them is 0°.
7. $\overrightarrow{\mathrm{AD}}=2 \hat{\mathbf{i}}+0.5 \hat{\mathbf{j}}+4 \hat{\mathrm{~K}}=6 \hat{i}+0.5 \hat{j}$
$A D=A E^{2}+D E^{2}=6.02 \mathrm{KM}$
Tan $\theta=D E / A E=1 / 12$
$\theta=\tan ^{-1}(1 / 12)$

C $\begin{aligned} & 4 \mathrm{~m} \\ & 0.5 \mathrm{~km}\end{aligned}$
0.5 km
θ
A 2 m B E

The displacement of the car is 6.02 km along the distance $\tan ^{-1}(1 / 12)$ with positive x -axis.
8. In $\triangle \mathrm{ABC}, \tan \theta=\mathrm{x} / 2$ and in $\triangle \mathrm{DCE}, \tan \theta=(2-\mathrm{x}) / 4 \tan \theta=(\mathrm{x} / 2)=(2-\mathrm{x}) / 4=4 \mathrm{x}$
$\Rightarrow 4-2 \mathrm{x}=4 \mathrm{x}$
$\Rightarrow 6 \mathrm{x}=4 \Rightarrow \mathrm{x}=2 / 3 \mathrm{ft}$
a) $\ln \triangle A B C, A C=\sqrt{A B^{2}+B C^{2}}=\frac{2}{3} 10 \mathrm{ft}$
b) $\operatorname{In} \triangle \mathrm{CDE}, \mathrm{DE}=1-(2 / 3)=4 / 3 \mathrm{ft}$

$$
C D=4 \mathrm{ft} . \text { So, } C E=\sqrt{C D^{2}+D E^{2}}=\frac{4}{3} 10 \mathrm{ft}
$$

c) In $\triangle A G E, A E=\sqrt{A G^{2}+G E^{2}}=2 \sqrt{2} \mathrm{ft}$.
9. Here the displacement vector $\vec{r}=7 \hat{i}+4 \hat{j}+3 \hat{k}$
a) magnitude of displacement $=\sqrt{74} \mathrm{ft}$
b) the components of the displacement vector are $7 \mathrm{ft}, 4 \mathrm{ft}$ and 3 ft .

10. a is a vector of magnitude 4.5 unit due north.
a) $3|\mathrm{a}|=3 \times 4.5=13.5$

3 a is along north having magnitude 13.5 units.
b) $-4 \mid$ a $\mid=-4 \times 1.5=-6$ unit
-4 a is a vector of magnitude 6 unit due south.
11. $|\mathrm{a}|=2 \mathrm{~m},|\mathrm{~b}|=3 \mathrm{~m}$
angle between them $\theta=60^{\circ}$
a) $\vec{a} \cdot b=|\vec{a}| \cdot|b| \cos 60^{\circ}=2 \times 3 \times 1 / 2=3 \mathrm{~m}^{2}$
b) $|\vec{a} \times \mathrm{b}|=|\overrightarrow{\mathrm{a}}| \cdot|\mathrm{b}| \sin 60^{\circ}=2 \times 3 \times \sqrt{3 / 2}=3 \sqrt{3} \mathrm{~m}^{2}$.
12. We know that according to polygon law of vector addition, the resultant of these six vectors is zero.
A5
A_{4}

Here $A=B=C=D=E=F$ (magnitude)
So, $R x=A \cos \theta+A \cos \pi / 3+A \cos 2 \pi / 3+A \cos 3 \pi / 3+A \cos 4 \pi / 4+A_{6}$
A_{3}
A $\cos 5 \pi / 5=0$
[As resultant is zero. X component of resultant $R_{x}=0$]
$60^{\circ}=\pi / 3$
$A_{1} \quad A_{2}$ $=\cos \theta+\cos \pi / 3+\cos 2 \pi / 3+\cos 3 \pi / 3+\cos 4 \pi / 3+\cos 5 \pi / 3=0$
Note : Similarly it can be proved that,

$$
\sin \theta+\sin \pi / 3+\sin 2 \pi / 3+\sin 3 \pi / 3+\sin 4 \pi / 3+\sin 5 \pi / 3=0
$$

13. $\vec{a}=2 i+3 j+4 k ; b=3 i+4 j+5 k$
$\vec{a} \cdot b=a b \cos \theta \Rightarrow \theta=\cos ^{-1} \vec{a} \cdot b$
$\left.\begin{array}{cc} \\ \cos ^{-1} & \begin{array}{c}a b \\ 2 \times 3+3 \times 4+4 \times 5 \\ 2^{2} \\ 2^{2}+3^{2}+3^{2}+2^{2}\end{array} 3^{2}+5^{2}+\cos ^{-1}\end{array} \begin{gathered}38 \\ 1450\end{gathered} \right\rvert\,$
14. $\mathrm{A} \cdot(\mathrm{A} \times \mathrm{B})=0$ (claim)

As, $A \times B=A B \sin \theta \hat{n}$
$A B \sin \theta \hat{n}$ is a vector which is perpendicular to the plane containing A and B, this implies that it is also perpendicular to A. As dot product of two perpendicular vector is zero.
Thus $A \cdot(A \times B)=0$.
15. $A=2 \hat{i}+3 \hat{j}+4 \hat{k}, \quad B=4 \hat{i}+3 \hat{j}+2 \hat{k}$
$\vec{A} \times \vec{B}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 4 & 3 & 2\end{array}\right| \Rightarrow \hat{i}(6-12)-\hat{j}(4-16)+\hat{k}(6-12)=-6 \hat{i}+12 \hat{j}-6 \hat{k}$.
16. Given that A, B and C are mutually perpendicular
$A \times B$ is a vector which direction is perpendicular to the plane containing A and B.

