2027.23 Bimion

SCHOOL GUIDES

SU|

Business Mathematics and Statistics

$12^{\text {th }}$ Std

Salient Features

- Exhaustive Additional Questions \& Answers in all chapters.
- Model Question Papers 1 to 6 (PTA) : Questions are incorporated in the appropriate sections.
Govt. Model Question Paper-2019 [Govt. MQP-2019], Quarterly Exam - 2019 [QY-2019], Half yearly Exam - 2019 [HY-2019], Public Exam March- 2020 [March-2020] and Govt. Supplementary Exam September - 2020 \& August - 2021 [Sep -2020 \& Aug. -2021] are incorporated in the appropriate sections.

Govt. Supplementary Examination August 2021 Question Paper is given with answers.

All rights reserved © SURA Publications.

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, digitally, electronically, mechanically, photocopying, recorded or otherwise, without the written permission of the publishers. Strict action will be taken.

ISBN : 978-93-92559-09-9
Code No : SG 325

Authors:
Mr. A.Ganesa Moorthy M.Sc., M.Ed., M.phil.
Chennai

Edited by :
Mr.S. Sathish M.Sc., M.Phil.

Reviewed by :
Mr.S. Niranjan, B.Tech., M.B.A(IIM)
Chennai

Head Office:

1620, 'J' Block, 16th Main Road, Anna Nagar, Chennai - 600040.
Phones: 044-4862 9977, 044-486 27755.
Mob: 8124201000 / 8124301000
e-mail : orders @surabooks.com website : www.surabooks.com

> | | For More Information - Contact |
| ---: | :--- |
| Doubts in Our Guides | $: ~ e n q u i r y @ s u r a b o o k s . c o m ~$ |
| For Order | $:$ orders@surabooks.com |
| Contact | $: 8056294222 / 8056215222$ |
| Whatsapp | $: 8124201000 / 9840926027$ |

Online Site : www.surabooks.com For Free Study Materials Visit http://tnkalvi.in

PREFACE

The woods are lovely, dark and deep.
But I have promises to keep, and miles to go before I sleep

- Robert Frost

Respected Principals, Correspondents, Head Masters / Head Mistresses, Teachers, and dear Students.

From the bottom of our heart, we at SURA Publications sincerely thank you for the support and patronage that you have extended to us for more than a decade.

It is in our sincerest effort we take the pride of releasing SURA'S Business Mathematics and Statistics for +2 Standard. This guide has been authored and edited by qualified teachers having teaching experience for over a decade in their respective subject fields. This Guide has been reviewed by reputed Professors who are currently serving as Head of the Department in esteemed Universities and Colleges.

With due respect to Teachers, I would like to mention that this guide will serve as a teaching companion to qualified teachers. Also, this guide will be an excellent learning companion to students with exhaustive exercises, additional problems and 1 marks as per new model in addition to precise answers for exercise problems.

In complete cognizance of the dedicated role of Teachers, I completely believe that our students will learn the subject effectively with this guide and prove their excellence in Board Examinations.

I once again sincerely thank the Teachers, Parents and Students for supporting and valuing our efforts.

Subash Raj, B.E., M.S. - Publisher Sura Publications

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores www.kalviexpress.in

CONTENTS

1. Applications of Matrices and Determinants 1-35
2. Integral Calculus I 36-82
3. Integral Calculus II 83-118
4. Differential Equations 119-164
5. Numerical Methods 165-194
6. Random Variable and Mathematical expectation 195-226
7. Probability Distributions 227-262
8. Sampling techniques and Statistical Inference 263-282
9. Applied Statistics 283-322
10. Operations Research 323-364
Govt. Supplementary Exam August 2021 Question Paper with answers 365-378

)

APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER SNAPSHOT

Rank of a matrix :-

The rank of a matrix A is the order of the largest non-zero minor of A and is denoted by $\rho(A)$.
(i) $\rho(\mathrm{A}) \geq 0$.
(ii) If A is a matrix of order $m \times n$, then $\rho(\mathrm{A}) \leq \min \{m, n\}$.
(iii) Rank of a zero matrix is 0 .
(iv) The rank of a non - singular matrix of order $n \times n$ is " n ".

Elementary transformations:
(i) Interchange any two rows (or columns)

$$
\mathrm{R}_{i} \leftrightarrow \mathrm{R}_{j}\left(\mathrm{C}_{i} \leftrightarrow \mathrm{C}_{j}\right)
$$

(ii) Multiplication of each element of a row (or column) by any non-zero scalar k.

$$
\mathrm{R}_{i} \rightarrow k \mathrm{R}_{i}\left(\text { or } \mathrm{C}_{i} \rightarrow k \mathrm{C}_{i}\right)
$$

(iii) Addition to the elements of any row (or column) the same scalar multiples of corresponding elements of any other row (or column).

$$
\mathrm{R}_{i} \rightarrow \mathrm{R}_{i}+k \mathrm{R}_{j}\left(\text { or } \mathrm{C}_{i} \rightarrow \mathrm{C}_{i}+k \mathrm{C}_{i}\right)
$$

Equivalent matrices:

Two matrices A and B are said to be equivalent if one is obtained from the another by applying a finite number of elementary transformations.

$$
A \cong b
$$

Echelon form :

A matrix A of order $m \times n$ is said to be in echelon form if
(i) Every row of A which has all its entries 0 occurs below every row which has a non - zero entry.
(ii) The number of zeros before the first non-zero element in a row is less than the number of such zeros in the next row.

Transition matrix :

The transition probabilities $\mathrm{P}_{j k}$ satisfy $\mathrm{P}_{j k}>0, \underset{k}{\sum} \mathrm{P}_{j k}=1$ for all j

FORMULAE TO REMEMBER

1. Linear equations can be written in matrix form $\mathrm{AX}=\mathrm{B}$, then the solution is $\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}$, provided $|\mathrm{A}| \neq 0$.
2. Consistency of non homogeneous linear equations by rank method.
(i) If $\rho([\mathrm{A}, \mathrm{B}])=\rho(\mathrm{A})$, then the equations are consistent.
(ii) If $\rho([A, B])=\rho(A)=n$, where n is the number of variables then the equations are consistent and have unique solution.
(iii) If $\rho([\mathrm{A}, \mathrm{B}])=\rho(\mathrm{A})<n$, then the equations are consistent and have infinitely many solutions.
(iv) If $\rho([\mathrm{A}, \mathrm{B}]) \neq \rho(\mathrm{A})$, then the equations are inconsistent and has no solution.
3. Solving non-homogeneous linear equations by Cramer's rule.
If $\quad a_{1} x+b_{1} y+c_{1} z=d_{1}$,
$a_{2} x+b_{2} y+c_{2} z=d_{2}$,
$a_{3} x+b_{3} y+c_{3} z=d_{3}$
Then $\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right| \neq 0, \Delta x=\left|\begin{array}{lll}d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3}\end{array}\right|$,

$$
\Delta y=\left|\begin{array}{lll}
a_{1} & d_{1} & c_{1} \\
a_{2} & d_{2} & c_{2} \\
a_{3} & d_{3} & c_{3}
\end{array}\right|, \quad \Delta z=\left|\begin{array}{lll}
a_{1} & b_{1} & d_{1} \\
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right|
$$

Then $x=\frac{\Delta x}{\Delta}, \quad y=\frac{\Delta y}{\Delta}$ and $z=\frac{\Delta z}{\Delta}$

TEXTUAL QUESTIONS

EXERCISE1.1

1. Find the rank of each of the following matrices.
(i) $\left(\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right)$
(ii) $\left(\begin{array}{ll}1 & -1 \\ 3 & -6\end{array}\right)$
(iii) $\left(\begin{array}{ll}1 & 4 \\ 2 & 8\end{array}\right)$
(iv) $\left(\begin{array}{ccc}2 & -1 & 1 \\ 3 & 1 & -5 \\ 1 & 1 & 1\end{array}\right)$
(v) $\left(\begin{array}{ccc}-1 & 2 & -2 \\ 4 & -3 & 4 \\ -2 & 4 & -4\end{array}\right)$
(vi) $\left(\begin{array}{cccc}1 & 2 & -1 & 3 \\ 2 & 4 & 1 & -2 \\ 3 & 6 & 3 & -7\end{array}\right)$
(vii) $\left(\begin{array}{cccc}3 & 1 & -5 & -1 \\ 1 & -2 & 1 & -5 \\ 1 & 5 & -7 & 2\end{array}\right)$
(viii) $\left(\begin{array}{cccc}1 & -2 & 3 & 4 \\ -2 & 4 & -1 & -3 \\ -1 & 2 & 7 & 6\end{array}\right)$

Sol :(i)

$$
\text { Let } A=\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)
$$

Order of A is 2×2
$\therefore \rho(\mathrm{A}) \leq 2$ [Since minimum of $(2,2)$ is 2]
Consider the second order minor,

$$
\begin{aligned}
\left|\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right| & =40-42 \\
& =-2 \neq 0 .
\end{aligned}
$$

There is a minor of order 2 , which is not zero

$$
\therefore \rho(\mathrm{A})=2
$$

(ii)

$$
\text { Let } \mathrm{A}=\left(\begin{array}{ll}
1 & -1 \\
3 & -6
\end{array}\right)
$$

Order of A is 2×2
$\therefore \rho(\mathrm{A}) \leq 2$ [Since minimum of $(2,2)$ is 2]
Consider the second order minor,

$$
\begin{aligned}
\left|\begin{array}{cc}
1 & -1 \\
3 & -6
\end{array}\right| & =-6-(-3) \\
& =-6+3 \\
& =-3 \neq 0 .
\end{aligned}
$$

There is a minor of order 2 , which is not zero

$$
\begin{align*}
\therefore \rho(\mathrm{A}) & =2 . \\
\text { Let } \mathrm{A} & =\left(\begin{array}{ll}
1 & 4 \\
2 & 8
\end{array}\right) \tag{iii}
\end{align*}
$$

[QY-2019]
Order of A is 2×2 [Since minimum of $(2,2)$ is 2]
Consider the second order minor
$=8-8$$\left|\begin{array}{ll}1 & 4 \\ 2 & 8\end{array}\right|$

$$
=0 .
$$

Since the second order minor vanishes, $\rho(\mathrm{A}) \neq 2$
Consider a first order minor $|1| \neq 0$
There is a minor of order 1 , which is not zero

$$
\therefore \rho(\mathrm{A})=1 \text {. }
$$

$$
\text { Let } \mathrm{A}=\left(\begin{array}{ccc}
2 & -1 & 1 \\
3 & 1 & -5 \\
1 & 1 & 1
\end{array}\right)
$$

[PTA - 1; Aug.-2021]
The order of A is 3×3
$\therefore \rho(\mathrm{A}) \leq 3$ [Since minimum of $(3,3)$ is 3]

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores w w w.kalviexpress.in

Sura's ${ }^{[1 /+}$ XII Std - Unit 1 |n| Applications of Matrices and determinants
3
Let us transform the matrix A to an echelon form

Matrix A	Elementary Transformation
$\mathrm{A}=\left(\begin{array}{ccc}2 & -1 & 1 \\ 3 & 1 & -5 \\ 1 & 1 & 1\end{array}\right)$	
$\sim\left(\begin{array}{ccc}1 & 1 & 1 \\ 3 & 1 & -5 \\ 2 & -1 & 1\end{array}\right)$	$\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{3}$
$\sim\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & -2 & -8 \\ 0 & -3 & -1\end{array}\right)$	$\begin{aligned} & \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-3 \mathrm{R}_{1} \\ & \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-2 \mathrm{R}_{1} \end{aligned}$
$\sim\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & -1 & -4 \\ 0 & -3 & -1\end{array}\right)$	$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2} \div 2$
$\sim\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & -1 & -4 \\ 0 & 0 & 11\end{array}\right)$	$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{2}$

This matrix is in echelon from and number of nonzero rows is 3 .
(v) Let $A=\left(\begin{array}{ccc}-1 & 2 & -2 \\ 4 & -3 & 4 \\ -2 & 4 & -4\end{array}\right)$

$$
\therefore \rho(\mathrm{A})=3 .
$$

The order of A is 3×3
$\therefore \rho(\mathrm{A}) \leq 3$ [Since minimum of $(3,3)$ is 3]
Let us transform the matrix to an echelon form.

Matrix A	Elementary Transformation
$A=\left(\begin{array}{ccc}-1 & 2 & -2 \\ 4 & -3 & 4 \\ -2 & 4 & -4\end{array}\right)$	
$\sim\left(\begin{array}{ccc}1 & -2 & 2 \\ 4 & -3 & 4 \\ -2 & 4 & -4\end{array}\right)$	$\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}(-1)$

Matrix A	Elementary Transformation
$\sim\left(\begin{array}{ccc}1 & -2 & 2 \\ 0 & 5 & -4 \\ -2 & 4 & -4\end{array}\right)$	$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-4 \mathrm{R}_{1}$
	$\sim\left(\begin{array}{ccc}1 & -2 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 0\end{array}\right)$

The matrix is in echelon form and the number of non-zero rows is 2 .

$$
\therefore \rho(\mathrm{A})=2 \text {. }
$$

(vi)

$$
\text { Let } \mathrm{A}=\left(\begin{array}{cccc}
1 & 2 & -1 & 3 \\
2 & 4 & 1 & -2 \\
3 & 6 & 3 & -7
\end{array}\right)
$$

The order of A is 3×4
$\therefore \rho(\mathrm{A}) \leq 3$ [Since minimum of $(3,3)$ is 3]
Let us transform the matrix to an echelon form.

Matrix A	Elementary Transformation
$A=\left(\begin{array}{cccc}1 & 2 & -1 & 3 \\ 2 & 4 & 1 & -2 \\ 3 & 6 & 3 & -7\end{array}\right)$	
$\sim\left(\begin{array}{cccc}1 & 2 & -1 & 3 \\ 0 & 0 & 3 & -8 \\ 3 & 6 & 3 & -7\end{array}\right)$	$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$
$\sim\left(\begin{array}{cccc}1 & 2 & -1 & 3 \\ 0 & 0 & 3 & -8 \\ 0 & 0 & 6 & -16\end{array}\right)$	$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{1}$
$\sim\left(\begin{array}{cccc}1 & 2 & -1 & 3 \\ 0 & 0 & 3 & -18 \\ 0 & 0 & 0 & 0\end{array}\right)$	$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-2 \mathrm{R}_{2}$

The matrix is in echelon form and the number of non- zero rows is 2 .

$$
\therefore \rho(\mathrm{A})=2 \text {. }
$$

(vii)

$$
A=\left(\begin{array}{cccc}
3 & 1 & -5 & -1 \\
1 & -2 & 1 & -5 \\
1 & 5 & -7 & 2
\end{array}\right)
$$

The order of A is 3×4
$\therefore \rho(\mathrm{A}) \leq 3$ [Since minimum of $(3,4)$ is 3]

Let us transform the matrix A to an echelon form.

Matrix A	Elementary Transformation	
	$\sim\left(\begin{array}{cccc}3 & 1 & -5 & -1 \\ 1 & -2 & 1 & -5 \\ 1 & 5 & -7 & 2\end{array}\right)$	
	$\sim\left(\begin{array}{cccc}1 & 5 & -7 & 2 \\ 1 & -2 & 1 & -5 \\ 3 & 1 & -5 & -1\end{array}\right)$	
	$\sim\left(\begin{array}{cccc}1 & 5 & -7 & 2 \\ 0 & -7 & 8 & -7 \\ 3 & 1 & -5 & -1\end{array}\right)$	
	$\sim\left(\begin{array}{lccc}1 & 5 & -7 & 2 \\ 0 & -7 & 8 & -7 \\ 0 & -14 & 16 & -7\end{array}\right)$	
	$\sim\left(\begin{array}{lccc}1 & 5 & -7 & 2 \\ 0 & -7 & 8 & -7 \\ 0 & 0 & 0 & 7\end{array}\right)$	$\mathrm{R}_{3} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$

The matrix is in echelon form and the number of non-zero matrix is 3 .

$$
\therefore \rho(\mathrm{A})=3 \text {. }
$$

(viii)

$$
A=\left(\begin{array}{cccc}
1 & -2 & 3 & 4 \\
-2 & 4 & -1 & -3 \\
-1 & 2 & 7 & 6
\end{array}\right)
$$

The order of A is 3×4
$\therefore \rho(\mathrm{A}) \leq$ minimum of $(3,4) \Rightarrow \rho(\mathrm{A}) \leq 3$
Let us transform the matrix A to an echelon form.

Matrix A	$=$Elementary Transformation	
	$\sim\left(\begin{array}{cccc}1 & -2 & 3 & 4 \\ -2 & 4 & -1 & -3 \\ -1 & 2 & 7 & 6\end{array}\right)$	
	$\sim\left(\begin{array}{cccc}1 & -2 & 3 & 4 \\ 0 & 0 & 5 & 5 \\ -1 & 2 & 7 & 6\end{array}\right)$	
	$\sim\left(\begin{array}{cccc}1 & -2 & 3 & 4 \\ 0 & 0 & 5 & 5 \\ 0 & 0 & 10 & 10\end{array}\right)$	$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+2 \mathrm{R}_{1}$
	$\sim\left(\begin{array}{llll}1 & -2 & 3 \\ 0 & 0 & 5 & 5 \\ 0 & 0 & 0 & 0\end{array}\right)$	$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{1}-2 \mathrm{R}_{2}$

The matrix is in echelon form and the number of non- zero rows is 2 .

$$
\therefore \rho(\mathrm{A})=2 \text {. }
$$

2. If $A=\left(\begin{array}{ccc}1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3\end{array}\right)$ and $B=\left(\begin{array}{ccc}1 & -2 & 3 \\ -2 & 4 & -6 \\ 5 & 1 & -1\end{array}\right)$, then find the rank of $A B$ and the rank of $B A$. Sol :

$$
\begin{aligned}
& \text { Given } A=\left(\begin{array}{ccc}
1 & 1 & -1 \\
2 & -3 & 4 \\
3 & -2 & 3
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
1 & -2 & 3 \\
-2 & 4 & -6 \\
5 & 1 & -1
\end{array}\right) \\
& \begin{aligned}
& \mathrm{AB}=\left(\begin{array}{ccc}
1 & 1 & -1 \\
2 & -3 & 4 \\
3 & -2 & 3
\end{array}\right)\left(\begin{array}{ccc}
1 & -2 & 3 \\
-2 & 4 & -6 \\
5 & 1 & -1
\end{array}\right) \\
&=\left(\begin{array}{ccc}
1-2-5 & -2+4-1 & 3-6+1 \\
2+6+20 & -4-12+4 & 6+18-4 \\
3+4+15 & -6-8+3 & 9+12-3
\end{array}\right) \\
& \mathrm{AB}=\left(\begin{array}{lll}
-6 & 1 & -2 \\
28 & -12 & 20 \\
22 & -11 & 18
\end{array}\right)
\end{aligned}
\end{aligned}
$$

Matrix (AB)	Elementary Transformation
$A B=\left(\begin{array}{ccc}-6 & 1 & -2 \\ 28 & -12 & 20 \\ 22 & -11 & 18\end{array}\right)$) - -
$\sim\left(\begin{array}{ccc}1 & -6 & -2 \\ -12 & 28 & 20 \\ -11 & 22 & 18\end{array}\right)$	$\mathrm{C}_{1} \leftrightarrow \mathrm{C}_{2}$
$\sim\left(\begin{array}{ccc}1 & -6 & -2 \\ 0 & -44 & -4 \\ -11 & 22 & 18\end{array}\right)$	$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+12 \mathrm{R}_{1}$
$\sim\left(\begin{array}{ccc}1 & -6 & -2 \\ 0 & -44 & -4 \\ 0 & -44 & -4\end{array}\right)$	$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+11 \mathrm{R}_{1}$
$\sim\left(\begin{array}{ccc}1 & -6 & -2 \\ 0 & -44 & -4 \\ 0 & 0 & 0\end{array}\right)$	$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}$

