SOLUTIONS TO CONCEPTS
 CHAPTER - 16

1. $\quad V_{\text {air }}=230 \mathrm{~m} / \mathrm{s} . V_{\mathrm{s}}=5200 \mathrm{~m} / \mathrm{s}$. Here $S=7 \mathrm{~m}$

So, $\mathrm{t}=\mathrm{t}_{1}-\mathrm{t}_{2}=1 \quad-\quad \neq 2.75 \times 10^{-3} \mathrm{sec}=2.75 \mathrm{~ms}$.
$\left(\begin{array}{ll}\overline{330} & \overline{5200}\end{array}\right)$
2. Here given $S=80 \mathrm{~m} \times 2=160 \mathrm{~m}$.

$$
\mathrm{v}=320 \mathrm{~m} / \mathrm{s}
$$

So the maximum time interval will be

$$
t=5 / v=160 / 320=0.5 \text { seconds. }
$$

3. He has to clap 10 times in 3 seconds.

So time interval between two clap $=(3 / 10$ second $)$.
So the time taken go the wall $=(3 / 2 \times 10)=3 / 20$ seconds.

$$
=333 \mathrm{~m} / \mathrm{s} .
$$

4. a) for maxim μm wavelength $\mathrm{n}=20 \mathrm{~Hz}$.
as $\left(\begin{array}{lll}\eta & \propto & \\ & & \lambda\end{array}\right)$
b) for minimum wavelength, $\mathrm{n}=20 \mathrm{kHz}$

$$
\begin{aligned}
& \therefore \lambda=360 /\left(20 \times 10^{3}\right)=18 \times 10^{-3} \mathrm{~m}=18 \mathrm{~mm} \\
& \Rightarrow \mathrm{x}=(\mathrm{v} / \mathrm{n})=360 / 20=18 \mathrm{~m} .
\end{aligned}
$$

5. a) for minimum wavelength $n=20 \mathrm{KHz}$
$\left.\Rightarrow v=n \lambda \Rightarrow \lambda=\left\lvert\, \begin{array}{c}1450 \\ 20 \times 10^{3}\end{array}\right.\right)=7.25 \mathrm{~cm}$.
b) for maximum wavelength n should be minium

$$
\Rightarrow v=\mathrm{n} \lambda \Rightarrow \lambda=\mathrm{v} / \mathrm{n} \Rightarrow 1450 / 20=72.5 \mathrm{~m} .
$$

6. According to the question,
a) $\lambda=20 \mathrm{~cm} \times 10=200 \mathrm{~cm}=2 \mathrm{~m}$
$\mathrm{v}=340 \mathrm{~m} / \mathrm{s}$
so, $n=v / \lambda=340 / 2=170 \mathrm{~Hz}$.
$\mathrm{N}=\mathrm{v} / \lambda \Rightarrow \begin{gathered}340 \\ 2 \times 10^{-2}\end{gathered}=17.000 \mathrm{~Hz}=17 \mathrm{KH}_{2}$ (because $\lambda=2 \mathrm{~cm}=2 \times 10^{-2} \mathrm{~m}$)
7. a) Given $\mathrm{V}_{\text {air }}=340 \mathrm{~m} / \mathrm{s}, \mathrm{n}=4.5 \times 10^{6} \mathrm{~Hz}$
$\Rightarrow \lambda_{\text {air }}=(340 / 4.5) \times 10^{-6}=7.36 \times 10^{-5} \mathrm{~m}$.
b) $\mathrm{V}_{\text {tissue }}=1500 \mathrm{~m} / \mathrm{s} \Rightarrow \lambda_{\mathrm{t}}=(1500 / 4.5) \times 10^{-6}=3.3 \times 10^{-4} \mathrm{~m}$.
8. Here given $r_{y}=6.0 \times 10^{-5} \mathrm{~m}$
a) Given $2 \pi / \lambda=1.8 \Rightarrow \lambda=(2 \pi / 1.8)$

So, $\frac{r_{y}}{\lambda}=\frac{6.0 \times(1.8) \times 10^{-5} \mathrm{~m} / \mathrm{s}}{2 \pi}=1.7 \times 10^{-5} \mathrm{~m}$
b) Let, velocity amplitude $=\mathrm{V}_{\mathrm{y}}$
$\mathrm{V}=\mathrm{dy} / \mathrm{dt}=3600 \cos (600 \mathrm{t}-1.8) \times 10^{-5} \mathrm{~m} / \mathrm{s}$
Here $V_{y}=3600 \times 10^{-5} \mathrm{~m} / \mathrm{s}$
Again, $\lambda=2 \pi / 1.8$ and $T=2 \pi / 600 \Rightarrow$ wave speed $=v=\lambda / T=600 / 1.8=1000 / 3 \mathrm{~m} / \mathrm{s}$.
So the ratio of $\left(\mathrm{V}_{\mathrm{y}} / \mathrm{v}\right)=\frac{3600 \times 3 \times 10^{-5}}{1000}$.
9. a) Here given $n=100, v=350 \mathrm{~m} / \mathrm{s}$
$\Rightarrow \lambda=\frac{\mathrm{v}}{\mathrm{n}}=\frac{350}{100}=3.5 \mathrm{~m}$.
In 2.5 ms , the distance travelled by the particle is given by
$\Delta \mathrm{x}=350 \times 2.5 \times 10^{-3}$

So, phase difference $\phi=\frac{\frac{2 \pi}{\lambda}}{\lambda} \times \Delta x \Rightarrow \frac{2 \pi}{(350 / 100)} \times 350 \times 2.5 \times 10^{-3}=(\pi / 2)$.
b) In the second case, Given $\Delta \eta=10 \mathrm{~cm}=10^{-1} \mathrm{~m}$