Also C is perpendicular to A and B
\therefore Angle between C and $\mathrm{A} \times \mathrm{B}$ is 0° or 180° (fig.1)
So, $C \times(A \times B)=0$
The converse is not true.
For example, if two of the vector are parallel, (fig.2), then also

$C \times(A \times B)=0$
So, they need not be mutually perpendicular.
17. The particle moves on the straight line $P P^{\prime}$ at speed v.

From the figure,

$$
\overrightarrow{\mathrm{OP}} \times v=(O P) v \sin \theta \hat{n}=v(O P) \sin \theta \hat{n}=v(O Q) \hat{n}
$$

It can be seen from the figure, $O Q=O P \sin \theta=O P^{\prime} \sin \theta^{\prime}$ So, whatever may be the position of the particle, the magnitude and
 direction of $\overrightarrow{\mathrm{OP}} \times \overrightarrow{\mathrm{v}}$ remain constant.
$\therefore \overrightarrow{\mathrm{OP}} \times \overrightarrow{\mathrm{v}}$ is independent of the position P .
18. Give $\mathrm{F}=\mathrm{qE}+\mathrm{q}(\overrightarrow{\mathrm{v}} \times \mathrm{B})=0$

$$
\Rightarrow E=-(\vec{v} \times B)
$$

So, the direction of $\vec{v} \times B$ should be opposite to the direction of E. Hence, v should be in the positive yz-plane.
Again, $E=v B \sin \theta \Rightarrow v=\frac{E}{B \sin \theta}$
For v to be minimum, $\theta=90^{\circ}$ and so $v_{\text {min }}=F / B$

So, the particle must be projected at a minimum speed of E / B along +ve z-axis $\left(\theta=90^{\circ}\right)$ as shown in the figure, so that the force is zero.
19. For example, as shown in the figure,
$A \perp B$
B along west
$B \perp C$
A along south
C along north

B
c
A
B
$A \cdot B=0 \quad \therefore A \cdot B=B \cdot C$
$B \cdot C=0 \quad$ But $B \neq C$
20. The graph $y=2 x^{2}$ should be drawn by the student on a graph paper for exact results.
To find slope at any point, draw a tangent at the point and extend the line to meet x-axis. Then find $\tan \theta$ as shown in the figure.

It can be checked that,
$\theta \quad \Delta x$
Slope $=\tan \theta=\frac{d y}{d x}=\underset{d x}{d}\left(2 x^{2}\right)=4 x$
Where $x=$ the x-coordinate of the point where the slope is to be measured.
21. $y=\sin x$

So, $y+\Delta y=\sin (x+\Delta x)$
$\Delta y=\sin (x)+\Delta x) \bar{\pi}-\sin x$

22. Given that, $\mathrm{i}=\mathrm{i}_{0} \mathrm{e}^{-\mathrm{t} / \mathrm{RC}}$
\therefore Rate of change of current $=\frac{d i}{d t}=\frac{d}{d t} \mathrm{i}^{-} e^{-i / R C}=\mathrm{i} 0 \frac{d}{d t} e^{-t / R C}=\frac{-i_{0}}{R C} \times e^{-t / R C}$
When
a) $\mathrm{t}=0, \frac{\mathrm{di}}{\mathrm{dt}}=\frac{-\mathrm{i}}{\mathrm{RC}}$
b) when $t=R C, \frac{d i}{d t}=\frac{-i}{R C e}$
c) when $t=10 R C, \frac{d i}{d t}=\frac{-i_{0}}{\mathrm{RCe}^{10}}$
23. Equation $\mathrm{i}=\mathrm{i}_{0} \mathrm{e}^{-\mathrm{t} / \mathrm{RC}}$
$\mathrm{i}_{0}=2 \mathrm{~A}, \mathrm{R}=6 \times 10^{-5} \Omega, \mathrm{C}=0.0500 \times 10^{-6} \mathrm{~F}=5 \times 10^{-7} \mathrm{~F}$