The matrix is in echelon form and the number of non-zero rows is 2 .

$$
\therefore \rho(\mathrm{AB})=2 \text {. }
$$

Now, $\mathrm{BA}=\left(\begin{array}{ccc}1 & -2 & 3 \\ -2 & 4 & -6 \\ 5 & 1 & -1\end{array}\right)\left(\begin{array}{ccc}1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3\end{array}\right)$

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores w w w.kalviexpress.in

Sura's XII Std - Unit 1 |ne Applications of Matrices and determinants
5

$$
\begin{array}{r}
=\left(\begin{array}{ccc}
1-4+9 & 1+6-6 & -1-8+9 \\
-2+8-18 & -2-12+12 & 2+16-18 \\
5+2-3 & 5-3+2 & -5+4-3
\end{array}\right) \\
=\left(\begin{array}{ccc}
6 & 1 & 0 \\
-12 & -2 & 0 \\
4 & 4 & -4
\end{array}\right)
\end{array}
$$

Matrix (BA)	Elementary Transformation
$\mathrm{BA}=\left(\begin{array}{ccc}6 & 1 & 0 \\ -12 & -2 & 0 \\ 4 & 4 & -4\end{array}\right)$	
$\sim\left(\begin{array}{ccc}1 & 6 & 0 \\ -2 & -12 & 0 \\ 4 & 4 & -4\end{array}\right)$	$\mathrm{C}_{1} \leftrightarrow \mathrm{C}_{2}$
$\sim\left(\begin{array}{ccc}1 & 6 & 0 \\ 0 & 0 & 0 \\ 4 & 4 & -4\end{array}\right)$	$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+2 \mathrm{R}_{1}$
$\sim\left(\begin{array}{ccc}1 & 6 & 0 \\ 0 & 0 & 0 \\ 0 & -20 & -4\end{array}\right)$	$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-4 \mathrm{R}_{1}$

The number of non-zero rows is 2 .

$$
\therefore \rho(B A)=2 \text {. }
$$

3. Solve the following system of equations by rank method $x+y+z=9,2 x+5 y+7 z=52$, $2 x-y-z=0$
Sol :The given equations are $x+y+z=9$, $2 x+5 y+7 z=52,2 x-y-z=0$
The matrix equation corresponding to the given system is

$$
\begin{aligned}
\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 5 & 7 \\
2 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{c}
9 \\
52 \\
0
\end{array}\right) \\
\mathrm{A} \quad \mathrm{X} & =\mathrm{B}
\end{aligned}
$$

Augmented matrix [AB]	Elementary Transformation
$\begin{aligned} & \left(\begin{array}{cccc} 1 & 1 & 1 & 9 \\ 2 & 5 & 7 & 52 \\ 2 & 1 & -1 & 0 \end{array}\right) \\ \sim & \sim\left(\begin{array}{cccc} 1 & 1 & 1 & 9 \\ 0 & 3 & 5 & 34 \\ 0 & -1 & -3 & -18 \end{array}\right) \\ \sim & \left(\begin{array}{cccc} 1 & 1 & 1 & 9 \\ 0 & 3 & 5 & 34 \\ 0 & 0 & -4 & -20 \end{array}\right) \\ \sim & \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 3 & 5 \\ 0 & 0 & -4 \end{array}\right) \end{aligned}$	$\begin{aligned} & \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1} \\ & \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-2 \mathrm{R}_{1} \\ & \mathrm{R}_{3} \rightarrow 3 \mathrm{R}_{3}+\mathrm{R}_{2} \\ & \Rightarrow \mathrm{P}(\mathrm{~A})=3 \end{aligned}$
Since augmented matrix [A, B] ~ $\left(\begin{array}{cccc}1 & 1 & 1 & 9 \\ 0 & 3 & 5 & 34 \\ 0 & 0 & -4 & -20\end{array}\right)$	

has three non-zero rows, $\rho([A, B])=3$.
That is, $\rho(A)=\rho([A, B])=3=$ number of unknowns.
So the given system is consistent and has unique solution.
To find the solution, we rewrite the echelon form into the matrix form.

$$
\therefore x=1, y=3, z=5 \text { is the unique solution of the }
$$ given equations.

4. Show that the equations $5 x+3 y+7 z=4$, $3 x+26 y+2 z=9,7 x+2 y+10 z=5$ are consistent and solve them by rank method.
Sol : Given non-homogeneous equations are

$$
\begin{array}{r}
5 x+3 y+7 z=4 \\
3 x+26 y+2 z=9 \\
7 x+2 y+10 z=5
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \begin{aligned}
\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 3 & 5 \\
0 & 0 & -4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{c}
9 \\
34 \\
-20
\end{array}\right) \\
x+y+z & =9
\end{aligned} \\
& 3 y+5 z=34 \\
& -4 z=-20 \\
& \text { (3) } \Rightarrow \quad-4 z=-20 \\
& z=\frac{-20}{-4}=5 \\
& \text { (2) } \Rightarrow 3 y+5(5)=34 \\
& \Rightarrow \quad 3 y+25=34 \Rightarrow 3 y=34-25 \\
& \Rightarrow \quad 3 y=9 \Rightarrow y=\frac{9}{3} \\
& y=3 . \\
& \text { (1) } \Rightarrow x+3+5=9 \\
& \Rightarrow \quad x+8=9 \Rightarrow x=9-8 \Rightarrow x=1
\end{aligned}
$$

The matrix equation corresponding to the given system is

$$
\begin{array}{rl}
\left(\begin{array}{ccc}
5 & 3 & 7 \\
3 & 26 & 2 \\
7 & 2 & 10
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{l}
4 \\
9 \\
5
\end{array}\right) \\
\mathrm{A} & \mathrm{X}
\end{array}
$$

Augmented matrix [A, B] $=\left(\begin{array}{cccc}5 & 3 & 7 & 4 \\ 3 & 26 & 2 & 9 \\ 7 & 2 & 10 & 5\end{array}\right)$

Augmented matrix $[\mathrm{A}, \mathrm{~B}]$	Elementary Transformation
	$\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{2}$ $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1} \div 3$ $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-5 \mathrm{R}_{1}$ $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-7 \mathrm{R}_{1}$ $\begin{aligned} & \mathrm{R}_{2} \rightarrow \mathrm{R}_{2} \div 11 \\ & \mathrm{R}_{3} \rightarrow \mathrm{R}_{3} \div 16 \end{aligned}$ $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}$

Here $\rho(A)=\rho(A, B)=2<$ Number of unknowns.
\therefore The system is consistent with infinitely many solutions let us rewrite the above echelon form into matrix form.

$$
\begin{align*}
\left(\begin{array}{ccc}
1 & \frac{26}{3} & \frac{2}{3} \\
0 & \frac{-11}{3} & \frac{1}{3} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right) \\
x+\frac{26}{3} y+\frac{2}{3} z & =3 \tag{1}\\
\frac{-11}{3} y+\frac{1}{3} z & =-1 \tag{2}
\end{align*}
$$

let $z=k$; where $k \in \mathrm{R}$
$(2) \Rightarrow \frac{-11}{3} y+\frac{k}{3}=-1$

$$
\begin{aligned}
\Rightarrow & \frac{-11}{3} y=-1-\frac{k}{3}=\frac{-3-k}{\not p} \\
\Rightarrow & -11 y=-3-k \\
\Rightarrow & 11 y=3+k \\
\Rightarrow & y=\frac{1}{11}(3+k)
\end{aligned}
$$

Substituting $y=\frac{1}{11}(3+k)$ and $z=k$ in (1) we get,

$$
\begin{aligned}
& x+\frac{26}{3}\left(\frac{3+k}{11}\right)+\frac{2}{3} k=3 \\
& x=-\frac{26}{3}\left(\frac{3+k}{11}\right)-\frac{2 k}{3}+3 \\
& =\frac{-78-26 k}{33}-\frac{2 k}{3}+3=\frac{-78-26 k-22 k+99}{33} \\
& =\frac{21-48 k}{33}=\frac{3(7-16 k)}{33} \\
& x=\frac{1}{11}(7-16 k)
\end{aligned}
$$

\therefore Solution set is $\left\{\frac{1}{11}(7-16 k), \frac{1}{11}(3+k), k\right\} k \in \mathrm{R}$. Hence, for different values of k, we get infinitely many solutions.
5. Show that the following system of equations have unique solution: $x+y+z=3, x+2 y+3 z$ $=4, x+4 y+9 z=6$ by rank method. [QY-2019]
Sol : Given non-homogeneous equations are

$$
\begin{aligned}
x+y+z & =3 \\
x+2 y+3 z & =4 \\
x+4 y+9 z & =6
\end{aligned}
$$

The matrix equation corresponding to the given system is

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
3 \\
4 \\
6
\end{array}\right)
$$

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores www.kalviexpress.in

Sura's ${ }^{[1 /+}$ XII Std - Unit 1 |n| Applications of Matrices and determinants

A $X=B$

Augmented matrix $[\mathrm{A}, \mathrm{~B}]$	Elementary Transformation
$\begin{aligned} &\left(\begin{array}{llll} 1 & 1 & 1 & 3 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 6 \end{array}\right) \\ & \sim\left(\begin{array}{llll} 1 & 1 & 1 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 3 & 8 & 3 \end{array}\right) \\ & \sim\left(\begin{array}{llll} 1 & 1 & 1 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 2 & 0 \end{array}\right) \end{aligned}$	$\begin{aligned} & \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \\ & \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1} \end{aligned}$ $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{2}$

Clearly the last equivalent matrix is in echelon form and it has three non-zero rows.
$\therefore \rho(\mathrm{A})=3$ and $\rho([\mathrm{A}, \mathrm{B}])=3$
$\Rightarrow \rho(A)=\rho([A, B])=3=$ Number of unknowns.
\therefore The given system is consistent and has unique solution.
To find the solution, let us rewrite the above echelon form into the matrix form.

$$
\Rightarrow \begin{align*}
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right) \\
x+y+z & =3 \tag{1}\\
y+2 z & =1 \tag{2}\\
2 z & =0 \tag{3}
\end{align*}
$$

(3) $\Rightarrow 2 z=0 \Rightarrow z=\frac{0}{2}=0$
(2) $\Rightarrow y+2(0)=1 \Rightarrow y+0=1 \Rightarrow y=1-0=1$
(1) $\Rightarrow x+1+0=3$
$\Rightarrow \quad x+1=3$
$\Rightarrow \quad x=3-1$
$\Rightarrow \quad x=2$
\therefore Solution is $\{2,1,0\}$
6. For what values of the parameter λ, will the following equations fail to have unique solution: $3 x-y+\lambda z=1,2 x+y+z=2$, $x+2 y-\lambda z=-1$ by rank method.
Sol :Given non-homogeneous equations are

$$
\begin{aligned}
3 x-y+\lambda z & =1 \\
2 x+y+z & =2 \\
x+2 y-\lambda z & =-1
\end{aligned}
$$

The matrix equation corresponding to the given system is

$$
\begin{array}{rl}
\left(\begin{array}{ccc}
3 & -1 & \lambda \\
2 & 1 & 1 \\
1 & 2 & -\lambda
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) \\
\mathrm{A} & \mathrm{X}
\end{array}=\mathrm{B}
$$

Augmented matrix $[\mathrm{A}, \mathrm{~B}]$	Elementary Transformation
$\left(\begin{array}{cccc}3 & -1 & \lambda & 1 \\ 2 & 1 & 1 & 2 \\ 1 & 2 & -\lambda & -1\end{array}\right)$	
$\sim\left(\begin{array}{cccc}1 & 2 & -\lambda & -1 \\ 2 & 1 & 1 & 2 \\ 3 & -1 & \lambda & 1\end{array}\right)$	$\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{3}$
$\sim\left(\begin{array}{cccc}1 & 2 & -\lambda & -1 \\ 0 & -3 & 1+2 \lambda & 4 \\ 3 & -1 & \lambda & 1\end{array}\right)$	$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$
$\sim\left(\begin{array}{cccc}1 & 2 & -\lambda & -1 \\ 0 & -3 & 1+2 \lambda & 4 \\ 0 & -7 & 4 \lambda & 4\end{array}\right)$	$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{1}$
$\sim\left(\begin{array}{cccc}1 & 2 & -\lambda & -1 \\ 0 & -1 & \frac{1+2 \lambda}{3} & \frac{4}{3} \\ 0 & -1 & \frac{4 \lambda}{7} & \frac{4}{7}\end{array}\right)$	$\begin{aligned} & \mathrm{R}_{2} \rightarrow \mathrm{R}_{2} \div 3 \\ & \mathrm{R}_{3} \rightarrow \mathrm{R}_{3} \div 7 \end{aligned}$
$\sim\left(\begin{array}{cccc}1 & 2 & -\lambda & -1 \\ 0 & -1 & \frac{1+2 \lambda}{3} & \frac{4}{3} \\ 0 & 0 & \frac{-7-2 \lambda}{21} & \frac{-16}{21}\end{array}\right)$	$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}$

Since

$$
\begin{aligned}
& \frac{4 \lambda}{7}-\frac{1+2 \lambda}{3} \\
&=\frac{12 \lambda-7-14 \lambda}{21}=\frac{-7-2 \lambda}{21} \\
& \text { and } \frac{4}{7}-\frac{4}{3}=\frac{12-28}{21} \\
&=\frac{-16}{21}
\end{aligned}
$$

Since the system is fail to have unique solution either it can have infinitely many solution or it may be inconsistent.
\therefore This can happen only when $\frac{-7-2 \lambda}{21}=0$.

$$
\begin{aligned}
\Rightarrow & -7-2 \lambda & =0 \\
\Rightarrow & -7 & =2 \lambda \\
\Rightarrow & \lambda & =\frac{-7}{2} .
\end{aligned}
$$

7. The price of three commodities X, Y and Z are x, y and z respectively Mr. Anand Purchases 6 units of Z and sells 2 units of X and 3 units of Y. Mr. Amar Purchases a unit of Y and sells 3 units of X and 2units of Z. Mr. Amit Purchases a unit of X and sells 3 units of Y and a unit of Z. In the process they earn ₹ $5,000 /$-, ₹ $2,000 /-$ and ₹ $5,500 /-$ respectively Find the prices per unit of three commodities by rank method. [PTA - 5]
Sol : Given that the price of commodities X, Y and Z are x, y and z respectively.
By the given data,

Transaction	x	y	z	Earning
Mr. Anand	+2	+3	-6	Rs. 5000
Mr. Amar	+3	-1	+2	Rs. 2000
Mr. Amit	-1	+3	+1	Rs. 5500

Here, purchasing is taken as negative symbol and selling is taken as positive symbol.

Thus, the non-homogeneous equations are

$$
\begin{aligned}
2 x+3 y-6 z & =5000 \\
3 x-y+2 z & =2000 \\
-x+3 y+z & =5500
\end{aligned}
$$

The matrix equation corresponding to the given system is

$$
\begin{array}{rl}
\left(\begin{array}{rrr}
2 & 3 & -6 \\
3 & -1 & 2 \\
-1 & 3 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{l}
5000 \\
2000 \\
5500
\end{array}\right) \\
\mathrm{A} & \mathrm{X}
\end{array}=\mathrm{B}
$$

Augmented matrix [A, B]	Elementary Transformation
$\left(\begin{array}{cccc}2 & 3 & -6 & 5,000 \\ 3 & -1 & 2 & 2,000 \\ -1 & 3 & 1 & 5,500\end{array}\right)$	
$\sim\left(\begin{array}{cccc}-1 & 3 & 1 & 5500 \\ 3 & -1 & 2 & 2000 \\ 2 & 3 & -6 & 5000\end{array}\right)$	$\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{3}$
$\sim\left(\begin{array}{cccc}-1 & 3 & 1 & 5500 \\ 0 & 8 & 5 & 18500 \\ 0 & 9 & -4 & 16000\end{array}\right)$	$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+3 \mathrm{R}_{1}$
$\sim\left(\begin{array}{cccc}-1 & 3 & 1 & 5500 \\ 0 & 72 & 45 & 166500 \\ 0 & 72 & -32 & 128000\end{array}\right)$	$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+2 \mathrm{R}_{1}$
$\sim\left(\begin{array}{cccc}-1 & 3 & 1 & 5500 \\ 0 & 72 & 45 & 166500 \\ 0 & 0 & -77 & -38500\end{array}\right)$	$\mathrm{R}_{3} \rightarrow 8 \mathrm{R}_{3}$
\sim	

$\rho(\mathrm{A})=\rho([\mathrm{A}, \mathrm{B}])=3=$ number of unknowns so the system has unique solution.
\therefore The given system is equivalent to the matrix equation.