So, $\phi=\frac{2 \pi}{x} \Delta x=\frac{2 \pi \times 10^{-1}}{(350 / 100)}=2 \pi / 35$.
10. a) Given $\Delta x=10 \mathrm{~cm}, \lambda=5.0 \mathrm{~cm}$

$$
\Rightarrow \phi=\frac{2 \pi}{\lambda} \times \Delta \eta=\frac{2 \pi}{5} \times 10=4 \pi
$$

So phase difference is zero.
b) Zero, as the particle is in same phase because of having same path.
11. Given that $p=1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~T}=273 \mathrm{~K}, \mathrm{M}=32 \mathrm{~g}=32 \times 10^{-3} \mathrm{~kg}$
$\mathrm{V}=22.4$ litre $=22.4 \times 10^{-3} \mathrm{~m}^{3}$
$C / C_{v}=r=3.5 R / 2.5 R=1.4$
$\Rightarrow \mathrm{V}=\underset{\mathrm{f}}{\mathrm{rp}}=\begin{gathered}1.4 \times 1.0 \times 10^{-5} \\ 32 / 22.4\end{gathered}=310 \mathrm{~m} / \mathrm{s}$ (because $\rho=\mathrm{m} / \mathrm{v}$)
12. $\mathrm{V}_{1}=330 \mathrm{~m} / \mathrm{s}, \mathrm{V}_{2}=$?
$\mathrm{T}_{1}=273+17=290 \mathrm{~K}, \mathrm{~T}_{2}=272+32=305 \mathrm{~K}$
We know $v \propto T$

$=340 \times \begin{aligned} & 305 \\ & 290\end{aligned}=349 \mathrm{~m} / \mathrm{s}$.
13. $\mathrm{T}_{1}=273 \quad \mathrm{~V}_{2}=2 \mathrm{~V}_{1}$
$\mathrm{V}_{1}=\mathrm{v} \quad \mathrm{T}_{2}=$?
We know that $\mathrm{V} \propto \mathrm{T} \Rightarrow \begin{aligned} & \mathrm{T}_{2} \\ & \mathrm{~T}_{1}==\frac{V_{2}^{2}}{V_{1}^{2}}\end{aligned} \Rightarrow T_{2}=273 \times 2^{2}=4 \times 273 \mathrm{~K}$
So temperature will be $(4 \times 273)-273=819^{\circ} \mathrm{C}$.
14. The variation of temperature is given by

$$
\begin{equation*}
\mathrm{T}=\mathrm{T}_{1}+\stackrel{\left(\mathrm{T}_{2}-\mathrm{T}_{2}\right)}{\mathrm{d}} \mathrm{x} \tag{1}
\end{equation*}
$$

We know that $\mathrm{V} \propto \sqrt{\mathrm{T}} \Rightarrow \frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{V}}=\sqrt{\frac{\mathrm{T}}{273}} \Rightarrow \mathrm{VT}=\mathrm{V} \sqrt{\frac{\mathrm{T}}{273}}$
$\Rightarrow \mathrm{dt}=\frac{\mathrm{dx}}{\mathrm{V}_{\mathrm{T}}}=\frac{\mathrm{du}}{\mathrm{V}} \times \sqrt{\frac{273}{\mathrm{~T}}}$
$\Rightarrow t=\overbrace{V}^{273} \int_{0}^{d} \frac{d x}{\left.\left[T+(T-T)_{1} / d\right) x\right]^{1 / 2}}$
$=\frac{\sqrt{273}}{V} \times T_{2}^{2 d} T_{1}\left[T_{1}+\frac{T_{2}-T_{1} d}{d} x\right]_{0}=\|(2 d)\binom{273)}{T_{2}+x T_{1}} \sqrt{T_{2}} \sqrt{T_{1}}$
$=T=\frac{2 d}{V} \frac{\sqrt{273}}{\sqrt{T_{2}}+\sqrt{1}}$
Putting the given value we get
$=\frac{2 \times 33}{330}=\frac{\sqrt{273}}{\sqrt{280}+\sqrt{310}}=96 \mathrm{~ms}$.
15. We know that $v=\sqrt{K / \rho}$

Where $\mathrm{K}=$ bulk modulus of elasticity
$\Rightarrow K=v^{2} \rho=(\nmid 330)^{2} \times 800 \mathrm{~N} / \mathrm{m}^{2}$
We know $K=\binom{F / A}{\Delta V / V}$
$\Rightarrow \Delta V=\frac{\text { Pr essures }}{K}=\frac{2 \times 10^{5}}{1330 \times 1330 \times 800}$
So, $\Delta V=0.15 \mathrm{~cm}^{3}$
16. We know that,

Bulk modulus $\mathrm{B}=\frac{\Delta \mathrm{p}}{(\Delta \mathrm{V} / \mathrm{V})}=\frac{\mathrm{P}_{0} \lambda}{2 \pi \mathrm{~S}_{0}}$
Where $P_{0}=$ pressure amplitude $\Rightarrow P_{0}=1.0 \times 10^{5}$
$\mathrm{S}_{0}=$ displacement amplitude $\Rightarrow \mathrm{S}_{0}=5.5 \times 10^{-6} \mathrm{~m}$
$\Rightarrow B=\frac{14 \times 35 \times 10^{-2} \mathrm{~m}}{2 \pi(5.5) \times 10^{-6} \mathrm{~m}}=1.4 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$.
17. a) Here given $\mathrm{V}_{\text {air }}=340 \mathrm{~m} / \mathrm{s}$., Power $=\mathrm{E} / \mathrm{t}=20 \mathrm{~W}$

$$
\mathrm{f}=2,000 \mathrm{~Hz}, \rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}
$$