b) $\frac{\mathrm{di}}{\mathrm{dt}}=\frac{-\mathrm{i}_{0}}{\mathrm{RC}} \mathrm{e}^{-\mathrm{t} / \mathrm{Rc}}$ when $\mathrm{t}=0.3 \mathrm{sec} \Rightarrow \frac{\mathrm{di}}{\mathrm{dt}}=-\frac{2}{0.30} \mathrm{e}^{(-0.3 / 0.3)}=\frac{-20}{3 \mathrm{Amp} / \mathrm{sec}}$
c) At $t=0.31 \mathrm{sec}, \mathrm{i}=2 \mathrm{e}^{(-0.3 / 0.3)}=\frac{5.8}{\mathrm{Amp}} \frac{3 \mathrm{e}}{\mathrm{Am}}$.
24. $y=3 x^{2}+6 x+7$
\therefore Area bounded by the curve, x axis with coordinates with $\mathrm{x}=5$ and $\mathrm{x}=10$ is given by,
Area $\left.\left.\left.=\int_{6}^{y} d y=\int_{5}^{10}\left(3 x^{2}+6 x+7\right) d x=3 \frac{x^{3}}{3}\right]_{5}^{10}+5 \frac{x^{2}}{3}\right]_{5}^{10}+7 x\right]_{5}^{10}=1135$ sq.units.

So, the required area can be found out by integrating the function from 0 to ∞.
So, Area $=\int_{0}^{\infty} e^{-x} d x=-\left[e^{-x}\right]^{\infty} 0=1$.
27. $\rho=\frac{\text { mass }}{\text { length }}=a+b x$
a) S.I. unit of 'a' $=\mathrm{kg} / \mathrm{m}$ and SI unit of ' b ' $=\mathrm{kg} / \mathrm{m}^{2}$ (from principle of homogeneity of dimensions)

0
X
b) Let us consider a small element of length 'dx' at a distance x from the origin as shown in the figure.
$\therefore \mathrm{dm}=$ mass of the element $=\rho_{L} \mathrm{dx}=(\mathrm{a}+\mathrm{bx}) \mathrm{dx}$

$$
\left.b x^{2}\right\rceil^{L} \quad b L^{2}
$$

So, mass of the rod $\left.=m=\int d m=\int_{0}(a+b x) d x=\left.\right|_{L a x}+\overline{2}\right\rfloor_{0}=a L+\frac{}{2}$
28. $\frac{d p}{d t}=(10 N)+(2 N / S) t$
momentum is zero at $\mathrm{t}=0$
\therefore momentum at $\mathrm{t}=10 \mathrm{sec}$ will be
$d p=[(10 N)+2 N s t] d t$
$\left.\left.\int_{0}^{p} \mathrm{dp}=\int_{0}^{10} 10 \mathrm{dt}+\int_{0}^{10}(2 \mathrm{tdt})=10 \mathrm{t}\right] 0^{10}+2 \frac{\mathrm{t}^{2}}{2}\right]_{0}^{10}=200 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$.
29. The change in a function of y and the independent variable x are related as $\frac{d y}{d x}=x^{2}$.
$\Rightarrow d y=x^{2} d x$
Taking integration of both sides,
$\int d y=\int x^{2} d x \Rightarrow y=\frac{x^{3}}{3}+c$
$\therefore \mathrm{y}$ as a function of x is represented by $\mathrm{y}=\frac{\mathrm{x}^{3}}{3}+\mathrm{c}$.
30. The number significant digits
a) $1001 \quad$ No.of significant digits $=4$
b) $100.1 \quad$ No.of significant digits $=4$
c) $100.10 \quad$ No.of significant digits $=5$
d) $0.001001 \quad$ No.of significant digits $=4$
31. The metre scale is graduated at every millimeter.

$$
1 \mathrm{~m}=100 \mathrm{~mm}
$$

The minimum no.of significant digit may be 1 (e.g. for measurements like $5 \mathrm{~mm}, 7 \mathrm{~mm}$ etc) and the maximum no.of significant digits may be 4 (e.g. 1000 mm)
So, the no.of significant digits may be 1, 2, 3 or 4 .
32. a) In the value 3472 , after the digit 4,7 is present. Its value is greater than 5 .

So, the next two digits are neglected and the value of 4 is increased by 1 .
\therefore value becomes 3500
b) value $=84$
c) 2.6
d) value is 28 .
33. Given that, for the cylinder

Length $=I=4.54 \mathrm{~cm}$, radius $=r=1.75 \mathrm{~cm}$
Volume $=\pi r^{2} I=\pi \times(4.54) \times(1.75)^{2}$
Since, the minimum no.of significant digits on a particular term is 3 , the result should have 3 significant digits and others rounded off.
So, volume $V=\pi r^{2} I=(3.14) \times(1.75) \times(1.75) \times(4.54)=43.6577 \mathrm{~cm}^{3}$
Since, it is to be rounded off to 3 significant digits, $V=43.7 \mathrm{~cm}^{3}$.
34. We know that,

Average thickness $=\frac{2.17+2.17+2.18}{3}=2.1733 \mathrm{~mm}$
Rounding off to 3 significant digits, average thickness $=2.17 \mathrm{~mm}$.
35. As shown in the figure,

Actual effective length $=(90.0+2.13) \mathrm{cm}$
But, in the measurement 90.0 cm , the no. of significant digits is only 2.
So, the addition must be done by considering only 2 significant digits of each measurement.
So, effective length $=90.0+2.1=92.1 \mathrm{~cm}$.

$$
* * * *
$$