$$
\begin{align*}
& \left(\begin{array}{rrr}
-1 & 3 & 1 \\
0 & 72 & 45 \\
0 & 0 & -77
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
5500 \\
166500 \\
-38500
\end{array}\right) \\
& -x+3 y-z=5500 \tag{1}\\
& 72 y+45 z=166500 \tag{2}\\
& -77 z=-38500 \tag{3}\\
& \text { (3) } \Rightarrow \\
& -77 z=-38500 \\
& \Rightarrow \quad z=\frac{\not-38500}{\nrightarrow 77}=500 \\
& \text { (2) } \Rightarrow \quad 72 y+45(500)=166500 \\
& \begin{array}{rlrl}
(2) \Rightarrow & 72 y+45(500) & =166500 \\
\Rightarrow & 72 y+22,500 & =166500 \\
\Rightarrow & 72 y & =166500-22500 \\
\Rightarrow & 72 y & =144000 \\
\Rightarrow & y=\frac{144000}{72} \Rightarrow y & =2,000 \\
(1) \Rightarrow-x+3(2000)+500 & =5500 \\
\Rightarrow & -x \nmid 6500 & =5500 \\
-x & =-5500-6500 \\
\Rightarrow x & =\not-1000 \\
x & =1000
\end{array} \\
& \begin{array}{rlrl}
(2) \\
\Rightarrow & & 72 y+45(500) & =166500 \\
\Rightarrow & 72 y+22,500 & =166500 \\
\Rightarrow & 72 y & =166500-22500 \\
\Rightarrow & 72 y & =144000 \\
\Rightarrow & y=\frac{144000}{72} \Rightarrow y & =2,000 \\
(1) \Rightarrow-x+3(2000)+500 & =5500 \\
\Rightarrow & -x \nmid 6500 & =5500 \\
-x & =-5500-6500 \\
\Rightarrow x & =\not-1000 \\
x & =1000
\end{array} \\
& \begin{array}{rlrl}
(2) \Rightarrow & 72 y+45(500) & =166500 \\
\Rightarrow & 72 y+22,500 & =166500 \\
\Rightarrow & 72 y & =166500-22500 \\
\Rightarrow & 72 y & =144000 \\
\Rightarrow & y=\frac{144000}{72} \Rightarrow y & =2,000 \\
(1) \Rightarrow-x+3(2000)+500 & =5500 \\
\Rightarrow & -x \nmid 6500 & =5500 \\
-x & =-5500-6500 \\
\Rightarrow x & =\not-1000 \\
x & =1000
\end{array} \\
& \begin{array}{rlrl}
(2) \Rightarrow & 72 y+45(500) & =166500 \\
\Rightarrow & 72 y+22,500 & =166500 \\
\Rightarrow & 72 y & =166500-22500 \\
\Rightarrow & 72 y & =144000 \\
\Rightarrow & y=\frac{144000}{72} \Rightarrow y & =2,000 \\
(1) \Rightarrow-x+3(2000)+500 & =5500 \\
\Rightarrow & -x \nmid 6500 & =5500 \\
-x & =-5500-6500 \\
\Rightarrow x & =\not-1000 \\
x & =1000
\end{array} \\
& \begin{array}{rlrl}
(2) \Rightarrow & 72 y+45(500) & =166500 \\
\Rightarrow & 72 y+22,500 & =166500 \\
\Rightarrow & 72 y & =166500-22500 \\
\Rightarrow & 72 y & =144000 \\
\Rightarrow & y=\frac{144000}{72} \Rightarrow y & =2,000 \\
(1) \Rightarrow-x+3(2000)+500 & =5500 \\
\Rightarrow & -x \nmid 6500 & =5500 \\
-x & =-5500-6500 \\
\Rightarrow x & =\not-1000 \\
x & =1000
\end{array} \\
& \begin{array}{rlrl}
(2) \Rightarrow & 72 y+45(500) & =166500 \\
\Rightarrow & 72 y+22,500 & =166500 \\
\Rightarrow & 72 y & =166500-22500 \\
\Rightarrow & 72 y & =144000 \\
\Rightarrow & y=\frac{144000}{72} \Rightarrow y & =2,000 \\
(1) \Rightarrow-x+3(2000)+500 & =5500 \\
\Rightarrow & -x \nmid 6500 & =5500 \\
-x & =-5500-6500 \\
\Rightarrow x & =\not-1000 \\
x & =1000
\end{array} \\
& \begin{array}{rlrl}
(2) \Rightarrow & 72 y+45(500) & =166500 \\
\Rightarrow & 72 y+22,500 & =166500 \\
\Rightarrow & 72 y & =166500-22500 \\
\Rightarrow & 72 y & =144000 \\
\Rightarrow & y=\frac{144000}{72} \Rightarrow y & =2,000 \\
(1) \Rightarrow-x+3(2000)+500 & =5500 \\
\Rightarrow & -x \nmid 6500 & =5500 \\
-x & =-5500-6500 \\
\Rightarrow x & =\not-1000 \\
x & =1000
\end{array} \\
& \begin{array}{rlrl}
(2) \Rightarrow & 72 y+45(500) & =166500 \\
\Rightarrow & 72 y+22,500 & =166500 \\
\Rightarrow & 72 y & =166500-22500 \\
\Rightarrow & 72 y & =144000 \\
\Rightarrow & y=\frac{144000}{72} \Rightarrow y & =2,000 \\
(1) \Rightarrow-x+3(2000)+500 & =5500 \\
\Rightarrow & -x \nmid 6500 & =5500 \\
-x & =-5500-6500 \\
\Rightarrow x & =\not-1000 \\
x & =1000
\end{array} \\
& \begin{array}{rlrl}
(2) \Rightarrow & 72 y+45(500) & =166500 \\
\Rightarrow & 72 y+22,500 & =166500 \\
\Rightarrow & 72 y & =166500-22500 \\
\Rightarrow & 72 y & =144000 \\
\Rightarrow & y=\frac{144000}{72} \Rightarrow y & =2,000 \\
(1) \Rightarrow-x+3(2000)+500 & =5500 \\
\Rightarrow & -x \nmid 6500 & =5500 \\
-x & =-5500-6500 \\
\Rightarrow x & =\not-1000 \\
x & =1000
\end{array} \\
& 500 \\
& -22500 \\
& \begin{array}{rlrl}
(2) \Rightarrow & 72 y+45(500) & =166500 \\
\Rightarrow & 72 y+22,500 & =166500 \\
\Rightarrow & 72 y & =166500-22500 \\
\Rightarrow & 72 y & =144000 \\
\Rightarrow & y=\frac{144000}{72} \Rightarrow y & =2,000 \\
(1) \Rightarrow-x+3(2000)+500 & =5500 \\
\Rightarrow & -x \nmid 6500 & =5500 \\
-x & =-5500-6500 \\
\Rightarrow x & =\not-1000 \\
x & =1000
\end{array}
\end{align*}
$$

\therefore The prices per unit of the three commodities are ₹ 1000 , ₹ 2000 and ₹ 500 .

FORMULAE TO REMEMBER

(i) Integration is the reverse process of differentiation
(ii) $\int k f(x) d x=k \int f(x) d x$ where k is a constant.
(iii) $\int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x$
(iv) The following are the four principal methods of integration
(i) Integration by decomposition
(ii) Integration by Parts
(iii) Integration by Substitution
(iv) Integration by successive reduction

First fundamental theorem of integral calculus :
If $f(x)$ is a continuous function and $\mathrm{F}(x)=\int_{a}^{x} f(t) d t$, then $\mathrm{F}^{\prime}(x)=f(x)$.
Second fundamental theorem of integral calculus :
$\int_{a}^{b} f(x) d x=\mathrm{F}(b)-\mathrm{F}(a)$
$\int_{a}^{b} f(x) d x$ is a definite constant, whereas $\int_{a}^{x} f(t) d t$ is a function of the variable x
Indefinite integral :-
An integral function which is expressed without limits, and so containing an arbitrary constant.
Proper definite integral :-
An integral function which has both the limits. a and b are finite.
Improper definite integral :-
An integral function, in which the limits either a or b or both are infinite.

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores w w w.kalviexpress.in

Sura's ${ }^{n \mid m}$ XII Std - Unit 2 Integral Calculus-I

Gamma function :-

For $n>0, \int_{0}^{\infty} x^{n-1} e^{-x} d x$ and is denoted by $\Gamma(n)$

1) $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c, n \neq-1$
2) $\int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{a(n+1)}+c, n \neq-1$
3) $\int \frac{1}{x} d x=\log |x|+c$
4) $\int \frac{1}{a x+b} d x=\frac{1}{a} \log |a x+b|+c$
5) $\int e^{x} d x=e^{x}+c$
6) $\int e^{a x+b} d x=\frac{1}{a} e^{a x+b}+c$
7) $\int a^{x} d x=\frac{a^{x}}{\log a}+c, a>0$ and $a \neq 1$
8) $\quad a \neq 1$
9) $\int \sin x d x=-\cos x+c$
10) $\int \sin (a x+b) d x=-\frac{1}{a} \cos (a x+b)+c$
11) $\int \cos d x=\sin x+c$
12) $\int \cos (a x+b) d x=\frac{1}{a} \quad \sin (a x+b)+c$
13) $\int \sec ^{2} x d x=\tan x+c$
14) $\int \sec ^{2}(a x+b) d x=\frac{1}{a}$ tan $(a x+b)+c$
15) $\int \operatorname{cosec}^{2} x d x=-\cot x+c$
16) $\int \operatorname{cosec}^{2}(a x+b) d x=-\frac{1}{a} \cot (a x+b)+c$ $\int u d v=u v-\int v d u$ where u and v are two differentiable functions of x
[Integration by parts].
The code word used in the above formula is

I \rightarrow Inverse trigonometric function
18) $\quad \mathrm{L} \rightarrow$ Logarithmic function

A \rightarrow Algebraic function
$\mathrm{T} \rightarrow$ Trigonometric function
$\mathrm{E} \rightarrow$ Exponential function
19) Bernoulli's formula :
$\int u d v=u v-u^{\prime} v_{1}+u^{\prime \prime} v_{2}-u^{\prime \prime \prime} v_{3}+\ldots$.
When $u^{\prime} u^{\prime \prime} u^{\prime \prime \prime}$.... are the successive derivatives of u and $v_{1} v_{2} v_{3} \ldots$. are the repeated integrals of v.
20)

$$
\int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c, n \neq-1
$$

$$
\int \frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+c
$$

$$
\int \frac{f^{\prime}(x)}{\sqrt{f(x)}} d x=2 \sqrt{f(x)}+c
$$

23) $\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x=e^{x} f(x)+c$
24) $\int e^{a x}\left[a f(x)+f^{\prime}(x)\right] d x=e^{a x} f(x)+c$
$\int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+c$
$\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+c$
25)

$\int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\log \left|x+\sqrt{x^{2}-a^{2}}\right|+c$
28)
29)

$$
\begin{aligned}
& \int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \\
& \log \left|x+\sqrt{x^{2}-a^{2}}\right|+c
\end{aligned}
$$

30)

$$
\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log
$$

$$
\left|x+\sqrt{x^{2}+a^{2}}\right|+c
$$

Properties of definite integral
1)

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t
$$

2)

$$
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
$$

3)

$$
\int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x
$$

TEXTUAL QUESTIONS

EXERCISE2.

Integrate the following with respect to x

1. $\sqrt{3 x+5}$

Sol : $\int \sqrt{3 x+5} d x=\int(3 x+5)^{1 / 2} d x$

$$
\left[\because \int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{a(n+1)}+c\right]
$$

$$
=\frac{(3 x+5)^{1 / 2+1}}{3\left(\frac{1}{2}+1\right)}+c
$$

$$
=\frac{(3 x+5)^{3 / 2}}{3\left(\frac{3}{2}\right)}+c=\frac{(3 x+5)^{3 / 2}}{\frac{9}{2}}+c
$$

$$
=\frac{2}{9}(3 x+5)^{3 / 2}+c
$$

2. $\left(9 x^{2}-\frac{4}{x^{2}}\right)^{2}$

Sol : $\int\left(9 x^{2}-\frac{4}{x^{2}}\right)^{2} d x$
4)

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

5) $\quad \int_{o}^{a} f(x) d x=\int_{o}^{a} f(a-x) d x$
6) $\quad \int_{-a}^{a} f(x) d x=2 \int_{o}^{a} f(x) d x$ if $f(x)$ is an even function
7) $\quad \int_{-a}^{a} f(x) d x=0$ if $f(x)$ is an odd function
8)

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x
$$

$=\int\left[\left(9 x^{2}\right)^{2}-2\left(9 x^{2}\right)\left(\frac{4}{x^{2}}\right)+\left(\frac{4}{x^{2}}\right)^{2}\right] d x$

$$
\left[\because(a-b)^{2}=a^{2}-2 a b+b^{2}\right]
$$

$=\int\left(81 x^{4}-72+\frac{16}{x^{4}}\right) d x$
$=\int 81 x^{4} d x-\int 72 d x+\int \frac{16}{x^{4}} d x+c$
$=81 \frac{x^{4+1}}{4+1}-72 x+16 \frac{x^{-4+1}}{-4+1}+c$

$$
\left[\because \frac{16}{x^{4}}=16 x^{-4}\right]
$$

$=81 \frac{x^{5}}{5}-72 x+16 \frac{x^{-3}}{-3}+c$
$=\frac{81}{5} x^{5}-72 x-\frac{16}{3 x^{3}}+c$
3. $(3+x)(2-5 x)$
[Aug. - 2021]
Sol : $\int(3+x)(2-5 x) d x$
$=\int\left(6-15 x+2 x-5 x^{2}\right) d x$
$=\int\left(6-13 x-5 x^{2}\right) d x$
$=\int 6 d x-\int 13 x d x-\int 5 x^{2} d x$
$=6 x-\frac{13 x^{2}}{2}-\frac{5 x^{3}}{3}+c$

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores w w w.kalviexpress.in

Sura's ${ }^{\text {nin }}$ XII Std - Unit 2 nint Integral Calculus-I
4. $\sqrt{x}\left(x^{3}-2 x+3\right)$

Sol : $\int \sqrt{x}\left(x^{3}-2 x+3\right) d x$

$$
\begin{aligned}
& =\int x^{\frac{1}{2}}\left(x^{3}-2 x+3\right) d x \\
& =\int\left(x^{3+\frac{1}{2}}-2 x^{1+\frac{1}{2}}+3 x^{\frac{1}{2}}\right) d x \\
& =\int x^{\frac{7}{2}} d x-\int 2 x^{\frac{3}{2}} d x+\int 3 x^{\frac{1}{2}} d x \\
& =\frac{x^{\frac{7}{2}}}{\frac{7}{2}}+1 \\
& \frac{2}{2}+\frac{2 x^{\frac{3}{2}+1}}{3}+\frac{3 x^{\frac{1}{2}+1}}{\frac{1}{2}}+1 \\
& =\frac{x^{\frac{9}{2}}}{9}-2 \frac{x^{\frac{5}{2}}}{\frac{5}{2}}+3 \frac{x^{\frac{3}{2}}}{\frac{3}{2}}+c \\
& =\frac{2}{9} x^{\frac{9}{2}}-2 \times \frac{2}{5} x^{x^{\frac{5}{2}}}+\not p \times \frac{2}{\not 2} x^{\frac{3}{2}}+c \\
& =\frac{2}{9} x^{\frac{9}{2}}-\frac{4}{5} x^{\frac{5}{2}}+2 x^{\frac{3}{2}}+c
\end{aligned}
$$

5. $\frac{8 x+13}{\sqrt{4 x+7}}$

Sol : $\int \frac{8 x+13}{\sqrt{4 x+7}} d x$

$$
\begin{aligned}
& =\int \frac{8 x+14-1}{\sqrt{4 x+7}} d x=\int \frac{2(4 x+7)-1}{\sqrt{4 x+7}} d x \\
& =2 \int \frac{(4 x+7)}{\sqrt{4 x+7}} d x-\int \frac{1}{\sqrt{4 x+7}} d x \\
& =2 \int \sqrt{4 x+7} d x-\int \frac{1}{\sqrt{4 x+7}} d x \\
& =2 \int(4 x+7)^{\frac{1}{2}} d x-\int(4 x+7)^{-\frac{1}{2}} d x
\end{aligned}
$$

$$
=2 \frac{(4 x+7)^{\frac{1}{2}+1}}{4\left(\frac{1}{2}+1\right)}-\frac{(4 x+7)^{-\frac{1}{2}+1}}{4\left(\frac{-1}{2}+1\right)}+c
$$

$$
=2 \frac{(4 x+7)^{\frac{3}{2}}}{4\left(\frac{3}{2}\right)}-\frac{(4 x+7)^{\frac{1}{2}}}{4\left(\frac{1}{2}\right)}+c
$$

$$
=\not 2 \frac{(4 x+7)^{\frac{3}{2}}}{\not 6_{3}}-\frac{(4 x+7)^{\frac{1}{2}}}{2}+c
$$

$$
=\frac{(4 x+7)^{\frac{3}{2}}}{3}-\frac{(4 x+7)^{\frac{1}{2}}}{2}+c
$$

6. $\frac{1}{\sqrt{x+1}+\sqrt{x-1}}$

Sol : $\int \frac{1}{\sqrt{x+1}+\sqrt{x-1}} d x$
Multiplying and dividing the conjugate of the denominator we get

$$
\begin{aligned}
& =\int \frac{\sqrt{x+1}-\sqrt{x-1} d x}{(\sqrt{x+1}+\sqrt{x-1})(\sqrt{x+1}-\sqrt{x-1})} \\
& =\int \frac{\sqrt{x+1}-\sqrt{x-1}}{(x+1)-(x-1)} d x \\
& =\int \frac{\sqrt{x+1}-\sqrt{x-1}}{\not x+1-\not x+1} d x=\int \frac{\sqrt{x+1}-\sqrt{x-1}}{2} d x \\
& =\frac{1}{2} \int\left((x+1)^{1 / 2}-(x-1)^{\frac{1}{2} / 2}\right) d x \\
& =\frac{1}{2}\left[\frac{(x+1)^{\frac{3}{2}}}{\frac{3}{2}}-\frac{(x-1)^{\frac{3}{2}}}{\frac{3}{2}}\right]+c \\
& =\frac{1}{\not 2} \times \frac{3}{\not 2}\left[(x+1)^{\frac{3}{2}}-(x-1)^{\frac{3}{2}}\right]+c \\
& =\frac{1}{3}\left[(x+1)^{\frac{3}{2}}-(x-1)^{\frac{3}{2}}\right]+c
\end{aligned}
$$

7. If $f^{\prime}(x)=x+b, f(1)=5$ and $f(2)=13$, then find $f(x)$
Sol : Given $f^{\prime}(x)=x+b, f(1)=5$ and $f(2)=13$

$$
f^{\prime}(x)=x+b \Rightarrow \int f^{\prime}(x) d x=\int(x+b) d x
$$

$[\therefore$ Integration is the reverse process of differentiation]

$$
\begin{equation*}
\Rightarrow f(0)=\frac{x^{2}}{2}+b x+c \tag{1}
\end{equation*}
$$

Given $f(1)=5$

$$
\begin{align*}
& \Rightarrow \quad 5=\frac{1^{2}}{2}+b(1)+c \\
& \Rightarrow \quad 5=\frac{1}{2}+b(1)+c \Rightarrow 5-\frac{1}{2}=b+c \\
& \Rightarrow \frac{10-1}{2}=b+c \Rightarrow b+c=\frac{9}{2} \\
& \Rightarrow 2 b+2 c=9 \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \text { Also } f(2)=13 \Rightarrow 13=\frac{2^{2}}{2}+b(2)+c \\
& \Rightarrow \quad 13=2+2 b+c \\
& \Rightarrow \quad 13-2= \\
& 2 b+c=11 \\
& \Rightarrow \quad(2)-(3) \rightarrow 2 b+2 c=9 \\
& -2 b+-c=
\end{aligned}
$$

Substituting $c=-2$ in (3) we get

$$
\begin{aligned}
& 2 b-2=11 \Rightarrow \quad 2 b=11+2 \Rightarrow 2 b=13 \\
& \Rightarrow \quad \boldsymbol{b}=\frac{\mathbf{1 3}}{\mathbf{2}}
\end{aligned}
$$

Substituting $b=\frac{13}{2}, c=-2$ in (1) we get,

$$
f(x)=\frac{x^{2}}{2}+\frac{13}{2} x-2
$$

8. If $f^{\prime}(x)=8 x^{3}-2 x$ and $f(2)=8$, then find $f(x)$.

Sol : Given $f^{\prime}(x)=8 x^{3}-2 x, f(2)=8$

$$
f^{\prime}(x)=8 x^{3}-2 x
$$

$\Rightarrow \int f^{\prime}(x) d x=\int\left(8 x^{3}-2 x\right) d x$
$\Rightarrow f(x)=\frac{\not \ddot{\phi x}^{4}}{\nmid}-\frac{\not 2 x^{2}}{\not 2}+c$
$\Rightarrow f(x)=2 x^{4}-x^{2}+c$
Given $f(2)=8$
$\Rightarrow \quad 8=2\left(2^{4}\right)-2^{2}+c$
$\Rightarrow \quad 8=32-4+c \Rightarrow 8=32-4+c$
$\Rightarrow 8-28=c$
$\Rightarrow \quad c=-20$
Substituting $c=-20$ in (1) we get.

$$
f(x)=2 x^{4}-x^{2}-20
$$

EXERCISE 2.2

Integrate the following with respect to x.