So, intensity I = E/t.A

$$
={ }_{4 \pi r^{2}}^{20}=\frac{20}{4 \times \pi \times 6^{2}}=44 \mathrm{mw} / \mathrm{m}^{2}(\text { because } \mathrm{r}=6 \mathrm{~m})
$$

b) We know that $I=\frac{P_{0}^{2}}{2 \rho V_{\text {air }}} \Rightarrow P_{0}=\overline{\overline{1 \times 2 \rho V_{\text {air }}}}$

$$
=\quad 2 \times 1.2 \times 340 \times 44 \times 10^{-3}=6.0 \mathrm{~N} / \mathrm{m}^{2}
$$

c) We know that $\mathrm{I}=2 \pi^{2} \mathrm{~S}^{2} \mathrm{y}^{2} \rho \mathrm{~V} \quad$ where $\mathrm{S}_{0}=$ displacement amplitude

$$
\Rightarrow \mathrm{S}_{0}=\begin{gathered}
\mathrm{I} \\
\pi^{2} \rho^{2} \rho \mathrm{~V}_{\mathrm{air}}
\end{gathered}
$$

Putting the value we get $\mathrm{S}_{\mathrm{g}}=1.2 \times 10^{-6} \mathrm{~m}$.
18. Here $\mathrm{I}_{1}=1.0 \times 10^{-8} \mathrm{~W}_{1} / \mathrm{m}^{2} ; \mathrm{I}_{2}=$?
$r_{1}=5.0 \mathrm{~m}, r_{2}=25 \mathrm{~m}$.
We know that $I \propto \frac{1}{\mathrm{r}^{2}}$
$\Rightarrow I_{1} r_{1}{ }^{2}=I_{2} r_{2}^{2} \Rightarrow I_{2}=\frac{I_{1}^{2}}{r_{2}^{2}}$
$=\frac{1.0 \times 10^{-8} \times 25}{625}=4.0 \times 10^{-10} \mathrm{~W} / \mathrm{m}^{2}$.
19. We know that $\beta=10 \log _{10}\left(\begin{array}{l}1 \\ \binom{\text { I }}{0}\end{array}\right.$
$\beta_{A}=10 \log _{\frac{I_{A}}{}}^{I_{0}}, \beta_{B}=10 \log \frac{I_{B}}{I_{0}}$
$\Rightarrow I_{A} / I_{0}=10^{(\beta \mathrm{BA} / 10)} \Rightarrow \mathrm{I}_{\mathrm{B}} / \mathrm{I}_{0}=10^{(\beta \mathrm{BB} / 10)}$

$\Rightarrow \frac{\beta_{\mathrm{A}}-\beta_{\mathrm{B}}}{10}=2 \Rightarrow \beta_{\mathrm{A}}-\beta_{\mathrm{B}}=20$
$\Rightarrow \beta_{B}=40-20=20 \mathrm{~d} \beta$.
20. We know that, $\beta=10 \log _{10} \mathrm{~J} / \mathrm{l}_{0}$

According to the questions
$\beta_{A}=10 \log _{10}\left(21 / I_{0}\right)$
$\Rightarrow \beta_{B}-\beta_{A}=10 \log (2 \mathrm{I} / \mathrm{I})=10 \times 0.3010=3 \mathrm{~dB}$.
21. If sound level $=120 \mathrm{~dB}$, then $\mathrm{I}=$ intensity $=1 \mathrm{~W} / \mathrm{m}^{2}$

Given that, audio output $=2 \mathrm{~W}$
Let the closest distance be x.
So, intensity $=\left(2 / 4 \pi x^{2}\right)=1 \Rightarrow x^{2}=(2 / 2 \pi) \Rightarrow x=0.4 \mathrm{~m}=40 \mathrm{~cm}$.
22. $\beta_{1}=50 \mathrm{~dB}, \beta_{2}=60 \mathrm{~dB}$
$\therefore I_{1}=10^{-7} \mathrm{~W} / \mathrm{m}^{2}, I_{2}=10^{-6} \mathrm{~W} / \mathrm{m}^{2}$
(because $\beta=10 \log _{10}\left(1 / I_{0}\right)$, where $\mathrm{I}_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$)
Again, $I_{2} / l_{1}=\left(p_{2} / p_{1}\right)^{2}=\left(10^{-6} / 10^{-7}\right)=10$ (where $p=$ pressure amplitude).
$\therefore\left(p_{2} / p_{1}\right)=\sqrt{10}$.
23. Let the intensity of each student bel.

According to the question
$\beta_{A}=10 \log _{10} \frac{50 I}{I_{0}} ; \beta_{B}=10 \log _{10}\left(\frac{100 I}{I_{0}}\right)$
$\Rightarrow \beta_{B}-\beta_{A}=10 \log _{10}{ }_{I_{0}}-10 \log _{10}\binom{100 I}{I_{0}}$
$=10 \log \left(\begin{array}{ll}100 & I \\ 50 & I\end{array}\right)=10 \log _{10} 2=3$
So, $\beta_{\mathrm{A}}=50+3=53 \mathrm{~dB}$.
24. Distance between tow maximum to a minimum is given by, $\lambda / 4=2.50 \mathrm{~cm}$
$\Rightarrow \lambda=10 \mathrm{~cm}=10^{-1} \mathrm{~m}$
We know, $V=n x$
$\Rightarrow \mathrm{n}=\begin{aligned} & \mathrm{V} \\ & \lambda\end{aligned}=\begin{aligned} & 340 \\ & 10^{-1}\end{aligned}=3400 \mathrm{~Hz}=3.4 \mathrm{kHz}$.
25. a) According to the data

$$
\begin{aligned}
& \lambda / 4=16.5 \mathrm{~mm} \Rightarrow \lambda=66 \mathrm{~mm}=66 \times 10^{-6=3} \mathrm{~m} \\
& \Rightarrow \mathrm{n}=\begin{array}{c}
\mathrm{V} \\
\lambda
\end{array}=\begin{array}{c}
330 \\
66 \times 10^{-3}
\end{array}=5 \mathrm{kHz} .
\end{aligned}
$$

b) $I_{\text {minimum }}=K\left(A_{1}-A_{2}\right)^{2}=I \Rightarrow A_{1}-A_{2}=11$
$I_{\text {maximum }}=K\left(A_{1}+A_{2}\right)^{2}=9 \Rightarrow A_{1}+A_{2}=31$
So, $\frac{A_{1}+A_{2}}{A_{1}+A_{2}}=\frac{3}{4} \Rightarrow A_{1} / A_{2}=2 / 1$
So, the ratio amplitudes is 2 .
26. The path difference of the two sound waves is given by
$\Delta \mathrm{L}=6.4-6.0=0.4 \mathrm{~m}$
The wavelength of either wave $=\lambda=\frac{V}{\rho}=\frac{320}{\rho}(\mathrm{~m} / \mathrm{s})$
For destructive interferen
or $0.4 \mathrm{~m}=\frac{2 \mathrm{n}+1}{2} \times \frac{320}{\rho}$
$\Rightarrow \rho=\mathrm{n}=\frac{320}{0.4}=800 \frac{2 \mathrm{n}+1}{2} \mathrm{~Hz}=(2 \mathrm{n}+1) 400 \mathrm{~Hz}$
Thus the frequency within the specified range which cause destructive interference are 1200 Hz , $2000 \mathrm{~Hz}, 2800 \mathrm{~Hz}, 3600 \mathrm{~Hz}$ and 4400 Hz .
27. According to the given data
$\mathrm{V}=336 \mathrm{~m} / \mathrm{s}$,
$\lambda / 4=$ distance between maximum and minimum intensity
$=(20 \mathrm{~cm}) \Rightarrow \lambda=80 \mathrm{~cm}$
$\Rightarrow \mathrm{n}=$ frequency $=\frac{\mathrm{V}}{\lambda}=\frac{336}{80 \times 10^{-2}}=420 \mathrm{~Hz}$.

28. Here given $\lambda=\mathrm{d} / 2$

Initial path difference is given by $=2 \sqrt{\left(\frac{d}{2}\right)^{2} 2 d^{2}}-d$
If it is now shifted a distance x then path difference will be
$=2 \sqrt{\left(\frac{d}{2}\right)^{2}}+\left(\sqrt{2 d+x)^{2}-d=4}(2 d+4) \square_{x}^{d}\right.$
$\Rightarrow\left(\begin{array}{c}(d)^{2} \\ ++(2)\end{array} \quad \sqrt{2} d+x\right)^{2}=\frac{169 d^{2}}{64} \Rightarrow \frac{153}{64} d^{2}$
$\Rightarrow 2 d+x=1.54 d \Rightarrow x=1.54 d-1.414 d=0.13 d$.

29. As shown in the figure the path differences $2.4=\Delta x=(3.2)^{2}+(2.4)^{2}-3.2$

Again, the wavelength of the either sound waves $=320$
A
A

We know, destructive interference will be occur $(2 n+1) \lambda$
If $\Delta x=$ 2
$\Rightarrow(3.2)^{2}+(2.4)^{2}-(3.2)=(2 n+1) 320$
2ρ
Solving we get
$\Rightarrow V=\begin{gathered}(2 n+1) 400 \\ 2\end{gathered}=200(2 n+1)$
where $\mathrm{n}=1,2,3, \ldots \ldots 4$ 49. (audible region)
30. According to the data A
$\lambda=20 \mathrm{~cm}, \mathrm{~S}_{1} \mathrm{~S}_{2}=20 \mathrm{~cm}, \mathrm{BD}=20 \mathrm{~cm}$
A

Let the detector is shifted to left for a distance x for hearing the minimum sound.
So path difference $\mathrm{AI}=\mathrm{BC}-\mathrm{AB}$
$=\sqrt{(20)^{2}+(10+x)^{2}}-\sqrt{(20)^{2}+(10-x)^{2}}$

20 cm
x 20 cm

So the minimum distances hearing for minimum
$=\frac{(2 n+1) \lambda}{2}=\frac{\lambda}{2}=\frac{20}{2}=10 \mathrm{~cm}$
$\Rightarrow \sqrt{(20)^{2}+(10+x)^{2}}-\sqrt{(20)^{2}+(10-x)^{2}}=10$ solving we get $x=12.0 \mathrm{~cm}$.
31.

Given, $F=600 \mathrm{~Hz}$, and $v=330 \mathrm{~m} / \mathrm{s} \Rightarrow \lambda=\mathrm{v} / \mathrm{f}=330 / 600=0.55 \mathrm{~mm}$

Let $O P=D, P Q=y \Rightarrow \theta=y / R$
Now path difference is given by, $x=S_{2} Q-S_{1} Q=y d / D$
Where $\mathrm{d}=2 \mathrm{~m}$
[The proof of $x=y d / D$ is discussed in interference of light waves]
a) For minimum intensity, $x=(2 n+1)(\lambda / 2)$
$\therefore \mathrm{yd} / \mathrm{D}=\lambda / 2$ [for minimum $\mathrm{y}, \mathrm{x}=\lambda / 2$]
$\therefore y / D=\theta=\lambda / 2=0.55 / 4=0.1375 \mathrm{rad}=0.1375 \times(57.1)^{\circ}=7.9^{\circ}$
b) For minimum intensity, $x=2 n(\lambda / 2)$
$\mathrm{yd} / \mathrm{D}=\lambda \Rightarrow \mathrm{y} / \mathrm{D}=\theta=\lambda / \mathrm{D}=0.55 / 2=0.275 \mathrm{rad}$
$\therefore \theta=16^{\circ}$
c) For more maxima,
$y d / D=2 \lambda, 3 \lambda, 4 \lambda, \ldots$
$\Rightarrow y / D=\theta=32^{\circ}, 64^{\circ}, 128^{\circ}$
But since, the maximum value of θ can be 90°, he will hear two more maximum i.e. at 32° and 64°.
32.