1. $\left(\sqrt{2 x}-\frac{1}{\sqrt{2 x}}\right)^{2}$

Sol : $\int\left(\sqrt{2 x}-\frac{1}{\sqrt{2 x}}\right)^{2} d x$

$$
\begin{array}{r}
=\int\left[(\sqrt{2 x})^{2}-2(\sqrt{2 x})\left(\frac{1}{\sqrt{2 x}}\right)+\left(\frac{1}{\sqrt{2 x}}\right)^{2}\right] d x \\
{\left[\because(a-b)^{2}=a^{2}-2 a b+b^{2}\right]}
\end{array}
$$

$$
\begin{aligned}
& =\int\left(2 x-2+\frac{1}{2 x}\right) d x \\
& =\not z^{x^{2}} \frac{x^{2}}{\not 2}-2 x+\frac{1}{2} \log |x|+c \\
& =x^{2}-2 x+\frac{1}{2} \log |x|+c
\end{aligned}
$$

2. $\frac{x^{4}-x^{2}+2}{x-1}$

Sol : $\int \frac{x^{4}-x^{2}+2}{x-1} d x$
$=\int\left(x^{3}+x^{2}+\frac{2}{x-1}\right) d x$
$=\frac{x^{4}}{4}+\frac{x^{3}}{3}+2 \log |x-1|+c$
3. $\frac{x^{3}}{x+2}$

Sol: $\int \frac{x^{3}}{x+2} d x=\int\left(x^{2}-2 x+4-\frac{8}{x+2}\right) d x$

$$
\begin{aligned}
& =\frac{x^{3}}{3}-\frac{\not 2 x^{2}}{\not 2}+4 x-8 \log |x+2|+c \\
& =\frac{x^{3}}{3}-x^{2}+4 x-8 \log |x+2|+c \\
& \quad\left[\because \int \frac{1}{x} d x=\log |x|+c\right]
\end{aligned}
$$

4. $\frac{x^{3}+3 x^{2}-7 x+11}{x+5}$

Sol : $\int \frac{x^{3}+3 x^{2}-7 x+11}{x+5} d x$

$$
\begin{aligned}
& =\int\left(x^{2}-2 x+3-\frac{4}{x+5}\right) d x \\
& =\frac{x^{3}}{3}-\frac{\not 2 x^{2}}{\not 2}+3 x-4 \log |x+5|+c \\
& =\frac{x^{3}}{3}-x^{2}+3 x-4 \log |x+5|+c
\end{aligned}
$$

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores w w w. k alviexpress.in

Sura's ${ }^{n \mid m}$ XII Std - Unit 2 Integral Calculus-I

$x+5$	$x^{2}-2 x+3$
	$\begin{aligned} & x^{3}+3 x^{2}-7 x+11 \\ & (-) x^{3}+(-) 5 x^{2} \\ & \hline \end{aligned}$
	$-2 x^{2}-7 x$
	$\begin{aligned} & 2 x^{2}+10 x \\ & (-) \quad(-) \\ & \hline \end{aligned}$
	$3 x+11$
	$3 x+15$
	(-) (-)
	-4

5. $\frac{3 x+2}{(x-2)(x-3)}$
[Qy - 2019]
Sol : $\int \frac{(3 x+2) d x}{(x-2)(x-3)}=\int\left(\frac{-8}{x-2}+\frac{11}{x-3}\right) d x$
$=-8 \log |x-2|+11 \log |x-3|+c$
$=11 \log |x-3|-8 \log |x-2|+c$
${ }^{(-)} \chi^{3}+(-) 5 x^{2}$

$$
\begin{aligned}
& \frac{3 x+2}{(x-2)(x-3)}=\frac{\mathrm{A}}{x-2}+\frac{\mathrm{B}}{x-3} \\
& \Rightarrow 3 x+2=\mathrm{A}(x-3)+\mathrm{B}(x-2) \\
& \text { Put } x=3 \\
& 9+2=\mathrm{B}(1) \Rightarrow \mathrm{B}=11 \\
& \text { Put } x=2 \\
& \quad 8=\mathrm{A}(-1) \Rightarrow \mathrm{A}=-8 \\
& \frac{3 x+2}{(x-2)(x-3)}=\frac{-8}{x-2}+\frac{11}{x-3}
\end{aligned}
$$

6.

$$
\frac{4 x^{2}+2 x+6}{(x+1)^{2}(x-3)}
$$

Sol : $\int \frac{4 x^{2}+2 x+6}{(x+1)^{2}(x-3)} d x$
$=\int\left(\frac{\mathrm{A}}{x+1}+\frac{\mathrm{B}}{(x+1)^{2}}+\frac{\mathrm{C}}{x-3}\right) d x$
$=\cdot\left(\frac{1}{x+1}+\frac{-2}{(x+1)^{2}}+\frac{3}{x-3}\right) d x$
$=\log |x+1|-2 \int(x+1)^{-2} d x+3 \log |x-3|+c$
$=\log |x+1|-2 \frac{(x+1)^{-2+1}}{-2+1}+3 \log |x-3|+c$
$=\log |x+1|+2(x+1)^{-1}+3 \log |x-3|+c$
$=\log |x+1|+\frac{2}{x+1}+3 \log |x-3|+c$
8. If $f^{\prime}(x)=\frac{1}{x}$ and $f(1)=\frac{\pi}{4}$, then find $f(x)$.

Sol : Given $f^{\prime}(x)=\frac{1}{x}$ [PTA - 2]

$$
\begin{align*}
\Rightarrow \int f^{\prime}(x) d x & =\int \frac{1}{x} d x \\
\Rightarrow \quad f(x) & =\log |x|+c \tag{1}
\end{align*}
$$

Also, $f(1)=\frac{\pi}{4}$, we get
$\Rightarrow \quad \frac{\pi}{4} \quad=\log |1|+c$
$\Rightarrow \quad \frac{\pi}{4} \quad c \quad[\because \log 1=0]$
Substituting $c=\frac{\pi}{4}$ in (1) we get,

$$
f(x)=\log |x|+\frac{\pi}{4}
$$

EXERCISE 2.3

Integrate the following with respect to x

1. $\boldsymbol{e}^{x \log a}+e^{a \log a}-e^{n \log x}$

Sol : $\int\left(e^{x \log a}+e^{a \log a}-e^{n \log x}\right) d x$

$$
\begin{aligned}
& =\int\left(e^{\log a^{x}}+e^{\log a^{a}}-e^{\log x^{n}}\right) d x \\
& \quad\left[\because m \log n=\log n^{m}\right] \\
& =\int\left(a^{x}+a^{a}-x^{n}\right) d x \quad\left[\because e^{\log x}=x\right] \\
& =\int a^{x} d x+\int a^{a} d x-\int x^{n} d x \\
& =\left[\frac{a^{x}}{\log a}\right]+a^{a}(x)-\frac{x^{n+1}}{n+1}+c \\
& \\
& \qquad\left[\because \int a^{x}=\frac{a^{x}}{\log a}\right]
\end{aligned}
$$

2. $\frac{a^{x}-e^{x \log b}}{e^{x \log a} b^{x}}$

Sol : $\int \frac{a^{x}-e^{x \log b}}{e^{x \log a} b^{x}} d x$

$$
\begin{array}{lr}
=\int \frac{a^{x}-e^{\log b^{x}}}{e^{\log a^{x}} b^{x}} d x & {\left[\because m \log n=\log n^{m}\right]} \\
=\int \frac{a^{x}-b^{x}}{a^{x} \cdot b^{x}} d x & {\left[\because e^{\log x}=x\right]}
\end{array}
$$

$$
=\int \frac{a^{x}}{a^{x} b^{x}} d x-\int \frac{b^{x}}{a^{x} b^{x}} d x
$$

$$
\begin{aligned}
& =\int \frac{1}{b^{x}} d x-\int \frac{1}{a^{x}} d x \\
& =\int b^{-x} d x-\int a^{-x} d x \quad\left[\because \int a^{-x} d x=\frac{a^{-x}}{-\log a}+c\right] \\
& =\frac{b^{-x}}{-\log b}-\frac{a^{-x}}{-\log a}+c \\
& =-\frac{b^{-x}}{\log b}+\frac{a^{-x}}{\log a}+c \\
& =\frac{-1}{b^{x} \log b}+\frac{1}{\log a \cdot a^{x}}+c \\
& =\frac{1}{a^{x} \log a}-\frac{1}{b^{x} \log b}+c
\end{aligned}
$$

3. $\left(e^{x}+1\right)^{2} e^{x}$

Sol : $\int\left(e^{x}+1\right)^{2} e^{x} d x=\int\left[\left(e^{x}\right)^{2}+2\left(e^{x}\right)(1)+1^{2}\right] e^{x} d x$

$$
\left[\because(a+b)^{2}=a^{2}+2 a b+b^{2}\right]
$$

$=\int\left(e^{2 x}+2 e^{x}+1\right) e^{x} d x$
$=\int\left(e^{3 x}+2 e^{2 x}+e^{x}\right) d x \quad\left[a^{m} \cdot a^{n}=a^{m+n}\right]$
$=\int e^{3 x} d x+2 \int e^{3 x} d x+\int e^{x} d x$
So $\int\left(e^{x}+1\right)^{2} e^{x} d x=\int e^{3 x} d x+\int 2 e^{2 x} d x+\int e^{x} d x$
$=\frac{e^{3 x}}{3}+\not 22 \frac{e^{2 x}}{\not 2}+e^{x}+c$
$=e^{x}+e^{2 x}+\frac{e^{3 x}}{3}+c$
4. $\frac{e^{3 x}-e^{-3 x}}{e^{x}}$
[Aug. - 2021]
Sol : $\int \frac{e^{3 x}-e^{-3 x}}{e^{x}} d x=\int \frac{e^{3 x}}{e^{x}} d x-\int \frac{e^{-3 x}}{e^{x}} d x$

$$
\begin{aligned}
& =\int e^{3 x-x} d x-\int e^{-3 x-x} d x \quad\left[\because \frac{a^{m}}{a^{m}}=a^{m-n}\right] \\
& =\int e^{2 x} d x-\int e^{-4 x} d x
\end{aligned}
$$

$$
=\frac{e^{2 x}}{2}-\frac{e^{-4 x}}{-4}+c=\frac{e^{2 x}}{2}+\frac{e^{-4 x}}{4}+c
$$

5. $\frac{e^{3 x}+e^{5 x}}{e^{x}+e^{-x}}$

Sol : $\int \frac{e^{3 x}+e^{5 x}}{e^{x}+e^{-x}} d x=\int \frac{e^{4 x-x}+e^{4 x+x}}{e^{x}+e^{-x}}$
$=\int \frac{e^{4 x}\left(e^{-x}+e^{x}\right)}{e^{x}+e-x} d x$
So $\int \frac{e^{3 x}+e^{5 x}}{e^{x}+e^{-x}}=\int e^{4 x} d x=\frac{e^{4 x}}{4}+c$

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores w w w.kalviexpress.in

Sura's ${ }^{\text {nin }}$ XII Std - Unit 2 nint Integral Calculus-I
6. $\left(1-\frac{1}{x^{2}}\right) e^{\left(x+\frac{1}{x}\right)}$

Sol $:$ Let $\mathrm{I}=\int\left(1-\frac{1}{x^{2}}\right) \cdot e^{\left(x+\frac{1}{x}\right)} d x$

$$
\text { put } x+\frac{1}{x}=t
$$ on differentiating we get, $\left(1-\frac{1}{x^{2}}\right) d x=d t$ $\therefore \quad \mathrm{I}=\int e^{t} d t=e^{t}+c$

$$
=e^{x+\frac{1}{x}}+c \quad\left[\because t=x+\frac{1}{x}\right]
$$

7. $\frac{1}{x(\log x)^{2}}$

Sol :Let $\mathrm{I}=\int \frac{1}{x(\log x)^{2}} d x$
put $\log x=t$ on differentiating we get,

$$
\begin{aligned}
\frac{1}{x} d x & =d t \\
\therefore \quad \mathrm{I} & =\int \frac{1}{t^{2}} d t \quad \quad[\because t=\log x] \\
\mathrm{I} & =\int t^{-2} d t=\frac{t^{-2+1}}{-2+1}+c \\
& =\frac{t^{-1}}{-1}+c \quad \Rightarrow \frac{-1}{t}+c \\
& =\frac{-1}{\log |x|}+c \quad[\because t=\log |x|]
\end{aligned}
$$

8. If $f^{\prime}(x)=e^{x}$ and $f(0)=2$, then find $f(x)$

Sol : Given $f^{\prime}(x)=e^{x}$

$$
\begin{array}{lr}
\Rightarrow & \int f^{\prime}(x) d x=\int e^{x} d x \\
& \text { [Taking integ } \tag{1}\\
\Rightarrow & f(x)=e^{x}+c \\
\text { Also, } & f(0)=2 \\
\Rightarrow & 2=e^{0}+c \\
\Rightarrow & 2=1+c \\
\Rightarrow & 2-1=c \\
\Rightarrow & c=1
\end{array}
$$

[Taking integration both sides]

Substituting $c=1$ in (1) we get,

$$
f(x)=e^{x}+1
$$

EXERCISE 2.4

Integrate the following with respect to x .

1. $2 \cos x-3 \sin x+4 \sec ^{2} x-5 \operatorname{cosec}^{2} x$

Sol : $\int\left(2 \cos x-3 \sin x+4 \sec ^{2} x-5 \operatorname{cosec}^{2} x\right) d x$

$$
\begin{aligned}
& =2 \int \cos x d x-3 \int \sin x d x+4 \int \sec ^{2} x d x-5 \\
& \int \operatorname{cosec}^{2} x d x \\
& =2(\sin x)-3(-\cos x)+4 \tan x-5(-\cot x)+c \\
& =2 \sin x+3 \cos x+4 \tan x+5 \cot x+c
\end{aligned}
$$

2. $\sin ^{3} x$

Sol : $\int \sin ^{3} x d x$
We know that $\sin 3 x=3 \sin x-4 \sin ^{3} x$

$$
\Rightarrow \quad 4 \sin ^{3} x=3 \sin x-\sin 3 x
$$

$$
\Rightarrow \quad \sin ^{3} x \quad=\frac{1}{4}(3 \sin x-\sin 3 x)
$$

$\therefore \int \sin ^{3} x d x=\frac{1}{4} \int(3 \sin x-\sin 3 x) d x$
$=\frac{3}{4} \int \sin x d x-\frac{1}{4} \int \sin 3 x d x$
$=\frac{3}{4}(-\cos x)-\frac{1}{4}\left(-\frac{\cos 3 x}{3}\right)+c$
$\left[\because \int \sin a x d x=\frac{-1}{a} \cos a x+c\right]$
$=-\frac{3}{4} \cos x+\frac{1}{12}+\cos 3 x+c$
3. $\frac{\cos 2 x+2 \sin ^{2} x}{2}$
[March - 2020]

Sol : $\int \frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x} d x$
$=\int \frac{\cos ^{2} x-\sin ^{2} x+2 \sin ^{2} x}{\cos ^{2} x} d x=\sec ^{2} x$
$=\int \frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x} \quad\left[\because \cos 2 x=\cos ^{2} x-\sin ^{2} x\right]$
$=\int \frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} d x$
$=\int \frac{1}{\cos ^{2} x} d x=\sec ^{2} x \quad\left[\because \sin ^{2} x+\cos ^{2} x=1\right]$
So $\int \frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x}=\int \sec ^{2} x d x=\tan x+c$
4. $\frac{1}{\sin ^{2} x \cos ^{2} x}\left[\right.$ Hint: $\left.\sin ^{2} x+\cos ^{2} x=1\right]$

Sol : $\int \frac{1}{\sin ^{2} x \cos ^{2} x} d x$
$=\int \frac{\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x \cos ^{2} x} d x \quad\left[\because 1=\sin ^{2} x+\cos ^{2} x\right]$
$=\int \frac{\sin ^{2} x}{\sin ^{2} x \cos ^{2} x} d x+\int \frac{\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x$

INTEGRAL CALCULUS-II

SNAPSHOT

Geometrical interpretation of definite integral is the area under a curve between the given limits.
Integration helps us to find out the total cost function and total revenue function from the marginal cost.
Consumer's surplus \& producer's surplus theory was developed by the economist Marshal.

FORMULAE TO REMEMBER

1. Area of the region bounded by 8 $y=f(x)$ between the limits $x=a, x=b$ and less below x axis is

$$
\mathrm{A}=\int_{a}^{b}-y d x=-\int_{a}^{b} f(x) d x
$$

2. Area of the region bounded by $x=f(y)$, between the limits $y=c, y=d$ with Y - axis and the area lies to the right of Y -axis is
$\mathrm{A}=\int_{c}^{d} x d y=\int_{c}^{d} f(y) d y$
3. Area bounded by $x=f(y)$ between the limits y $=c, y=d$ with Y -axis and the area lies to the left of Y -axis is
$\mathrm{A}=\int_{c}^{d}-x d y=-\int_{c}^{d} f(y) d y$
4. Area between two curves from $x=a$ to $x=b$ is
$\mathrm{A}=\int_{a}^{b}[f(x)-g(x)] d x$
5. If c is the cost function, marginal cost function
$\mathrm{MC}=\frac{d \mathrm{C}}{d x}$
6. $\quad \mathrm{C}=\int(\mathrm{MC}) d x+k$
7. Average cost function $\mathrm{AC}=\frac{\mathrm{C}}{x}, x \neq 0$

If R is the total revenue function, marginal revenue function $\mathrm{MR}=\frac{d \mathrm{R}}{d x}$
9. $\quad \mathrm{R}=\int(\mathrm{MR}) d x+k$
10. Demand function $\mathrm{P}=\frac{\mathrm{R}}{x}, x \neq 0$
11. If ' P ' denotes the profit function, then $\mathrm{P}=\int(\mathrm{MR}-\mathrm{MC}) d x+k$
12. $\begin{aligned} & \text { Total inventory carrying cost }=\mathrm{C}_{1} \int_{0}^{\mathrm{T}} \mathrm{I}(x) d x \\ & \text {,where }\end{aligned}$
$\mathrm{C} 1 \rightarrow$ holding cost
$\mathrm{T} \rightarrow$ time period
$\mathrm{I}(x) \rightarrow$ Inventory on hand.
13. Amount of annuity after N payments $\mathrm{A}=\int_{0}^{\mathrm{N}} p e^{r t} d t$
14. Elasticity of demand $\eta_{d}=\frac{-p}{x} \frac{d x}{d p}$
15. $\frac{\mathrm{E} y}{\mathrm{E} x}=\frac{x}{y} \frac{d y}{d x}$
16. Consumer's surplus $\mathrm{CS}=\int_{0}^{x_{0}} f(x) d x-x_{0} p_{0}$ where $f(x)$ is the demand function.
17. Producer's surplus PS $=x_{0} p_{0}-\int_{0}^{x_{0}} g(x) d x$ where $g(x)$ is the supply function. 0

TEXTUAL QUESTIONS

EXERCISE 3.1

1. Using Integration, find the area of the region bounded the line $2 y+x=8$, the x axis and the lines $x=2, x=4$.
Sol:

Given $2 y+x=8$

$$
2 y=8-x
$$

$$
y=\frac{1}{2}(8-x)
$$

Given limits are $x=2$ and $x=4$
Area of the shaded region between the given limits

$$
\begin{aligned}
\mathrm{A}=\int_{a}^{b} y d x & =\int_{2}^{4} \frac{1}{2}(8-x) d x \\
\frac{1}{2} \int_{2}^{4}(8-x) d x & =\frac{1}{2}\left[8 x-\frac{x^{2}}{x}\right]_{2}^{4} \\
& =\frac{1}{2}\left[\left(8(4)-\frac{4^{2}}{2}\right)-\left(8(2)-\frac{2^{2}}{2}\right)\right] \\
& =\frac{1}{2}[(32-8)-(16-21)] \\
& =\frac{1}{2}[24-14] \\
& =\frac{y-4}{2}(10) \\
\mathrm{A} & =5 \text { sq. units. }
\end{aligned}
$$