A_{2}
120°
$120^{\circ} \mathrm{P}$
A_{3}
So, the resultant, intensity at B is zero.
33. The two sources of sound S_{1} and S_{2} vibrate at same phase and frequency.

Resultant intensity at $P=I_{0}$
a) Let the amplitude of the waves at S_{1} and S_{2} be 'r'.

When $\theta=45^{\circ}$, path difference $=S_{1} P-S_{2} P=0$ (because $S_{1} P=S_{2} P$)
So, when source is switched off, intensity of sound at P is $I_{0} / 4$. $\quad \theta$
b) When $\theta=60^{\circ}$, path difference is also 0 . S_{1}

Similarly it can be proved that, the intensity at P is $I_{0} / 4$ when one is switched off.
34. If $\mathrm{V}=340 \mathrm{~m} / \mathrm{s}, \mathrm{I}=20 \mathrm{~cm}=20 \times 10^{-2} \mathrm{~m}$
$\begin{aligned} & \text { Fundamental frequency }=\begin{array}{c}V \\ 21\end{array}=\begin{array}{c}340 \\ 2 \times 20 \times 10^{-2}\end{array}=850 \mathrm{~Hz} \\ & 2 \times 340 \\ & 21\end{aligned}=\begin{gathered}2 \times 20 \times 10^{-2}\end{gathered}$ (for open pipe) $=1750 \mathrm{~Hz}$
Second over tone $=3(\mathrm{~V} / 21)=3 \times 850=2500 \mathrm{~Hz}$.
35. According to the questions $\mathrm{V}=340 \mathrm{~m} / \mathrm{s}, \mathrm{n}=500 \mathrm{~Hz}$

We know that $\mathrm{V} / 4 \mathrm{I}$ (for closed pipe)
$\Rightarrow I=\frac{340}{4 \times 500} \mathrm{~m}=17 \mathrm{~cm}$.
36. Here given distance between two nodes is $=4.0 \mathrm{~cm}$,
$\Rightarrow \lambda=2 \times 4.0=8 \mathrm{~cm}$
We know that $v=n \lambda$
$\Rightarrow \eta=\frac{328}{8 \times 10^{-2}}=4.1 \mathrm{~Hz}$.
37. $V=340 \mathrm{~m} / \mathrm{s}$

Distances between two nodes or antinodes
$\Rightarrow \lambda / 4=25 \mathrm{~cm}$
$\Rightarrow \lambda=100 \mathrm{~cm}=1 \mathrm{~m}$
$\Rightarrow \mathrm{n}=\mathrm{v} / \lambda=340 \mathrm{~Hz}$.
38. Here given that $1=50 \mathrm{~cm}, v=340 \mathrm{~m} / \mathrm{s}$

As it is an open organ pipe, the fundamental frequency $f_{1}=(v / 21)$
$=\frac{340}{2 \times 50 \times 10^{-2}}=340 \mathrm{~Hz}$.

So, the harmonies are
$\mathrm{f}_{3}=3 \times 340=1020 \mathrm{~Hz}$
$f_{5}=5 \times 340=1700, f_{6}=6 \times 340=2040 \mathrm{~Hz}$
so, the possible frequencies are between 1000 Hz and 2000 Hz are 1020, 1360, 1700.
39. Here given $I_{2}=0.67 \mathrm{~m}, \mathrm{I}_{1}=0.2 \mathrm{~m}, \mathrm{f}=400 \mathrm{~Hz}$

We know that
$\lambda=2\left(\mathrm{l}_{2}-\mathrm{I}_{1}\right) \Rightarrow \lambda=2(62-20)=84 \mathrm{~cm}=0.84 \mathrm{~m}$.
So, $v=n \lambda=0.84 \times 400=336 \mathrm{~m} / \mathrm{s}$
We know from above that,
$l_{1}+d=\lambda / 4 \Rightarrow d=\lambda / 4-l_{1}=21-20=1 \mathrm{~cm}$.
40. According to the questions
f_{1} first overtone of a closed organ pipe $P_{1}=3 v / 4 I=\frac{3 \times V}{4 \times 30}$
f_{2} fundamental frequency of a open organ pipe $P_{2}=\frac{V}{21_{2}}$
Here given $\frac{3 V}{4 \times 30}=\frac{V}{2 I_{2}} \Rightarrow I_{2}=20 \mathrm{~cm}$
\therefore length of the pipe P_{2} will be 20 cm .
41. Length of the wire $=1.0 \mathrm{~m}$

For fundamental frequency $\lambda / 2=1$
$\Rightarrow \lambda=2 \mathrm{l}=2 \times 1=2 \mathrm{~m}$
Here given $\mathrm{n}=3.8 \mathrm{~km} / \mathrm{s}=3800 \mathrm{~m} / \mathrm{s}$
We know $\Rightarrow v=n \lambda \Rightarrow n=3800 / 2=1.9 \mathrm{kH}$.
So standing frequency between 20 Hz and 20 kHz which will be heard are
$=\mathrm{n} \times 1.9 \mathrm{kHz} \quad$ where $\mathrm{n}=0,1,2,3, \ldots 10$.
42. Let the length will be I .

Here given that $\mathrm{V}=340 \mathrm{~m} / \mathrm{s}$ and $\mathrm{n}=20 \mathrm{~Hz}$
Here $\lambda / 2=1 \Rightarrow \lambda=2 \mid$
We know $V=n \lambda \Rightarrow I=\begin{aligned} & V \\ & n\end{aligned}=\frac{340}{2 \times 20}=\frac{34}{4}=8.5 \mathrm{~cm}$ (for maximum wavelength, the frequency is minimum).
43. a) Here given $\mathrm{I}=5 \mathrm{~cm}=5 \times 10^{-2} \mathrm{~m}, \mathrm{v}=340 \mathrm{~m} / \mathrm{s}$
$\Rightarrow \mathrm{n}=\stackrel{\mathrm{V}}{2 \mathrm{l}}=\begin{gathered}340 \\ 2 \times 5 \times 10^{-2}\end{gathered}=3.4 \mathrm{KHz}$
b) If the fundamental frequency $=3.4 \mathrm{KHz}$
\Rightarrow then the highest harmonic in the audible range ($20 \mathrm{~Hz}-20 \mathrm{KHz}$)
$=\frac{20000}{3400}=5.8=5$ (integral multiple of 3.4 KHz).
44. The resonance column apparatus is equivalent to a closed organ pipe.

Here $\mathrm{I}=80 \mathrm{~cm}=10 \times 10^{-2} \mathrm{~m} ; \mathrm{v}=320 \mathrm{~m} / \mathrm{s}$
$\Rightarrow \mathrm{n}_{0}=\mathrm{v} / 4 \mathrm{I}=\frac{320}{4 \times 50 \times 10^{-2}}=100 \mathrm{~Hz}$
So the frequency of the other harmonics are odd multiple of $n_{0}=(2 n+1) 100 \mathrm{~Hz}$
According to the question, the harmonic should be between 20 Hz and 2 KHz .
45. Let the length of the resonating column will be $=1$

Here V = $320 \mathrm{~m} / \mathrm{s}$
Then the two successive resonance frequencies are $\frac{(n+1) v}{4 I}$ and $\frac{n v}{4 I}$
Here given $\frac{(n+1) v}{4 I}=2592 ; \lambda=\frac{n v}{4 \mathrm{l}}=1944$
$\Rightarrow \frac{(\mathrm{n}+1) v}{4 \mathrm{l}}-\frac{\mathrm{nv}}{4 \mathrm{l}}=2592-1944=548 \mathrm{~cm}=25 \mathrm{~cm}$.
46. Let, the piston resonates at length I_{1} andl ${ }_{2}$

Here, $\mathrm{I}=32 \mathrm{~cm} ; \mathrm{v}=$?, $\mathrm{n}=512 \mathrm{~Hz}$
Now $\Rightarrow 512=\mathrm{v} / \lambda$
$\Rightarrow v=512 \times 0.64=328 \mathrm{~m} / \mathrm{s}$.
47. Let the length of the longer tube be L_{2} and smaller will be L_{1}.

According to the data $440=\frac{3 \times 330}{4 \times \mathrm{L}_{2}}$
...(1) (first over tone)

$$
\text { and } 440=\frac{330}{4 \times L_{1}} \quad \ldots \text { (2) (fundamental) }
$$

solving equation we get $L_{2}=56.3 \mathrm{~cm}$ and $L_{1}=18.8 \mathrm{~cm}$.
48. Let $\mathrm{n}_{0}=$ frequency of the turning fork, $\mathrm{T}=$ tension of the string
$\mathrm{L}=40 \mathrm{~cm}=0.4 \mathrm{~m}, \mathrm{~m}=4 \mathrm{~g}=4 \times 10^{-3} \mathrm{~kg}$
So, $m=$ Mass/Unit length $=10^{-2} \mathrm{~kg} / \mathrm{m}$
$n_{0}=\frac{1}{21} \sqrt{\frac{T}{n}}$.
So, $2^{\text {nd }}$ harmonic $2 \mathrm{n}_{0}=(2 / 2 \mathrm{I}) \mathrm{T} / \mathrm{m}$
As it is unison with fundamental frequency of vibration in the air column
$\Rightarrow 2 \mathrm{n}_{0}=\begin{aligned} & 340 \\ & 4 \times 1\end{aligned}=85 \mathrm{~Hz}$
$\Rightarrow 85=\begin{array}{cc}2 & \mathrm{~T} \\ 2 \times 0.4 & 14\end{array} \Rightarrow \mathrm{~T}=85^{2} \times(0.4)^{2} \times 10^{-2}=11.6$ Newton.
49. Given, $\mathrm{m}=10 \mathrm{~g}=10 \times 10^{-3} \mathrm{~kg}, \mathrm{l}=30 \mathrm{~cm}=0.3 \mathrm{~m}$

Let the tension in the string will be $=\mathrm{T}$
$\mu=$ mass $/$ unit length $=33 \times 10^{-3} \mathrm{~kg}$
The fundamental frequency $\Rightarrow n_{0}=\begin{array}{r}1 \\ 2 l\end{array}$
The fundamental frequency of closed pipe
$\Rightarrow \mathrm{n}_{0}=(\mathrm{v} / 4 \mathrm{I}) \begin{gathered}340 \\ 4 \times 50 \times 10^{2}\end{gathered}=170 \mathrm{~Hz}$
According equations (1) $\times(2)$ we get
$170=\frac{1}{2 \times 30 \times 10^{-2}} \times \frac{\mathrm{T}}{33 \times 10^{-3}}$
$\Rightarrow \mathrm{T}=347$ Newton.
50. We know that $f \propto \sqrt{T}$