2. Find the area bounded by the lines $y-2 x-4=0$, $y=1, y=3$ and the y-axis [HY-2019] Sol:

Given $y-2 x-4=0$
$\Rightarrow \quad y-4=2 x$

$$
\Rightarrow \quad x=\frac{y-4}{2}
$$

Since the area lies to the left of Y-axis, with the limits $y=1 \& y=3$.

$$
\begin{aligned}
\text { Area } & =\int_{1}^{3}-x d y \\
& =\int_{1}^{3}-\left(\frac{1}{2}\right)(y-4) d y \\
=\frac{1}{2} \int_{1}^{3}(4-y) d y & =\frac{1}{2}\left[4 y-\frac{y^{2}}{2}\right]_{1}^{3} \\
& =\frac{1}{2}\left[\left(4(3)-\frac{3^{2}}{2}\right)-\left(4(1)-\frac{1^{2}}{2}\right)\right] \\
& =\frac{1}{2}\left[\left(12-\frac{9}{2}\right)-\left(4-\frac{1}{2}\right)\right] \\
& =\frac{1}{2}\left[\left(\frac{24-9}{2}\right)-\left(\frac{8-1}{2}\right)\right] \\
& =\frac{1}{2}\left[\frac{15}{2}-\frac{7}{2}\right]=\frac{1}{2}\left[\frac{8}{2}\right] \\
& =\frac{y-4}{2} \\
\mathrm{~A} & =2 \text { sq. units. }
\end{aligned}
$$

3. Calculate the area bounded by the parabola $y^{2}=4 a x$ and its latus rectum.
[Sep. - 2020]
Sol:

$y^{2}=4 a x$ is the right open
$\Rightarrow \quad y=\sqrt{4 a x}$ parabola.
The limits are from $x=0$ to $x=a$

$$
\begin{aligned}
\therefore \text { Area } & =2 \int_{0}^{a} y d x=2 \int_{0}^{a} \sqrt{4 a x} d x \\
& =2 \int_{0}^{a} 2 \sqrt{a} \sqrt{x} d x \\
& =4 \sqrt{a} \int_{0}^{a} \sqrt{x} d x \\
& =4 \sqrt{a} \int_{0}^{a} x^{\frac{1}{2}} d x \\
& =4 \sqrt{a}\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{a} \\
& =4 \sqrt{a} \times \frac{2}{3}\left(x^{\frac{3}{2}}\right)_{0}^{a} \\
& =8 \frac{\sqrt{a}}{3}\left(a^{\frac{3}{2}}-0\right) \\
& =\frac{8 \sqrt{a}}{3}(a \sqrt{a}) \\
& =\frac{8}{3} a^{2} \text { sq. units }
\end{aligned}
$$

4. Find the area bounded by the line $y=x$, the x-axis and the ordinates $x=1, x=2$.
[PTA-4;QY-2019]
Sol:

$y=x$		
x	1	2
y	1	2

Given line $y=x$
The limits are $x=1, x=2$
Since the shaded area lies to the right of Y-axis,

$$
\begin{aligned}
\text { Area } & =\int_{1}^{2} y d x=\int_{1}^{2} x d x=\left(\frac{x^{2}}{2}\right)_{1}^{2} \\
& =\frac{2^{2}}{2}-\frac{1^{2}}{2}=2-\frac{1}{2} \\
& =\frac{4-1}{2}=\frac{3}{2} \text { sq. units. }
\end{aligned}
$$

5. Using integration, find the area of the region bounded by the line $y-1=x$, the x-axis and the ordinates $x=-2, x=3$.

Sol:

Given line is $y-1=x \Rightarrow y=x+1$
Given limits are from $x=-2$ to 3 .

In the diagram, the area from $x=-2$ to $x=-1$ lies below the X -axis and the area from $x=-1$ to $x=3$ lies above the X -axis.
\therefore Required Area
$=\int_{-2}^{-1}-y d x+\int_{-1}^{3} y d x=-\int_{-2}^{-1} y d x+\int_{-1}^{3} y d x$
$=\int_{-1}^{-2} y d x+\int_{-1}^{3} y d x\left[\because \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x\right]$
$=\int_{-1}^{-2}(x+1) d x+\int_{-1}^{3}(x+1) d x$
$=\left(\frac{x^{2}}{2}+x\right)_{-1}^{-2}+\left(\frac{x^{2}}{2}+x\right)_{-1}^{3}$
$=\left(\frac{4}{2}-2\right)-\left(\frac{1}{2}-1\right)+\left(\frac{9}{2}+3\right)-\left(\frac{1}{2}-1\right)$
$=(2-2)-\left(-\frac{1}{2}\right)+\left(\frac{15}{2}\right)-\left(-\frac{1}{2}\right)$
$=0+\frac{1}{2}+\frac{15}{2}+\frac{1}{2}=\frac{17}{2}$ sq. units.
6. Find the area of the region lying in the first
quadrant bounded by the region $y=4 x^{2}$, $x=0, y=0$ and $y=4$.
Sol:

Given curve $y=4 x^{2}$ is an open upward parabola
$\Rightarrow \quad \frac{y}{4}=x^{2}$
The limits are from $y=0$ to $y=4$
Since the shaded region lies to the right of Y-axis,
Required area $=\int_{0}^{4} x d y=\int_{0}^{4} \sqrt{\frac{y}{4}} d y$

$$
=\frac{1}{2} \int_{0}^{4} \sqrt{y} d y=\frac{1}{2} \int_{0}^{4} y^{\frac{1}{2}} d y
$$

$$
\begin{aligned}
=\frac{1}{2}\left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{4} & =\frac{1}{\not 2} \times \frac{22}{3}\left[y^{\frac{3}{2}}\right]_{0}^{4} \\
=\frac{1}{3}\left[4^{\frac{3}{2}}-0\right] & =\frac{1}{3}\left[4^{\frac{3}{2}}\right] \\
=\frac{1}{3} 4^{1} \sqrt{4} & =\frac{1}{3} \cdot 4(2) \\
\mathrm{A} & =\frac{8}{3} \text { sq. units. }
\end{aligned}
$$

7. Find the area bounded by the curve $y=x^{2}$ and the line $y=4$.
[Aug. - 2021]
Sol:

Since

$$
y=x^{2} \text { is symmetric }
$$

about Y -axis, the required

$$
\text { Area }=2 \int_{0}^{4} x d y
$$

When $y=x^{2} \Rightarrow \quad x=\sqrt{y}$

$$
\begin{aligned}
\therefore \quad \text { Area } & =2 \int_{0}^{4} \sqrt{y} d y=2 \int_{0}^{4} y^{\frac{1}{2}} d y \\
& =2\left[\frac{y^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right]_{0}^{4} \\
& =2 \times \frac{2}{3}\left[y^{\frac{3}{2}}\right]_{0}^{4} \\
& =\frac{4}{3}\left[4^{\frac{3}{2}}-0^{\frac{3}{2}}\right]=\frac{4}{3}\left[4^{\frac{3}{2}}\right] \\
=\frac{4}{3} \times\left(2^{2}\right)^{\frac{3}{2}} & =\frac{4}{3} \times 2^{3} \\
\mathrm{~A}=\frac{4}{3} \times 8 & =\frac{32}{3} \text { sq. units. }
\end{aligned}
$$

DIFFERENTIAL EQUATIONS

SNAPSHOT

+ An ordinary differential equation is an equation that involves some ordinary derivatives $\left(\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \ldots\right)$ of a function $y=f(x)$. Here we have one independent variable.
+ Sometimes a family of curves can be represented by a single equation with one or move arbitrary constants. By assigning different values for constants, we get a family of curves. The arbitrary constants are called the parameters of the family.
+ Solution of the differential equation must contain the same number of arbitrary constants as the order of the equation. Such a solution is called General (complete) solution of the differential equation.
+ The highest order derivative present in the differential equation is the order of the differential equation.
+ Degree is the highest power of the highest order derivative in the differential equation.
+ Variable separable method
If in an equation, it is possible to collect all the terms of x and $d x$ on one side and all the terms of y and $d y$ on the other side, then the variable are said to be separable $f(x) d x=g(y) d y$.
+ Homogeneous differential equations:
$\frac{d y}{d x}=\frac{f(x, y)}{g(x, y)}$ is homogeneous differential equation if $f(x, y)$ and $g(x, y)$ are homogeneous functions of the same degree in x and y.
+ Linear differential equations of first order:
General form of linear equation of first order is $\frac{d y}{d x}+\mathrm{P} y=\mathrm{Q}$.
+ Second order first degree differential equations

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=f(x) \text { is the general form of second order first degree differential equations. }
$$

POINTS TO REMEBER

+ Variable separable method
Separate the variable x and y and then integrate.
+ Homogeneous differential equations

$$
\text { Put } y=v x, \frac{d y}{d x}=v+x \frac{d v}{d x}
$$

Then separate the variables v and x, integrate and finally put $v=\frac{y}{x}$

+ Linear differential equations of first order
+ Solution of $\frac{d y}{d x}+\mathrm{P} y=\mathrm{Q}$ where P and Q are functions of x is

$$
y e^{\int p d x}=\int \mathrm{Q} e^{\int p d x} d x+c
$$

Also $e^{\int p d x}$ is known as Integrating Factor (I.F).

+ Second order first degree differential equations
+ If $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=f(x)$ then $y=\mathrm{CF}+\mathrm{PI}$
[CF \rightarrow Complementary function; PI \rightarrow Particular integral]

Solution of CF

Nature of roots	Complementary function (CF)
1) Real and different $\left(m_{1} \neq m_{2}\right)$	$\mathrm{A} e^{m_{1} x}+\mathrm{B} e^{m_{2} x}$
2) Real and equal $\left(m_{1}=m_{2}=m\right)$	$(\mathrm{A} x+\mathrm{B}) e^{m x}$
3) Complex roots $(\alpha \pm i \beta)$	$e^{\alpha x}[\mathrm{~A} \cos \beta x+\mathrm{B} \sin \beta x]$
	Where A and B are constants

Solution of Particular Intergral (P.I)
If $f(x)=e^{a x} \Rightarrow \phi(\mathrm{D}) y=e^{a x}$
$\mathrm{PI}=\frac{1}{\phi(D)} e^{a x} \phi(\mathrm{D}) \neq 0$
If $\phi(\mathrm{D}) \neq 0$, when $\mathrm{D}=a$, then $\mathrm{PI}=x \cdot \frac{1}{\phi^{1}(\mathrm{D})} e^{a x}$
If $\phi^{1}(\mathrm{D}) \neq 0$, when $\mathrm{D}=a$, then $\mathrm{PI}=x^{2} \cdot \frac{e^{a x}}{\phi^{1}(\mathrm{D})}$

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores ww w.kalviexpress.in

Sura's ${ }^{11+}$ XII Std - Unit 4 In| Differential Equations

TEXTUAL QUESTIONS

EXERCISE 4.1

1. Find the order and degree of the following differential equations.
(i) $\frac{d y}{d x}+2 y=x^{3}$
(ii) $\left(\frac{d^{3} y}{d x^{3}}\right)+3\left(\frac{d y}{d x}\right)^{3}+2\left(\frac{d y}{d x}\right)=0$
(iii) $\frac{d^{2} y}{d x^{2}}=\sqrt{y-\frac{d y}{d x}}$
(iv) $\frac{d^{3} y}{d x^{3}}=0$
(v) $\frac{d^{2} y}{d x^{2}}+y+\left(\frac{d y}{d x}-\frac{d^{3} y}{d x^{3}}\right)^{\frac{3}{2}}=0$
(vi) $\left(2-y^{\prime \prime}\right)^{2}=y^{\prime \prime 2}+2 y^{\prime}$
(vii) $\left(\frac{d y}{d x}\right)^{3}+y=x-\frac{d x}{d y}$

Sol. (i) The highest derivative is first order and its power is one
\therefore order: $\rightarrow 1$, degree: $\rightarrow 1$
(ii) The highest derivate is third order and its power is one.
\therefore order: $\rightarrow 3$, degree: $\rightarrow 1$
(iii) Squaring both sides, we get $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=y-\frac{d y}{d x}$ The highest derivative is second order and its power is 2 .
\therefore Order is 2 and degree is 2 .
(iv) The highest derivative is of third order and its power is 1 . Order is 3 and degree is 1 .
(v) $\frac{d^{2} y}{d x^{2}}+y=-\left(\frac{d y}{d x}-\frac{d^{3} y}{d x^{3}}\right)^{\frac{3}{2}}$

Squaring both sides we get,
$\left[\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+y\right]^{2}=\left[-\left(\frac{d y}{d x}\right)-\frac{d^{3} y}{d x^{3}}\right]^{\frac{3}{2} \times 2}$
$\left(\frac{d^{2} y}{d x^{2}}\right)^{4}+y^{2}+2 x y\left(\frac{d^{2} y}{d x^{2}}\right)=\left(\frac{d y}{d x}-\frac{d^{3} y}{d x^{3}}\right)^{3}$
The highest derivate is of third order and its power is 3 .
\therefore Order is 3 and degree is 3 .
(vi) $\left(2-y^{\prime \prime}\right)^{2}=y^{\prime \prime 2}+2 y^{\prime}$

$$
\begin{aligned}
& \Rightarrow 4+y^{\prime \prime \prime}-4 y^{\prime \prime}=y^{\prime \prime \prime}+2 y^{\prime} \\
& \Rightarrow 4-4 y^{\prime \prime}=2 y^{\prime}
\end{aligned}
$$

The highest derivative is of second order and its power is 1 .
\therefore Order is 2 and degree is 1 .
(vii) $\left(\frac{d y}{d x}\right)^{3}+y=x-\frac{1}{\left(\frac{d y}{d x}\right)}$
$\Rightarrow \quad\left(\frac{d y}{d x}\right)^{3}+y=\frac{x\left(\frac{d y}{d x}\right)-1}{\left(\frac{d y}{d x}\right)}$
$\Rightarrow\left(\frac{d y}{d x}\right)^{4}+y\left(\frac{d y}{d x}\right)=x\left(\frac{d y}{d x}\right)-1$
The highest derivative is of first order and its power is 3 .
\therefore Order is 1 and degree is 4 .
2. Find the differential equation of the following:
(i) $y=c x+c-c^{3}$
(ii) $y=c(x-c)^{2}$
(iii) $x y=c^{2}$
(iv) $x^{2}+y^{2}=a^{2}$

Sol. (i) Given equation is $y=c x+c-c^{3}$
Differentiating with respect to ' x ' we get,
$\frac{d y}{d x}=c(1)+0-0 \Rightarrow \frac{d y}{d x}=c$
Substituting (2) in (1) we get,
$y=x\left(\frac{d y}{d x}\right)+\left(\frac{d y}{d x}\right)-\left(\frac{d y}{d x}\right)^{3}$ which is the required differential equation.
(ii) Given equation is $y=c(x-c)^{2}$

Differentiating with respect to ' x ' we get
$\frac{d y}{d x}=2 c(x-c)$
(1) $\div(2)$ gives
$\frac{y}{\frac{d y}{d x}}=\frac{c(x-c)^{2}}{2 c(x-c)} \Rightarrow \frac{y}{\frac{d y}{d x}}=\frac{x-c}{2}$
$x-c=\frac{2 y}{\frac{d y}{d x}} \Rightarrow c=x-\frac{2 y}{\frac{d y}{d x}}$

Sura's XIII Std

Substituting the value of c in (1) we get

$$
\begin{aligned}
& y=\left(x-\frac{2 y}{\frac{d y}{d x}}\right)\left(x-x+\frac{2 y}{\frac{d y}{d x}}\right)^{2} \\
&=\left(x-\frac{2 y}{\frac{d y}{d x}}\right)\left(\frac{4 y^{2}}{\left(\frac{d y}{d x}\right)^{2}}\right) \\
& y=\left(\frac{x \frac{d y}{d x}-2 y}{\frac{d y}{d x}}\right)\left(\frac{4 y^{2}}{\left(\frac{d y}{d x}\right)^{2}}\right) \\
& \Rightarrow \quad\left(\frac{d y}{d x}\right)^{3}= 4 y^{2}\left(x \frac{d y}{d x}-2 y\right) \\
& \Rightarrow \quad\left(\frac{d y}{d x}\right)^{3}= 4 y\left(x \frac{d y}{d x}-2 y\right) \\
& \Rightarrow \quad\left(\frac{d y}{d x}\right)^{3}= 4 x y\left(\frac{d y}{d x}\right)-8 y^{2} \\
& \Rightarrow \quad\left(\frac{d y}{d x}\right)^{3}-4 x y\left(\frac{d y}{d x}\right)+8 y^{2}=0
\end{aligned}
$$

(iii) Differentiating with respect to ' x ' we get, $x \cdot \frac{d y}{d x}+y(1)=0 \quad$ [Product rule]
$\Rightarrow x \frac{d y}{d x}+y=0$
which is the require differentiated equation.
(iv) Differentiating with respect to ' x ' we get,
$2 x+2 y \frac{d y}{d x}=0$
Dividing by 2, we get,

$$
x+y \frac{d y}{d x}=0
$$

3. Form the differential equation by eliminating α and β from $(x-\alpha)^{2}+(y-\beta)^{2}=r^{2}$.
Sol. $\quad(x-\alpha)^{2}+(y-\beta)^{2}=r^{2}$
Differentiating with respect to ' x ' we get,
$2(x-\alpha)+2(y-\beta) \frac{d y}{d x}=0$
$(x-\alpha)+(y-\beta) \frac{d y}{d x}=0$
Again differentiating with respect to x,

$$
\begin{aligned}
1+(y-\beta) \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2} & =0 \\
(y-\beta) \frac{d^{2} y}{d x^{2}} & =-1-\left(\frac{d y}{d x}\right)^{2}
\end{aligned}
$$

For convenience we use $y^{\prime}=\frac{d y}{d x}$ and $y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}$
The above equation becomes,

$$
\begin{aligned}
(y-\beta) y^{\prime \prime} & =-\left(1+y^{\prime 2}\right) \\
y-\beta & =-\frac{\left(1+y^{\prime 2}\right)}{y^{\prime \prime}}
\end{aligned}
$$

Using (3) in (2) we get,
or)
(or)

$$
\begin{aligned}
(x-\alpha)-\frac{\left(1+y^{\prime 2}\right)}{y^{\prime \prime}} y^{\prime} & =0 \\
(x-\alpha) & =\frac{1+y^{\prime 2}}{y^{\prime \prime}} y^{\prime}
\end{aligned}
$$

Now using (3) and (4) in (1) we get

$$
\begin{equation*}
\left[\frac{\left(1+y^{\prime 2}\right)}{y^{\prime \prime}} y^{\prime}\right]^{2}+\left[\frac{-\left(1+y^{\prime 2}\right)}{y^{\prime \prime}}\right]=r^{2} \tag{or}
\end{equation*}
$$

$$
\begin{array}{rlrl}
& & \frac{\left(1+y^{\prime 2}\right)^{2}}{\left(y^{\prime \prime}\right)^{2}}\left(y^{\prime 2}+1\right) & =r^{2} \\
\left(1+y^{\prime 2}\right)^{3} & =r^{2}\left(y^{\prime \prime}\right)^{2} \\
\Rightarrow \quad\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3} & =r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}
\end{array}
$$

is the required differential equation.
4. Find the differentiate equation of the family of all straight lines passing through the origin.
[Govt.MQP-2019 ; March - 2020]
Sol. Let the equation of straight lines passing through the origin be $\quad y=m x$
where m is the arbitrary constant
Differentiating with respect to ' x ' we get,
$\frac{d y}{d x}=m(1) \Rightarrow \frac{d y}{d x}=m$
Substituting (2) in (1) we get,

$$
y=\left(\frac{d y}{d x}\right) x
$$

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores ww w.kalviexpress.in

Sura's
123
5. Form the differential equation that represents all parabolas each of which has a latus rectum $4 a$ and whose axes are parallel to the x axis.
Sol. Equation of the family of parabolas with latus rectum $4 a$ and whose axes are parallel to the x-axis is $(y-k)^{2}=4 a(x-h)$
[Where (h, k) is the centre of the parabola]
Differentiating with respect to ' x ' we get,
$2(y-k)\left(\frac{d y}{d x}\right)=4 a(1) \Rightarrow 2(y-k)\left(\frac{d y}{d x}\right)=4 a$
Differentiating again with respect to x we get,
$2(y-k)\left(\frac{d^{2} y}{d x^{2}}\right)+\left(\frac{d y}{d x}\right)(2) \frac{d y}{d x}=0$ (Product rule)
$(y-k)\left(\frac{d^{2} y}{d x^{2}}\right)+\left(\frac{d y}{d x}\right)^{2}=0$ [Divided by 2]

$$
\begin{equation*}
y-k=\frac{-\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}} \tag{2}
\end{equation*}
$$

Substituting (2) in (1) we get,
$2 \frac{-\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}\left(\frac{d y}{d x}\right)=4 a$
$\Rightarrow-2\left(\frac{d y}{d x}\right)^{3}=4 a\left(\frac{d^{2} y}{d x^{2}}\right)$
$\Rightarrow 4 a\left(\frac{d^{2} y}{d x^{2}}\right)+2\left(\frac{d y}{d x}\right)^{3}=0$
[Divided by 2]
$\Rightarrow 2 a\left(\frac{d^{2} y}{d x^{2}}\right)+\left(\frac{d y}{d x}\right)^{3}=0$
Which is the required differential equation.
6. Find the differential equation of all circles passing through the origin and having their centers on the y axis.
Sol.