According to the question $f+\Delta f \propto \sqrt{\Delta T}+T$
$\Rightarrow \frac{\mathrm{f}+\Delta \mathrm{f}}{\mathrm{f}}=\sqrt{\frac{\Delta \mathrm{t}+\mathrm{T}}{\mathrm{T}}} \Rightarrow 1+\frac{\Delta \mathrm{f}}{\mathrm{f}}=\left(1+\frac{\Delta \mathrm{T}}{\mathrm{T}}\right)^{1 / 2}=1+\frac{1 \Delta \mathrm{~T}}{2} \frac{\mathrm{~T}}{}+\ldots$ (neglecting other terms)
$\Rightarrow \frac{\Delta f}{f}=(1 / 2) \frac{\Delta T}{T}$.
51. We know that the frequency $=f, T=$ temperatures
$f \propto \sqrt{T}$
So $\frac{f_{1}}{f_{2}}=\frac{\sqrt{T_{1}}}{\sqrt{T_{2}}} \Rightarrow \frac{293}{f_{2}}=\frac{\sqrt{293}}{\sqrt{295}}$
$\Rightarrow f_{2}=\frac{293 \times \sqrt{295}}{\sqrt{293}}=294$
52. $\mathrm{V}_{\text {rod }}=$?, $\mathrm{V}_{\text {air }}=340 \mathrm{~m} / \mathrm{s}, \mathrm{L}_{\mathrm{r}}=25 \times 10^{-2}, \mathrm{~d}_{2}=5 \times 10^{-2}$ metres
$\frac{V_{r}}{V_{a}}=\frac{2 L_{r}}{D_{a}} \Rightarrow V_{r}=\frac{340 \times 25 \times 10^{-2} \times 2}{5 \times 10^{-2}}=3400 \mathrm{~m} / \mathrm{s}$.
53. a) Here given, $L_{r}=1.0 / 2=0.5 \mathrm{~m}, d_{a}=6.5 \mathrm{~cm}=6.5 \times 10^{-2} \mathrm{~m}$ As Kundt's tube apparatus is a closed organ pipe, its fundamental frequency
$\Rightarrow \mathrm{n}=\frac{\mathrm{V}_{\mathrm{r}}}{4 \mathrm{~L}_{\mathrm{r}}} \Rightarrow \mathrm{V}_{\mathrm{r}}=2600 \times 4 \times 0.5=5200 \mathrm{~m} / \mathrm{s}$.
b) $\frac{\mathrm{V}_{\mathrm{r}}}{\mathrm{V}_{\mathrm{a}}}=\frac{2 \mathrm{~L}_{\mathrm{r}}}{\mathrm{d}_{\mathrm{a}}} \Rightarrow \mathrm{V}_{\mathrm{a}}=\frac{5200 \times 6.5 \times 10^{-2}}{2 \times 0.5}=338 \mathrm{~m} / \mathrm{s}$.
54. As the tunning fork produces 2 beats with the adjustable frequency the frequency of the tunning fork will $\mathrm{be} \Rightarrow \mathrm{n}=(476+480) / 2=478$.
55. A tuning fork produces 4 beats with a known tuning fork whose frequency $=256 \mathrm{~Hz}$

So the frequency of unknown tuning fork = either $256-4=252$ or $256+4=260 \mathrm{~Hz}$
Now as the first one is load its mass/unit length increases. So, its frequency decreases.
As it produces 6 beats now original frequency must be 252 Hz .
260 Hz is not possible as on decreasing the frequency the beats decrease which is not allowed here.
56. Group - I

$$
\begin{aligned}
& \text { Group - II } \\
& \mathrm{v}=350 \\
& \lambda_{2}=32.2 \mathrm{~cm} \\
& =32.2 \times 10^{-2} \mathrm{~m}
\end{aligned}
$$

Given $V=350$
$\lambda_{1}=32 \mathrm{~cm}$
$=32 \times 10^{-2} \mathrm{~m}$
So $\eta_{1}=$ frequency $=1093 \mathrm{~Hz} \quad \eta_{2}=350 / 32.2 \times 10^{-2}=1086 \mathrm{~Hz}$
So beat frequency $=1093-1086=7 \mathrm{~Hz}$.
57. Given length of the closed organ pipe, $I=40 \mathrm{~cm}=40 \times 10^{-2} \mathrm{~m}$
$V_{\text {air }}=320$
So, its frequency $\rho=\begin{gathered}V \\ 4 \mathrm{I}\end{gathered}=\begin{gathered}320 \\ 4 \times 40 \times 10^{-2}\end{gathered}=200$ Hertz.
As the tuning fork produces 5 beats with the closed pipe, its frequency must be 195 Hz or 205 Hz .
Given that, as it is loaded its frequency decreases.
So, the frequency of tuning fork $=205 \mathrm{~Hz}$.
58. Here given $n_{B}=600=\begin{aligned} & 1 \\ & 2 \mid 14\end{aligned}$

As the tension increases frequency increases
It is given that 6 beats are produces when tension in A is increases.
So, $n_{A} \Rightarrow 606=\frac{1}{21} \sqrt{\frac{T A}{M}}$
$\Rightarrow \frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}_{\mathrm{B}}}=\frac{600}{606}=\frac{(1 / 21) \sqrt{(\mathrm{TB} / \mathrm{M})}}{(1 / 21) \sqrt{\mathrm{TA} / \mathrm{M})}}=\frac{\sqrt{\mathrm{TB}}}{\sqrt{\mathrm{TA}}}$
$\Rightarrow \frac{\sqrt{T_{A}}}{\sqrt{T_{B}}}=\frac{606}{600}=1.01 \quad \Rightarrow \frac{T_{A}}{T_{B}}=1.02$.
59. Given that, $\mathrm{I}=25 \mathrm{~cm}=25 \times 10^{-2} \mathrm{~m}$

By shortening the wire the frequency increases, $[f=(1 / 21) \sqrt{(T B / M})]$
As the vibrating wire produces 4 beats with 256 Hz , its frequency must be 252 Hz or 260 Hz . Its frequency must be 252 Hz , because beat frequency decreases by shortening the wire.
So, $252=\frac{1}{2 \times 25 \times 10^{-2}} \sqrt{\frac{T}{M}}$
Let length of the wire will be I, after it is slightly shortened,
$\Rightarrow 256=\frac{1}{2 \times l_{1}} \sqrt{\frac{T}{M}}$
Dividing (1) by (2) we get

$$
\frac{252}{256}=\frac{I_{1}}{2 \times 25 \times 10^{-2}} \Rightarrow I_{1}=\frac{252 \times 2 \times 25 \times 10^{-2}}{260}=0.2431 \mathrm{~m}
$$