The circle pass through the origin. They have their centres at $(0, a)$
The circles have radius a. So the equation of the family of circles in given by $x^{2}+(y-a)^{2}=a^{2}$
$x^{2}+y^{2}-2 a y+a^{2}=a^{2}$

$$
\begin{equation*}
x^{2}+y^{2}=2 a y \tag{1}
\end{equation*}
$$

Differentiating with respect to x,

$$
\begin{align*}
& \quad 2 x+2 y \frac{d y}{d x}=2 a \frac{d y}{d x} \\
& \Rightarrow \quad a=\frac{x+y \frac{d y}{d x}}{\frac{d y}{d x}} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
x^{2}+y^{2} & =2 y\left[\frac{x+y \frac{d y}{d x}}{\frac{d y}{d x}}\right] \\
x^{2} \frac{d y}{d x}+y^{2} \frac{d y}{d x} & =2 x y+2 y^{2} \frac{d y}{d x} \\
\Rightarrow \quad\left(x^{2}-y^{2}\right) \frac{d y}{d x} & =2 x y \\
\frac{d y}{d x} & =\frac{2 x y}{x^{2}-y^{2}}
\end{aligned}
$$

is the required differential equation of all circled passing through origin and having their centers on the y-axis.
7. Find the differential equation of the family of parabola with foci at the origin and axis along the x-axis.
Sol. Equation of family of parabolas with foci at the origin and axis along the x-axis is

$$
\begin{equation*}
y^{2}=4 a(x+a) \tag{1}
\end{equation*}
$$

$[\because$ the focus is at the origin its vertex will be $(-a, 0)$ and latus rectum is $4 a$]
Differentiating with respect to ' x ' we get,

$$
\begin{align*}
& 2 y\left(\frac{d y}{d x}\right)=4 a \tag{1}\\
& \Rightarrow 2 y\left(\frac{d y}{d x}\right)=4 a \tag{2}
\end{align*}
$$

Also $\frac{2 y}{4}\left(\frac{d y}{d x}\right)=a$
$\Rightarrow \frac{y}{2}\left(\frac{d y}{d x}\right)=a$

SNAPSHOT

+ Forward difference operator $(\Delta)=($ Delta $)$

$$
\Delta y n=y_{n+1}-y_{n}, n=0,1,2, \ldots
$$

+ $\Delta f(x)=f(x+h)-f(x), h$ is the equal interval of spacing

PROPERTIES OF OPERATOR Δ :

+ If c is a constant then $\Delta c=0$
Δ is distributive $\Rightarrow \Delta(f(x)+g(x))=\Delta f(x)+\Delta g(x)$
+ If c is a constant, then $\Delta c \cdot f(x)=c \cdot \Delta f(x)$.
+ If m and n are positive integers then

$$
\Delta^{m} \cdot \Delta^{n} f(x)=\Delta^{m+n} \cdot f(x)
$$

$+\Delta[f(x) \cdot g(x)]=f(x) \cdot \Delta g(x)+g(x) \cdot \Delta f(x)$
$+\Delta\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \Delta f(x)-f(x) \cdot \Delta g(x)}{g(x) \cdot g(x+h)}$
$+\Delta^{2} y_{n}=\Delta y_{n+1}-\Delta y_{n}$
$+\Delta^{3} y_{n}=\Delta^{2} y_{n+1}-\Delta^{2} y_{n, n}=0,1,2 \ldots$
$+\Delta^{k} y_{n}=\Delta^{k-1} y_{n+1}-\Delta^{k-1} y_{n, n}=n=0,1,2, \ldots \ldots$

BACKWARD DIFFERENCE OPERATOR ∇ (NEPLA)

$+\nabla y_{1}=y_{1}-y_{0}$.
$+\nabla^{k} y_{n}=\nabla^{k-1} y_{n}-\nabla^{k-1} y_{n-1}, n=1,2,3 \ldots$
$+\nabla f(x+2 h)=f(x+2 h)-f(x+h), h$ is the interval of spacing.
$+\nabla^{n} f(x+n h)=\nabla^{n} f(x)$.

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores ww w.kalviexpress.in

SHIFTING OPERATOR (E)
$+\mathrm{E}\left[f\left(x_{0}\right)\right]=f\left(x_{0}+h\right)$
$+\mathrm{E}^{2} f(x)=\mathrm{E}[f(x+h)]=f(x+2 h)$
$+\mathrm{E}^{n} f(x)=f(x+n h)$ and $\mathrm{E}^{-n} f(x)=f(x-n h)$.

PROPERTIES OF OPERATOR E

$+\mathrm{E}\left[f_{1}(x)+f_{2}(x)+\cdots+f_{n}(x)\right]=\mathrm{E} f_{1}(x)+\mathrm{E} f_{2}(x)+\ldots .+\mathrm{E} f_{n}(x)$
$+\mathrm{E}[c \cdot f(x)]=c \cdot \mathrm{E}[f(x)]$ where c is a constant.
$+\mathrm{E}^{m}\left[\mathrm{E}^{n} f(x)\right]=\mathrm{E}^{n}\left[\mathrm{E}^{m} f(x)\right]=\mathrm{E}^{m+n} f(x)$

+ If ' n ' is a positive integer then,
$\mathrm{E}^{n}\left[\mathrm{E}^{-n} f(x)\right]=f(x)$.
$+\mathrm{E}\left(\mathrm{E}\left(y_{0}\right)\right)=\mathrm{E}\left(y_{1}\right)=y_{2} \Rightarrow \mathrm{E}^{n} y_{0}=y_{n}$.
Relation between the operator Δ, ∇ and E .
$+\Delta=\mathrm{E}-1$
$+\mathrm{E}(\Delta f(x))=\Delta \cdot \mathrm{E} f(x)$
$+\nabla=\frac{\mathrm{E}-1}{\mathrm{E}}$
$+(1+\Delta)(1-\nabla)=1$
$+\Delta \nabla=\Delta-\nabla$
$+\nabla=\mathrm{E}^{-1} \Delta$.

IMPORTANT FORMULA TO REMEMBER

$+\Delta f(x)=f(x+h)-f(x)$
$+\quad \nabla f(x)=f(x)-f(x-h)$
$+\mathrm{E} f(x)=f(x+h)$
$+\mathrm{E}^{n} f(x)=f(x+n h)$

NEWTON'S FORWARD INTERPOLATION FORMULA:

$y\left(x=x_{0}+n h\right)=y_{0}+\frac{n!}{\Delta y_{0}}+\frac{n(n-1)}{2!} \Delta^{2} y_{0} \frac{+n(n-1)(n-2)}{3!} \Delta^{3} y_{0}+\ldots$

NEWTONS BACKWARD INTERPOLATION FORMULA:

$y\left(x=x_{n}+n h\right)=y_{n}+\frac{n}{1!} \nabla y_{n}+\frac{n(n+1)}{2!} \nabla^{2} y_{n}+\frac{n(n+1)(n+2)}{3!} \nabla^{3} y_{n}+\ldots v$

LAGRANGE'S INTERPOLATION FORMULA

$$
\begin{aligned}
& y=f(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \cdot \cdot\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdot \cdot\left(x_{0}-x_{n}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right) \cdot \cdot\left(x-x_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \cdot \cdot\left(x_{1}-x_{n}\right)} y_{1} \\
&+\ldots+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \cdots\left(x_{n}-x_{n-1}\right)} y_{n} .
\end{aligned}
$$

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores w w w.kalviexpress.in

Sura's \lim XII Std - Unit 5 mm Numerical methods

EXERCISE 5.1

1. Evaluate $\Delta(\log a x)$

[PTA - 6]
Sol. $\quad \Delta(\log a x)=\log a(x+h)-\log a x$ $=\log \left[\frac{a(x+h)}{a x}\right]=\log \left[1+\frac{h}{x}\right]$
2. If $y=x^{3}-x^{2}+x-1$, calculate the values of y for $x=0,1,2,3,4,5$ and form the forward difference table.

Sol.

$$
\begin{aligned}
\text { when } x & =0, \\
y & =0+0+0-1 \Rightarrow y=-1 \\
\text { when } x & =1, \\
y & =1^{3}-1^{2}+1-1 \Rightarrow y=0 . \\
\text { when } x & =2, y=2^{3}-2^{2}+2-1 \\
y & =8-4+1 \Rightarrow y=5 \\
\Rightarrow \quad \text { when } x & =3, y=3^{3}-3^{2}+3-1 \\
y & =27-9+2 \Rightarrow y=20 \\
\Rightarrow \quad \text { when } x & =4, y=4^{3}-4^{2}+4-1 \\
y & =64-16+3 \Rightarrow y=51 \\
\Rightarrow \quad \text { when } x & =5, y=5^{3}-5^{2}+5-1 \\
\Rightarrow \quad y & =125-25+4 \Rightarrow y=104
\end{aligned}
$$

Hence, the forward difference table is

x	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$	$\Delta^{5} y$
0	-1					
1	0	1	4	6		
2	5	5	10	6	0	
3	20	15	16	6	0	0
4	51	31	22			
5	104	53				

3. If $h=1$, then prove that $\left(\mathrm{E}^{-1} \Delta\right) x^{3}=3 x^{2}-3 x+1$. [PTA - 4]
Sol. Given $h=1$

$$
\begin{aligned}
\text { LHS } & =\left(\mathrm{E}^{-1} \Delta\right) x^{3} \\
& =\Delta\left(\mathrm{E}^{-1}\left(x^{3}\right)\right) \\
& =\Delta(x-h)^{3} \quad\left[\because \mathrm{E}^{-1} f(x)=\mathrm{f}(x-n h)\right] \\
& =\Delta(x-1)^{3} \quad \quad[\because h=1] \\
& =(x-1+1)^{3}-(x-1)^{3} \\
& {[\because \Delta f(x)=f(x+h)-f(x)] } \\
& =x^{3}-(x-1)^{3} \\
& =x^{3}-\left(x^{3}-3 x^{2}+3 x-1\right) \\
& \left.=\because(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}\right] \\
& =x^{3}-x^{3}+3 x^{2}-3 x+1 \\
& =3 x^{2}-3 x+1 \\
& =\text { RHS } \quad \text { Hence proved. }
\end{aligned}
$$

4. If $f(x)=x^{2}+3 x$, then show that $\Delta f(x)=2 x+4$

Sol. Given $f(x)=x^{2}+3 h$

$$
\begin{aligned}
\text { LHS } & =\Delta f(x) \\
& =f(x+h)-f(x) \\
& =\left[(x+h)^{2}+3(x+h)\right]-\left[x^{2}+3 x\right] \\
& =x^{2}+h^{2}+2 x h+3 x+3 h-x^{2}-3 x \\
& =h^{2}+2 x h+3 h
\end{aligned}
$$

when $h=1$,

$$
\begin{aligned}
\text { LHS } & =1^{2}+2 x(1)+3(1) \\
& =1+2 x+3 \\
& =2 x+4=\text { RHS } .
\end{aligned}
$$

Hence proved.
5. Evaluate $\Delta\left[\frac{1}{(x+1)(x+2)}\right]$ by taking ' 1 ' as the interval of differencing.
[Aug. - 2021]
Sol. By partial fraction method

$$
\begin{aligned}
& \frac{1}{(x+1)(x+2)}=\frac{\mathrm{A}}{x+1}+\frac{\mathrm{B}}{x+2} \\
& \Rightarrow \frac{1}{(x+1)(x+2)} \\
&=\frac{\mathrm{A}(x+2)+\mathrm{B}(x+1)}{(x+1)(x+2)}
\end{aligned}
$$

$$
\Rightarrow \quad 1=\mathrm{A}(x+2)+\mathrm{B}(x+1)
$$

$$
\text { when } x=-1,1=\mathrm{A}[-1+2] \Rightarrow 1=\mathrm{A}
$$

$$
\text { when } x=-2,1=\mathrm{B}[-2+1] \Rightarrow 1=-\mathrm{B}
$$

$$
\Rightarrow \quad B=-1
$$

$$
\therefore \frac{1}{(x+1)(x+2)}=\frac{1}{x+1}-\frac{1}{x+2}
$$

$$
\therefore \Delta\left[\frac{1}{(x+1)(x+2)}\right]=\Delta\left[\frac{1}{x+1}-\frac{1}{x+2}\right]
$$

$$
=\left(\frac{1}{x+1+1}-\frac{1}{x+1}\right)-\left(\frac{1}{x+1+2}-\frac{1}{x+2}\right)
$$

$$
[\because \Delta f(x)=f(x+1)-f(x)]
$$

$$
=\left(\frac{1}{x+2}-\frac{1}{x+1}\right)-\left(\frac{1}{x+3}-\frac{1}{x+2}\right) \text { where } h=1
$$

$$
=\frac{1}{x+2}-\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+2}
$$

$$
=\frac{2}{x+2}-\frac{1}{x+1}-\frac{1}{x+3}
$$

$$
=\frac{2(x+1)(x+3)-1(x+2)(x+3)-1(x+1)(x+2)}{(x+1)(x+2)(x+3)}
$$

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores www.kalviexpress.in

Sura's ${ }^{n|+|}$ XII Std

$$
\begin{aligned}
& =\frac{2\left(x^{2}+4 x+3\right)-\left(x^{2}+5 x+6\right)-\left(x^{2}+3 x+2\right)}{(x+1)(x+2)(x+3)} \\
& =\frac{2 x^{2}+8 x+\not 6-x^{2}-5 x-\not 6-x^{2}-3 x-2}{(x+1)(x+2)(x+3)} \\
& =\frac{2 x^{2}+8 x-8 x-2 x^{2}-2}{(x+1)(x+2)(x+3)} \\
& =\frac{-2}{(x+1)(x+2)(x+3)} \\
& =\Delta\left[\frac{1}{(x+1)(x+2)}\right]=\frac{-2}{(x+1)(x+2)(x+3)} .
\end{aligned}
$$

6. Find the missing entry in the following table. [PTA-1; Govt.MQP-2019]

x	0	1	2	3	4
y	1	3	9	-	81

Sol. Since only four values of $f(x)$ are given, the polynomial which fits the data is of degree 3 .
Hence fourth differences are zero.

$$
\begin{aligned}
& \therefore \Delta^{4}\left(y_{0}\right) & =0 \\
\Rightarrow & (\mathrm{E}-1)^{4}\left(y_{0}\right) & =0 \\
\Rightarrow & \left(\mathrm{E}^{4}-4 \mathrm{E}^{3}+6 \mathrm{E}^{2}-4 \mathrm{E}+1\right) y_{0} & =0 \\
\Rightarrow & y_{4}-4 y_{3}+6 y_{2}-4 y_{1}+y_{0} & =0 \\
\Rightarrow & 81-4\left(y_{3}\right)+6(9)-4(3)+1 & =0 \\
\Rightarrow & 81-4 y_{3}+54-12+1 & =0 \\
\Rightarrow & 81+54-11 & =4 y_{3} \\
\Rightarrow & 124 & =4 y_{3} \\
\Rightarrow & y_{3} & =\frac{124}{4}=31 . \\
\Rightarrow & y_{3} & =31
\end{aligned}
$$

7. Following are the population of a district:

year (x)	1881	1891	1901	1911	1921	1931
population (y) in thousands	363	391	421	-	467	501

Find the population of the year 1911
Sol. Since only five values of $f(x)$ are given, the polynomial which fits the data is of degree 4 .

Hence fifth differences are zeros.

$$
\begin{array}{lr}
& \therefore \Delta^{5} y_{0}=0 \\
\Rightarrow & (\mathrm{E}-1)^{5} y_{0}=0 \\
\Rightarrow & \left(\mathrm{E}^{5}-5 \mathrm{E}^{4}+10 \mathrm{E}^{3}-10 \mathrm{E}^{2}+5 \mathrm{E}-1\right) y_{0}=0 \\
\Rightarrow & y_{5}-5 y_{4}+10 y_{3}-10 y_{2}+5 y_{1}-y_{0}=0 \\
\Rightarrow & 501-5(467)+10 y_{3}-10(421)+5(391)-363=0 \\
\Rightarrow & 501-2335+10 y_{3}-4210+1955-363=0 \\
\Rightarrow & 10 y_{3}-4452=0 \\
\Rightarrow & 10 y_{3}=4452 \\
\Rightarrow & y_{3}=\frac{4452}{10}=445.2
\end{array}
$$

Since the population is given in thousands, population of the year 1911
$=445 \times 1000=4,45,000$.
8. Find the missing entries from the following:-

\boldsymbol{x}	0	1	2	3	4	5
$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$	0	-	8	15	-	35

Sol. Let the missing entries by y_{1} and y_{4}
[PTA-3]
Since only four values of $f(x)$ are given, the polynomial which fits the data is of degree 3 .
Hence fourth differences are zero.

$$
\begin{align*}
\therefore \Delta^{4} y_{k}=0 \Rightarrow(E-1)^{4} y_{k} & =0 \\
\left(E^{4}-4 E^{3}+6 E^{2}-4 E+1\right) y_{k} & =0 \tag{1}
\end{align*}
$$

Put $k=0$ in (1) we get,

$$
\begin{array}{rlrl}
& & \left(\mathrm{E}^{4}-4 \mathrm{E}^{3}+6 \mathrm{E}^{2}-4 \mathrm{E}+1\right) y_{0} & =0 \\
\Rightarrow & y_{4}-4 y_{3}+6 y_{2}-4 y_{1}+y_{0} & =0 \\
\Rightarrow & y_{4}-4(15)+6(8)-4\left(y_{1}\right)+0 & =0 \\
\Rightarrow & y_{4}-60+48-4 y_{1} & =0 \\
\Rightarrow & y_{4}-4 y_{1}-12 & =0 \\
\Rightarrow & y_{4}-4 y_{1} & =12 \tag{2}
\end{array}
$$

put $k=1$ in (1) we get

$$
\begin{align*}
&\left(\mathrm{E}^{4}-4 \mathrm{E}^{3}+6 \mathrm{E}^{2}-4 \mathrm{E}+1\right) y_{1}=0 \\
& \Rightarrow \quad y_{5}-4 y_{4}+6 y_{3}-4 y_{2}+y_{1}=0 \\
& \Rightarrow 35-4 y_{4}+6(15)-4(8)+y_{1}=0 \\
& \Rightarrow \quad 35-4 y_{4}+90-32+y_{1}=0 \\
& \Rightarrow \quad-4 y_{4}+y_{1}=-93 \\
&(2) \times 4 \rightarrow \quad \begin{aligned}
4 y_{4}-16 y_{1} & =48 \\
\text { (3) } \quad \rightarrow \quad & -4 y_{4}+y_{1}
\end{aligned}=-93 \tag{3}\\
& \text { Adding, }-15 y_{1}
\end{align*}=-45
$$

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores www.kalviexpress.in

Sura's ${ }^{(1)+}$ XII Std - Unit 5 numerical methods

$$
\begin{array}{ll}
\Rightarrow & y_{1}=\frac{-45}{-15}=3 \\
\Rightarrow & y_{1}=3
\end{array}
$$

Substituting $y_{1}=3$ in (2) we get,

$$
\begin{aligned}
& y_{4}-4(3)=12 \\
& y_{4}-12=12 \\
& \Rightarrow \quad y_{4}=12+12 \\
& \Rightarrow \quad y_{4}=24
\end{aligned}
$$

Hence the missing entries are 3 and 24 .

EXERCISE 5.2

1. Using graphic method, find the value of y when $x=48$ from the following data. [QY-2019]

\boldsymbol{x}	40	50	60	70
\boldsymbol{y}	6.2	7.2	9.1	12

Sol.

Plot the points $(40,6.2),(50,7.2),(60,9.1)$ and $(70,12)$. At $x=48$, draw a vertical line to the graph and from the intersecting point, draw a horizontal line to meet the y-axis
From the graph, we find that when $x=48$, the value of y is equal to 6.8 .
2. The following data relates to indirect labour expenses and the level of output

Months	Jan	Feb	Mar	Apr	May	June
Units of Output	200	300	400	640	540	580
Indirect labour expense (Rs)	2500	2800	3100	3820	3220	3640

Estimate the expenses at a level of output of 350 units, by using graphic method.

Sol.Plot the points $(200,2500),(300,2800)(400$, $3100)(640,3820),(540,3220)$ and $(580,3640)$.

At $x=350$, draw a vertical line and from the intersecting point on the curve, draw a horizontal line.

From the graph, we find that when $x=350, y=2900$.
Hence, the expense at a level of 350 units is ₹ 2900 .
3. Using Newton's forward interpolation formula find the cubic polynomial.

\boldsymbol{x}	0	1	2	3
$\boldsymbol{f}(\boldsymbol{x})$	1	2	1	10

Sol. The forward interpolation formula is

$$
\begin{aligned}
y_{\left(x=x_{0}+n h\right)}=y_{0}+ & \frac{n}{1!} \Delta y_{0}+\frac{n(n-1)}{2!} \Delta^{2} y_{0}+ \\
& \frac{n(n-1)(n-2)}{3!} \Delta^{3} y_{0}+\ldots
\end{aligned}
$$

Here $x_{0}+n h=x$

$$
\begin{array}{rlrl}
\Rightarrow & & x_{0} & =0, h=1 \\
& \therefore 0+n & =x \\
\Rightarrow & & n & =x .
\end{array}
$$

PROBABILITY DISTRIBUTIONS

MUST KNOW DEFINITIONS

- A random variable X is said to follow Binomial distribution if its probability mass function is given by

$$
\mathrm{P}(\mathrm{X}=x)=\mathrm{P}(x)=\left\{\begin{array}{r}
{ }^{n} \mathrm{C}_{x} p^{x} q^{n-x}, x=0,1,2, \ldots . . n ; q=1-p \\
0, \text { otherwise }
\end{array}\right.
$$

- A random variable X is said to follow Poisson distribution if its probability mass function is given by

$$
\mathrm{P}(\mathrm{X}=x)=\left\{\begin{array}{r}
\frac{e^{-\lambda} \cdot \lambda^{x}}{x!}, x=0,1,2, \ldots \ldots . . \lambda>0 \\
0, \text { otherwise }
\end{array}\right.
$$

- A random variable X is said to follow normal distribution if its probability density function is given by

$$
f(x ; \mu, 5)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right\} \begin{aligned}
& -\infty<x<\infty, \\
& -\infty<\mu<\infty, \\
& \sigma>0
\end{aligned}
$$

FORMULAE TO REMEMBER

Properties of Binomial Distribution :

- Mean $=n p$ and variance $=n p q$
- For binomial distribution, variance < mean
+ Binomial distribution is symmetrical if $p=q=0.5$.
+ It is skew symmetric if $p \neq q$.
+ It is positively skewed if $p<0.5$.
- It is negatively skewed if $p>0.5$.

Properties of Poisson Distribution :

+ \quad Mean $=$ Variance $=\lambda$
Properties of Normal Distribution :
- The curve is bell shaped and symmetrical about the line $x=\mu$.
- Mean, median and mode of the distribution coincide.
- X - axis is an asymptote to the curve.
- No portion of the curve lies below the X - axis.
- The points of inflexion of the curve are $x=\mu \pm \sigma$.
- The curve is unimodal.
- The max probability occurs at $x=\mu$ and it is $\frac{1}{\sigma \sqrt{2 \pi}}$.
+ $p(\mu-\sigma<X<\mu+\sigma)=0.6826$
+ $p(\mu-2 \sigma<\mathrm{X}<\mu+2 \sigma)=0.9544$
+ $p(\mu-3 \sigma<\mathrm{X}<\mu+3 \sigma)=0.9973$
Properties of Standard Normal Distribution :
- Its probability density function is $\varphi(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2},-\infty<z<\infty$
- The area under the standard normal curve is 1 .
- 68.26% of area lies between $z=-1$ to $z=1$.
- 95.44% of area lies between $z=-2$ and $z=2$.
+ 99.74% of area lies between $z=-3$ and $z=3$.

Sura's XII Std

TEXTUAL QUESTIONS

EXERCISE 7.1

1. Define Binomial distribution.

Sol: A random variable X is said to follow binomial distribution with parameter n and p, if it assumes only non-negative value and its probability mass function is given by

$$
\mathrm{P}(\mathrm{X}=x)=p(x)=\left\{\begin{array}{c}
{ }^{n} \mathrm{C}_{x} p^{x} q^{n-x}, x=0,1,2, \ldots . . n ; \\
q=1-p \\
0,
\end{array}\right.
$$

2. Define Bernoulli trials.

Sol: A random experiment whose outcomes are of two types namely success S and failure F, occurring with probabilities p and q is called a Bernoulli trial.
3. Derive the mean and variance of binomial distribution.

Sol: The mean of the binomial distribution

$$
\begin{aligned}
& \mathrm{E}(\mathrm{X})=\sum_{x=0}^{n} x \cdot p(x)=\sum_{x=0}^{n} x \cdot\binom{n}{x} p^{x} q^{n-x} \\
&=p \cdot \sum_{x=0}^{n} x \cdot\binom{n}{x} p^{x-1} q^{n-x} \\
&=p \cdot \sum_{x=1}^{n} \not x \cdot\left(\frac{n}{\not x}\right) \cdot\binom{n-1}{x-1} p^{x-1} q^{n-x} \\
&=n p \cdot \sum_{x=1}^{n}\binom{n-1}{x-1} p^{x-1} q^{n-x} \\
&=n p(q+p)^{n-1}[\text { using binomial theorem] }] \\
&(x+a)^{n}=x^{n}+{ }^{n} \mathrm{C}_{1} x^{n-1} a^{1}+\ldots .+a^{n} \\
&= \quad[\because p+q=1] \\
&= n p(1)^{n-1} \quad
\end{aligned}
$$

$$
\begin{equation*}
\therefore \text { Mean }=\mathrm{E}(\mathrm{X})=n p \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\because{ }^{n} C_{x} & =\frac{n!}{(n-x)!x!} \\
& =\frac{n(n-1)!}{(n-x)!x(x-1)!} \\
& =\frac{n}{x}\left[{ }^{n-1} \mathrm{C}_{x-1}\right]
\end{aligned}
$$

[From (1) \& (2)]
$=n^{2} p^{2}-n p^{2}+n p-n^{2} p^{2}$

$$
=n p(1-p)=n p q
$$

$$
[\because p+q=1 \Rightarrow q=1-p]
$$

\therefore Mean $\quad=n p$ and variance $=n p q$.
4. Write down the conditions for which the binomial distribution can be used.
Ans. The Binomial distribution can be used under the following conditions.
(i) The number of trials ' n ' is finite.
(ii) The trials are independent of each other.
(iii) The probability of success ' p ' is constant for each trial.
(iv) In every trial there are only two possible outcomes namely success or failure.
5. Mention the properties of binomial distribution.
Ans. (i) Binomial distribution is symmetrical if p $=q=0.5$. It is skew symmetric if $p \neq q$. It is positively skewed if $p<0.5$ and it is negatively skewed if $p>0.5$.
(ii) For Binomial distribution, variance is less than mean.
Variance $=n p q=(n p) q<n p$

$$
\begin{align*}
& \text { Now, } \mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{x=0}^{n} x^{2} \cdot\binom{n}{x} p^{x} q^{n-x} \\
& =\sum_{x=0}^{n}\{x(x-1)+x\} \cdot\binom{n}{x} p^{x} q^{n-x} \\
& =\sum_{x=0}^{n} x(x-1) \cdot\binom{n}{x} p^{x} q^{n-x}+\sum x \cdot\binom{n}{x} p^{x} q^{n-x} \\
& =\sum_{x=2}^{n} x(x-1) \frac{n(n-1)}{x(x-1)}\binom{n-2}{n-2} p^{x-2} q^{n-x} \\
& +\sum x\binom{n}{x} p^{x} q^{n-x} \\
& =n(n-1) p^{2}\left\{\sum\binom{n-2}{x-2} p^{x-2} q^{n-x}\right\} \\
& +n p \text { (using (1)) } \\
& =n(n-1) p^{2}(q+p)^{n-2}+n p \\
& \text { [using binomial theory] } \\
& =n(n-1) p^{2}(1)+n p \quad \because p+q=1 \\
& =n(n-1) p^{2}+n p \tag{2}\\
& \text { Variance }=E\left(X^{2}\right)-[E(X)]^{2} \\
& =n(n-1) p^{2}+n p-(n p)^{2}
\end{align*}
$$

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores www.kalviexpress.in

Sura's
6. If $\mathbf{5 \%}$ of the items produced turn out to be defective, then find out the probability that out of $\mathbf{2 0}$ items selected at random there are
(i) exactly three defectives [PTA-1; Aug. - 2021]
(ii) atleast two defectives
(iii) exactly 4 defectives
(iv) find the mean and variance

Sol: Given that probability of getting defective item

$$
\begin{aligned}
& p=5 \%=\frac{5}{100} \Rightarrow q=1-p=1-\frac{5}{100}=\frac{95}{100} \\
& n=20 \\
& p(x)={ }^{n} \mathrm{C}_{x} p^{x} q^{n-x}, x=0,1,2 \ldots \ldots n
\end{aligned}
$$

(i) $\mathbf{P}($ Exactly $\mathbf{3}$ defectives)

$$
\begin{aligned}
& ={ }^{20} \mathrm{C}_{3}\left(\frac{5}{100}\right)^{3}\left(\frac{95}{100}\right)^{20-3} \\
& ={ }^{20} \mathrm{C}_{3}(0.05)^{3}(0.95)^{17}
\end{aligned}
$$

$$
=\frac{20 \times 19 \times 18}{3 \times 2 \times 1}(0.05)^{3}(0.95)^{5}(0.95)^{5}(0.95)^{5}(0.95)^{2}
$$

$$
=(60 \times 19)(0.000125)(0.7738)(0.7738)
$$

(0.7738)(0.9025)

$$
=0.059 .
$$

(ii) P (atleast 2 defectives)

$$
\begin{aligned}
& =\mathrm{P}(\mathrm{X} \geq 2)=1-\mathrm{P}(\mathrm{X}<2) \\
& =1-[\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)] \\
& =1-\left[{ }^{20} \mathrm{C}_{0}(0.05)^{0}(0.95)^{20}+{ }^{20} \mathrm{C}_{1}(0.05)^{1}\right. \\
& \left.(0.95)^{19}\right] \\
& =1-\left[(0.95)^{20}+20(0.05)(0.95)^{19}\right] \\
& =1-[0.3585+(0.3774)] \\
& =1-[0.7359]=0.2641 .
\end{aligned}
$$

(iii) \mathbf{P} (exactly 4 defectives)

$$
\begin{aligned}
& \left.=\mathrm{P}(\mathrm{X}=4)={ }_{3}^{20} \mathrm{C}_{4}(0.05)^{4}(0.95)^{16}\right] \\
& =\frac{2_{6}^{5} 0 \times 19 \times 18 \times 17}{4 \times 3 \times \not 2 \times 1}(.00000625)(0.4402) \\
& =(15 \times 17 \times 19)(0.00000625)(0.4402) \\
& =0.0133
\end{aligned}
$$

(iv) Find the mean and variance

$$
\begin{gathered}
\text { Mean }=n p=20 \times \frac{5}{100}=\frac{100}{100}=1 \\
\text { Variance }=n p q=20 \times \frac{5}{100} \times \frac{95}{100}=0.95
\end{gathered}
$$

7. In a particular university $\mathbf{4 0 \%}$ of the students are having news paper reading habit. Nine university students are selected to find their views on reading habit. Find the probability that
(i) none of those selected have news paper reading habit
(ii) all those selected have news paper reading habit
(iii) atleast two third have news paper reading habit.

Sol: Let the probability of student having reading habit

$$
\begin{aligned}
p & =40 \%=\frac{40}{100}=0.4 \\
\Rightarrow q & =1-p=1-0.4=0.6 \\
n & =9
\end{aligned}
$$

(i) P (none of those who have selected having reading habit)

$$
\begin{aligned}
& =\mathrm{P}(\mathrm{X}=0) \\
& ={ }^{9} \mathrm{C}_{0}(0.4)^{0}(0.6)^{9} \\
& =(1)(1)(0.6)^{9} \\
& =\left(\because{ }^{[} \mathrm{C}_{x} p^{x} q^{n-x}=p(x)\right. \\
& n=9, x=0] \\
& =0.6)^{9} \\
& =0.01008
\end{aligned}
$$

(ii) P (all those who have selected have newspaper reading habit)

$$
\begin{aligned}
& =\mathrm{P}(\mathrm{X}=9) \\
& ={ }^{9} \mathrm{C}_{9}(0.4)^{9}(0.6)^{0} \\
& =\left(\begin{array}{r}
{\left[\because p(x)={ }^{n} \mathrm{C}_{x} p^{x} q^{n-x}\right.} \\
n=9, x=9]
\end{array}\right. \\
& =0.4)^{9} \\
& =0.000261
\end{aligned}
$$

(iii) Two thirds of $9=\frac{2}{3} \times 9=6$
$\therefore \mathrm{P}$ (atleast two third have newspaper
reading habit)
$=\mathrm{P}$ (atleast 6 have newspaper reading habit)
$=P(X \geq 6)$
$=P(X=6)+P(X=7)+P(X=8)+P(X=9)$
$={ }^{9} \mathrm{C}_{6}(0.4)^{6}(0.6)^{3}+{ }^{9} \mathrm{C}_{7}(0.4)^{7}(0.6)^{2}+$ ${ }^{9} \mathrm{C}_{8}(0.4)^{8}(0.6)^{1}+{ }^{9} \mathrm{C}_{9}(0.4)^{9}(0.6)^{0}$
$=(0.4)^{6}\left[{ }^{9} \mathrm{C}_{6}(0.6)^{3}+{ }^{9} \mathrm{C}_{7}(0.4)(0.6)^{2}\right.$ $\left.+9 C^{8}(0.4)^{2}(0.6)+(0.4)^{3}\right]$
$=(0.4)^{6}\left[{ }^{9} \mathrm{C}_{3}(0.216)+{ }^{9} \mathrm{C}_{2}(0.144)+\right.$ ${ }^{9} \mathrm{C}_{1}(0.096)+0.64$ $\left[\because{ }^{n} \mathrm{C}_{r}={ }^{n} \mathrm{C}_{n-r}\right]$

$+9(0.096)+.064]$
$=(0.4)^{6}[18.144+5.184+0.864+0.064]$
$=(0.4)^{6}[24.256]=(0.004096)(24.256)$
$\therefore P(X \geq 6)=0.09935$
8. In a family of 3 children, what is the probability that there will be exactly 2 girls?
[PTA-6]
Sol: Let p he the probability of getting a girl
$\therefore p=\frac{1}{2}[\because$ one favourable event and total no
of events is 2$]$
$\Rightarrow q=1-p=1-\frac{1}{2}=\frac{1}{2}$ and $n=3$
$\therefore p$ (getting exactly 2 girls)

$$
\begin{aligned}
& =\mathrm{P}(\mathrm{X}=2) \\
& ={ }^{3} \mathrm{C}_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{1} \begin{array}{r}
{\left[\because p(x)={ }^{n} \mathrm{C}_{x} p^{x} q^{n-x}\right.} \\
n=3 \text { and } x=2]
\end{array} \\
& =3\left(\frac{1}{2}\right)^{3}=3 \times\left(\frac{1}{2}\right)^{3}=3 \times \frac{1}{8}=0.375
\end{aligned}
$$

$P($ getting exactly 2 girls $)=0.375$.
9. Defects in yarn manufactured by a local mill can be approximated by a distribution with a mean of 1.2 defects for every 6 metres of length. If lengths of 6 metres are to be inspected, find the probability of less than 2 defects.
Sol:

$$
\begin{align*}
\text { Mean } & =1.2 \\
n p & =1.2, n=6 \\
6 p & =1.2 \\
p & =\frac{1.2}{6} \\
p & =0.2 \Rightarrow q=1-0.2=0.8 \\
p(x) & =n c_{x} p^{x} q^{n-x}, \\
x & =0,1,2, \ldots, 6 \\
p(x<2) & =p(0)+p(1) \\
& =6 c_{0}(0.2)^{0}+(0.8)^{6}+6 c_{1} \\
& =(1)(1)(0.262144)+6(0.2) \\
& =0.262144+0.393216 \tag{0.32768}\\
p(x<2) & =0.65536
\end{align*}
$$

Thus if length of 6 metres are to be inspected, the probability of less than 2 defects is 0.65536 .
10. If $\mathbf{1 8 \%}$ of the bolts produced by a machine are defective, determine the probability that out of the 4 bolts chosen at random
(i) exactly one will be defective
(ii) none will be defective
(iii) atmost 2 will be defective

Sol: (i) $\quad \mathbf{P}$ (Exactly one defective bolt)

$$
\begin{aligned}
& =\mathrm{P}(\mathrm{X}=1)=\mathrm{P}=18 \%=0.18 \\
& =q=0.82 \\
& =4 \mathrm{C}_{1}(0.18)^{1}(0.82)^{3} \quad p(x)={ }^{n} \mathrm{C}_{x} p^{x} q^{n-x} \\
& =4(0.18)(0.82)^{3} \\
& =(0.72)(0.5513) \\
\mathrm{P}(\mathrm{X} & =1)=0.3969
\end{aligned}
$$

(i) $\quad P$ (none will be defective)

$$
\begin{aligned}
& \begin{array}{ll}
= & \mathrm{P}(\mathrm{X}=0) \\
=4 \mathrm{C}_{0}(0.18)^{0}(0.82)^{4} & \begin{aligned}
p(x) & =n \mathrm{C}_{x} p^{x} q^{n-x} \\
n & =4, x=0
\end{aligned}
\end{array} \\
& =(0.82)^{4}\left[4 \mathrm{C}_{0}=1 \text { and }(0.18)^{0}=1\right] \\
& \mathrm{P}(\mathrm{X}=0)=0.4521 \text {. } \\
& \text { (ii) } \quad \mathrm{P} \text { (atmost } 2 \text { will be defective) } \\
& =\mathrm{P}(\mathrm{X} \leq 2)=\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2) \\
& =0.4521+0.3969+4 \mathrm{C}_{2}(0.18)^{2}(0.82)^{2} \\
& =0.849+6(0.18)^{2}(0.82)^{2} \\
& =0.849+0.1307=0.9797 \text {. }
\end{aligned}
$$

11. If the probability of success is 0.09 , how many trials are needed to have a probability of atleast one success as $1 / 3$ or more?
Sol: Given probability of success $p=0.09$

$$
\begin{aligned}
\therefore q & =1-p=1-0.09=0.91 \\
n & =1
\end{aligned}
$$

Also P (atleast one success) $=\frac{1}{3}$ or more

$$
\begin{aligned}
\therefore \mathrm{P}(\mathrm{X} \geq 1) & =\frac{1}{3} \\
\Rightarrow \quad & \\
\Rightarrow \quad 1-\mathrm{P}(\mathrm{X}<1) & =\frac{1}{3} \\
\Rightarrow \quad \mathrm{P}(\mathrm{X}<1) & =1-\frac{1}{3}=\frac{2}{3} \\
\Rightarrow \quad \mathrm{P}(\mathrm{X}=0) & =\frac{2}{3} \\
\Rightarrow \quad n \mathrm{C}_{x} p^{x} q^{n-x} & =\frac{2}{3} \\
\mathrm{Putting} x^{l} & =0, \\
n \mathrm{C}_{0}(0.09)^{0}(0.91)^{n-0} & =\frac{2}{3} \\
\Rightarrow \quad & (0.91)^{n}=\frac{2}{3}
\end{aligned}=0.6666
$$

when (0.91) is multiplied 5 times we are getting 0.6240

$$
\therefore n=5 \text { or more }
$$

Here number of trails are 5 or more.

Transportation problem

Feasible solution : A feasible solution to a transportation problem is a set of non negative values $\boldsymbol{x}_{i j}(i=1,2 \ldots . . . m, j=1,2, \ldots . . n)$ that satisfies the constraints.

Basic feasible solution
 Optimal solution : It is a feasible solution which optimizes (minimises) the total transportation cost.
 : If a solution contains not more than $m+n-1$ allocations where m is the number of rows and n is the number of columns then the solution is called basic feasible solutions.

$\begin{aligned} & \text { Non degenerate } \\ & \text { basis feasible }\end{aligned} \quad \begin{aligned} & \text { It is a basic feasible solution contains exactly } m+n-1 \text { allocations in } \\ & \text { independent positions. }\end{aligned}$ solution

Degeneracy : If a solution contains less than $m+n-1$ allocations, it is called a degenerate basic feasible solution.

Methods of finding : 1) North West Corner rule - (NWC)
basic feasible
solutions

Assignment Problem
2) Least Cost Method - (LCM)
3) Vogel's Approximation Method (VAM)
: To assign the different jobs to different machines (one job per machine) to minimize the overall cost is known as assignment problem.

MUST KNOW DEFINITIONS

: The objective of transportation problem is to determine the amount to be transported from each origin to each destinations such that the total transportation cost is minimized.
$x_{i j}=\left\{\begin{array}{l}1, \text { if } i^{\text {th }} \text { job is assigned to } j^{\text {th }} \text { machine } \\ 0 \text {, if } i^{\text {th }} \text { job is not assigned to } j^{\text {th }} \text { machine }\end{array}\right.$

Sura's

LPP form of assignment problem

Decision making : A process of best selection from a self of alternative courses of action, which is supposed to meet objectives up to satisfaction of the decision maker.

Types of decision : (i) Decision making under certainty making
(ii) Decision making under uncertainty

Maximum criteria : Maximizes the minimum possible pay off (pessimistic decision criterion)
Minimax criteria : Minimizes the maximum possible pay off

TEXTUAL QUESTIONS

ExERCSEA

1. What is transportation problem?

Ans. A transportation problem is to determine the amount to be transported from each origin to each destinations such that the total transportation cost is minimized.
2. Write mathematical form of transportation problem.
Ans. The objective function is minimize $\mathrm{Z}=\sum_{i=1}^{m} \sum_{j=1}^{n} \mathrm{C}_{i j} x_{i j}$ subject to the constraints $\sum_{j=1}^{n} x_{i j}=a_{i}, i=1,2, \ldots . . . m$ (Supply constraints) $\sum_{i=1}^{m} x_{i j}=b_{j}, j=1,2, \ldots \ldots . . n$ (demand constraints) $x_{i j} \geq, 0$ for all i, j (non-negative restrictions)
3. What is feasible solution and non degenerate solution in transportation problem?
Ans.Feasible Solution : A feasible solution to a transportation problem is a set of non-negative values $x_{i j}(i=1,2, \ldots m$ $m, j=1,2, \ldots \ldots . . n)$ n) that satisfies the constraints.

Non - degenerate solution : If a basic feasible solution to a transportation problem contains exactly $m+n-1$ allocations in independent positions, it is called a non degenerate basic feasible solution.
4. What do you mean by balanced transportation problem?
Ans. If the total supply = total demand, then the given problem is a balanced transportation problem.
5. Find an initial basic feasible solution of the following problem using north west corner rule.

	D_{1}	D_{2}	D_{3}	D_{4}	Supply
O_{1}	5	3	6	2	
O_{2}	4	7	9	1	37
O_{3}	3	4	7	5	34
Demand	16	18	31	25	

Sol :Here, total supply $=19+37+34=90$
Total demand $=16+18+31+25=90$
i.e., Total supply $=$ total demand
\therefore The given problem is balanced transportation problem.
\therefore We can find an initial basic feasible solution to the given problem.

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores www.kalviexpress.in

Sura's XII Std - Unit 10 Operations Research

From the given table, we can choose the cell in the North west Corner. Here, the cell is $\left(\mathrm{O}_{1}, \mathrm{D}_{1}\right)$ $x_{11}=\min (16,19)=16$

$$
\begin{array}{lllll}
\mathrm{D}_{1} & \mathrm{D}_{2} & \mathrm{D}_{3} & \mathrm{D}_{4} & \begin{array}{c}
\text { Supply } \\
\left(\mathrm{a}_{\mathrm{i}}\right)
\end{array}
\end{array}
$$

	O_{1}	(16) 5	3	6
O_{2}	2			
O_{3}	4	7	9	1
	3	4	7	5

Reduced transportation table is

	D_{2}	D_{3}	D_{4}	Supply
O_{1}	(3)3	6	2	3/0
O_{2}	7	9	1	37
O_{3}	4	7	5	34
	18/15	31	25	

Now the cell in the north west corner is $\left(\mathrm{O}_{1}, \mathrm{D}_{2}\right)$ i.e., $x_{12}=\min (18,3)=3$

Reduced transportation table is

	D_{2}	D_{3}	D_{4}	Supply
O_{2}	(15) 7	9	1	37/22
O_{3}	4	7	5	34
	15/0	31	25	

Now, the cell in the north west corner is $\left(\mathrm{O}_{2}, \mathrm{D}_{2}\right)$
$\therefore x_{22}=\min (15,37)=15$
The reduced transportation table is

O_{2}	$\mathrm{D}_{3} \quad \mathrm{D}$		
	(22) 9	1	22/0
	7	5	34
	31/9	25	

Now the cell in the north west corner is $\left(\mathrm{O}_{2}, \mathrm{D}_{3}\right)$
$\therefore x_{23}=\min (31,22)=22$
The reduced transportation table is

$$
\begin{array}{cc|c|}
& \mathrm{D}_{3} & \mathrm{D}_{4} \\
\mathrm{O}_{3} & (9) 7 & 5 \tag{34}\\
\hline & 9 & 25 \\
\hline
\end{array}
$$

Now the cell in the north west corner is $\left(\mathrm{O}_{3}, \mathrm{D}_{3}\right)$
$\therefore x_{33}=\min (9,34)=9$
The reduced transportation table is

$$
\begin{array}{c|}
\hline(25)_{5} \\
25
\end{array} 34
$$

Thus, we have the following allocations

	D_{1}	D_{2}	D_{3}	D_{4}	Supply (a_{i})
O_{1}	(16) 5	(3) 3	6	2	19
O_{2}	4	(15) 7	(22) 9	1	37
O_{3}	3	4	(9) 7	(25) 5	34
Demand $\left(b_{\mathrm{j}}\right)$	16	18	31	25	

\therefore Transportation schedule is $\mathrm{O}_{1} \rightarrow \mathrm{D}_{1}, \mathrm{O}_{1} \rightarrow \mathrm{D}_{2}, \mathrm{O}_{2} \rightarrow \mathrm{D}_{2}, \mathrm{O}_{2} \rightarrow \mathrm{D}_{3}, \mathrm{O}_{3} \rightarrow \mathrm{D}_{3}, \mathrm{O}_{3} \rightarrow \mathrm{D}_{4}$.
Hence, the total transportation cost
$=16 \times 5+3 \times 3+15 \times 7+22 \times 9+9 \times 7+25 \times 5=80+9+105+198+63+125=$ ₹ 580
6. Determine an initial basic feasible solution of the following transportation problem by north west corner method

Chennai
Madurai
Trichy
Demand

Bangalore	Nasik	Bhopal	Delhi	Capacity
6	8	8	5	30
5	11	9	7	40
8	9	7	13	50
35	28	32	25	

(Units / day)

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores ww w.kalviexpress.in
ig Sura's ${ }^{n}=$ XII Std
Sol :
Given transportation problem is

Chennai
Madurai
Trichy
Demand

Bangalore	Nasik	Bhopal	Delhi	Capacity
6	8	8	5	30
5	11	9	7	
8	9	7	13	
30				
35	28	32	25	

(Units / day)
I. allocation

	Bangalore	Nasik	Bhopal	Delhi	Supply
Chennai	${ }^{(30)} 6$	8	8	5	30/0
Madurai	5	11	9	7	40
Trichy	8	9	7	13	50
Demand	35/5	28	32	25	

II. allocation

	Bangalore	Nasik	Bhopal	Delhi	Supply
Madurai	(5) 5	11	9	7	40/35
Trichy	8	9	7	13	50
Demand	5/0	28	32	25	

III. allocation

Madurai Trichy	Nasik	Bhop	Delhi	$\begin{gathered} \text { Supply } \\ 35 / 7 \end{gathered}$
	(28) 11	9	7	
	9	7	13	50
Demand	28/0	32	25	

IV. allocation

	Bhopal	Delhi
Supply		
Madurai	$(7) 9$	7
Trichy	S $7 / 0$ Demand	7
	$32 / 25$	25
50		

V. allocation

	Bhopal	Delhi
Trichy	$(25)_{7}$	13
Demand	$25 / 0$	25

12th STD
 GOVT. SUPPLEMENTARY EXAMINATION
 August - 2021
 Part - III
 Business Mathematics and Statistics (with answers)

Time Allowed : 3.00 Hours]
[Maximum Marks : 90

Instructions :

1. Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.
2. Use Blue or Black ink to write and underline and pencil to draw diagrams

PART - I

Note : (i) Answer all the questions. [20 $\times 1=20]$
(ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer.

1. The rank of the unit matrix of order n is :
(a) $n+1$
(b) $n-1$
(c) n^{2}
(d) n

A B
2. If $T=\begin{gathered}\mathrm{A} \\ \mathrm{B}\end{gathered}\left(\begin{array}{cc}0.7 & 0.3 \\ 0.6 & x\end{array}\right)$ is a transition probability matrix, then the value of \boldsymbol{x} is
(a) 0.4
(b) 0.2
(c) 0.7
(d) 0.3
3. $\int \frac{1}{x^{3}} d x$ is
(a) $\frac{-1}{3 x^{2}}+c$
(b) $\frac{-3}{x^{2}}+c$
(c) $\frac{-2}{x^{2}}+c$
(d) $\frac{-1}{2 x^{2}}+c$
4. Area bounded by the curve $y=\frac{1}{x}$ between the limits 1 and 2 is
(a) $\log 3$ sq.units
(b) $\log 2$ sq.units
(c) $\log 4$ sq.units
(d) $\log 5$ sq.units
5. The demand and supply function of a commodity are $\mathrm{P}(x)=(x-5)^{2}$ and $\mathrm{S}(x)=x^{2}+x+3$ then the equilibrium quantity x_{0} is
(a) 3
(b) 5
(c) 1
(d) 2
6. If the marginal revenue of a firm is constant, then the demand function is
(a) $\mathrm{C}(x)$
(b) MR
(c) AC
(d) MC
7. If $y=c x+c-c^{3}$ then, its differential equation is
(a) $\frac{d y}{d x}+y=\left(\frac{d y}{d x}\right)^{3}-x \frac{d y}{d x}$
(b) $y=x \frac{d y}{d x}+\frac{d y}{d x}-\left(\frac{d y}{d x}\right)^{3}$
(c) $\frac{d^{3} y}{d x^{3}}=0$
(d) $y+\left(\frac{d y}{d x}\right)^{3}=x \frac{d y}{d x}-\frac{d y}{d x}$
8. A homogeneous differential equation of the form $\frac{d y}{d x}=f\left(\frac{y}{x}\right)$ can be solved by making substitution,
(a) $x=v y$
(b) $y=v x$
(c) $x=v$
(d) $v=y x$
9. Consumer Price Index are obtained by:
(a) Marshall Edgeworth formula
(b) Paasche's formula
(c) Family budget method formula
(d) Fisher's Ideal formula
10. For the given data, find the value of $\Delta^{3} y_{0}$ is

x	5	6	9	11
y	12	13	15	18

(a) 2
(b) 1
(c) -1
(d) 0
11. Probability which explains x is equal to or less than particular value is classified as
(a) marginal probability
(b) discrete probability
(c) continuous probability
(d) cumulative probability
12. $E[X-E(X)]^{2}$ is
(a) $\mathrm{V}(\mathrm{X})$
(b) $\mathrm{E}(\mathrm{X})$
(c) $\mathrm{S} . \mathrm{D}(\mathrm{X})$
(d) $\mathrm{E}\left(\mathrm{X}^{2}\right)$
13. If for a binomial distribution $\mathrm{B}(n, p)$ mean $=4$ and variance $=\frac{4}{3}$, the probability, $\mathrm{P}(\mathrm{X} \geq 5)$ is equal to :
(a) $\left(\frac{1}{3}\right)^{6}$
(b) $\left(\frac{2}{3}\right)^{6}$
(c) $4\left(\frac{2}{3}\right)^{6}$
(d) $\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)$
14. Forty percent of the passengers who fly on a certain route do not check in any luggage. The planes on this route seat 15 passengers. For a full flight, what is the mean of the number of passengers who do not check in any luggage?
(a) 7.20
(b) 6.00
(c) 7.50
(d) 6.45
15. A . may be finite or infinite according as the number of observation or items in it is finite or infinite.
(a) census
(b) parameter
(c) Population
(d) none of these
16. "A random sample is a sample selected in such a way that every item in the population has an equal chance of being included" is said by :
(a) Karl Pearson
(b) Harper
(c) Dr. Yates
(d) Fisher
17. In the heterogeneous groups are divided into homogeneous groups.
(a) a stratified random sample
(b) systematic random sample
(c) non-probability sample
(d) a simple random sample
18. The seasonal variation means the variations occurring with in
(a) a month
(b) a number of years
(c) a week
(d) a year
19. $\mathrm{E} \equiv$
(a) $1+\nabla$
(b) $1+\Delta$
(c) $1-\nabla$
(d) $1-\Delta$
20. North-West corner refers to \qquad .
(a) bottom right corner
(b) top left corner
(c) bottom left corner
(d) top right corner

PART - II

Note : Answer any 7 questions. Question number 30 is compulsory. $\quad \mathbf{7 \times 2 = 1 4}$
21. Find the rank of the matrix $\left(\begin{array}{ccc}2 & -1 & 1 \\ 3 & 1 & -5 \\ 1 & 1 & 1\end{array}\right)$.
22. The following information is the probability distribution of successes.

No. of Successes $\mathrm{X}=x$	0	1	2
Probability P (x)	$\frac{6}{11}$	$\frac{9}{22}$	$\frac{1}{22}$

Determine the expected number of success.
23. Solve : $\frac{d y}{d x}=a e^{y}$
24. Find the value of $\Delta \log x$
25. If $\mathrm{P}(x)=\left\{\begin{array}{cc}\frac{x}{20}, & x=0,1,2,3,4,5 \\ 0, & \text { otherwise }\end{array}\right.$,
(i) $\mathrm{P}(\mathrm{X}<3)$
(ii) $\mathrm{P}(2<\mathrm{X} \leq 4)$.
26. Integrate $(3+x)(2-5 x)$ with respect to x.
27. The mean of a binomial distribution is 5 and standard deviation is 2. Determine the distribution.
28. A sample of 100 students is chosen from a large group of students. The average height of these students is 162 cm and standard deviation (S.D) is 8 cm . Obtain the standard error for the average height of large group of students of 160 cm .
29. State the different methods of measuring trend.
30. Given $U_{0}=5 ; U_{1}=25, U_{2}=20, U_{3}=15$ and $U_{4}=35$ Find $\Delta^{4} U_{0}$.

PART - III

Note : Answer any seven questions. Question number 40 is compulsory.
$7 \times 3=21$
31. Show that the equations $2 x+y=5,4 x+2 y=10$ are consistent and solve them.
32. Integrate $\frac{e^{3 x}-e^{-3 x}}{e^{x}}$ with respect to x.
33. When the Elasticity function $\frac{\mathrm{E}_{y}}{\mathrm{E}_{x}}$ is $\frac{x}{x-2}$. Find the function when $x=6$ and $y=16$.
34. Solve : $y d x-x d y-3 x^{2} y^{2} e^{x^{3}} d x=0$.
35. Evaluate $\Delta\left[\frac{1}{(x+1)(x+2)}\right]$ by taking ' 1 ' as the interval of differencing.

Sura's

w ww.kalviexpress.in SCHOOL GUIDES

Call@ 9600175757 $812430100^{\prime} \mathbf{U}^{\prime \prime}$.kalviexpress,in orders@surabooks.com