So, it should be shorten by $(25-24.61)=0.39 \mathrm{~cm}$.
60. Let $u=$ velocity of sound; $\quad V_{m}=$ velocity of the medium;
$v_{0}=$ velocity of the observer; $\quad v_{a}=$ velocity of the sources.
$\left.=\binom{\vec{u}+\vec{v}_{m}-\vec{v}_{o}}{v+V_{m}^{V}-v_{s}} \right\rvert\, F$

using sign conventions in Doppler's effect,
$\left.V_{m} \overline{\overline{3}} 40+\bar{u} \overline{0}-340 \mathrm{~m} / \mathrm{s}\right), v_{s}=0$ and $v_{0}=-10 \mathrm{~m}(36 \mathrm{~km} / \mathrm{h}=10 \mathrm{~m} / \mathrm{s})$
$=\times 2 \mathrm{KHz}=350 / 340 \times 2 \mathrm{KHz}=2.06 \mathrm{KHz}$.
61. $f^{1} \quad=\begin{aligned} & \left(\vec{u}+\vec{v}_{m}-\vec{v}_{o} \mid f\right. \\ & \overrightarrow{\mathrm{u}+\vec{v}} \mathrm{~s})\end{aligned}$
[18 km/h $=5 \mathrm{~m} / \mathrm{s}$]
$18 \mathrm{~km} / \mathrm{h}=5 \mathrm{~m} / \mathrm{s}$
using sign conventiæ4G,+ $0-0$)
app. Frequency $=\left(\begin{array}{l}\left.\left\lvert\, \begin{array}{l}3 \\ \mid 340+0-5\end{array}\right.\right) \times 2400=2436 \mathrm{~Hz} .\end{array}\right.$

$$
340+0-5)
$$

62.

rex
a) Given $v_{s}=72 \mathrm{~km} /$ hour $=20 \mathrm{~m} / \mathrm{s}, \rho=1250$
apparent frequency $=\begin{aligned} & 340+0+0 \\ & 340+0-20\end{aligned} \times 1250=1328 \mathrm{H}_{2}$
b) For second case apparent frequency will be $=\begin{gathered}340+0+0 \\ 340+0-(-20)\end{gathered} \times 1250=1181 \mathrm{~Hz}$.
63. Here given, apparent frequency $=1620 \mathrm{~Hz}$

So original frequency of the train is given by
$1620=\binom{332+0+0}{332-15} f \Rightarrow f=\binom{1620 \times 317}{332} \mathrm{~Hz}$
So, apparent frequency of the train obspeyved by the observer in
$\left.f^{1}=\frac{(332+0+0)}{\langle 32+15}\right) \times \frac{\left(\frac{1620 \times 317}{332}\right)}{l}=\frac{}{347}$
64. Let, the bat be flying between the walls W_{1} and W_{2}.

So it will listen two frequency reflecting from walls W_{2} and W_{1}.
So, apparent frequency, as received by wall $W=f w_{2}=\frac{330+0+0}{330-6} \times f=330 / 324$
Therefore, apparent frequency received by the bat from wall W_{2} is given by
${\underset{B}{2}}_{\mathrm{F}_{2} \text { of wall } \mathrm{W}_{1}}=\left(\frac{330+0-(-6)}{330+0+0)^{2}} \mathrm{f}_{\mathrm{w}}=\left(\frac{336}{330}\right)_{\times} \times \frac{330}{324}\right)_{\mathrm{f}}$

Similarly the apparent frequency received by the bat from wall W_{1} is
$\mathrm{f}_{\mathrm{B}_{1}}=(324 / 336) \mathrm{f}$
So the beat frequency heard by the bat will be $=4.47 \times 10^{4}=4.3430 \times 10^{4}=3270 \mathrm{~Hz}$.
65. Let the frequency of the bullet will bef

Given, $u=330 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{s}}=220 \mathrm{~m} / \mathrm{s}$
a) Apparent frequency before crossing $=f^{\prime}=\left\{\left.\frac{330}{330-220} \right\rvert\, f=3 f\right.$
b) Apparent frequency after crossing $=f^{\prime \prime}=\left(\frac{330}{530+220}\right) f=0.6 f$

So, $\left.\left(\boldsymbol{f}^{\prime}\right)_{f^{\prime}}\right)=\begin{aligned} & 0.6 f \\ & -3 f\end{aligned}=0.2$
Therefore, fractional change $=1-0.2=0.8$.
66. The person will receive, the sound in the directions BA and CA making an angle θ with the track.

Here, $\theta=\tan ^{-1}(0.5 / 2.4)=22^{\circ}$
So the velocity of the sources will be ' $v \cos \theta$ ' when heard by the observer.
So the apparent frequency received by the man from train B.

```
f'=(}\begin{array}{c}{340+0+0}\\{340-v\operatorname{cos}2\mp@subsup{2}{}{\circ}}\end{array}) 500=529 H
```

And the apparent frequency heard but the man from train C ,

$f^{\prime \prime}=\left(\frac{340+0+0}{340-v \cos 22^{\circ}}\right) \times 500=476 \mathrm{~Hz}$.
67. Let the velocity of the sources is $=v_{s}$
a) The beat heard by the standing man $=4$

So, frequency $=440+4=444 \mathrm{~Hz}$ or 436 Hz
$\left.\Rightarrow 440=\left\lvert\, \begin{array}{c}340+0+0 \\ 340-v_{s}\end{array}\right.\right) \times 400$
On solving we get $\mathrm{V}_{\mathrm{s}}=3.06 \mathrm{~m} / \mathrm{s}=11 \mathrm{~km} / \mathrm{hour}$.
b) The sitting man will listen less no. of beats than 4.
68. Here given velocity of the sources $\mathrm{v}_{\mathrm{s}}=0$

Velocity of the observer $v_{0}=3 \mathrm{~m} / \mathrm{s}$
So, the apparent frequency heard by the man $=\left(\left.\begin{array}{l}(332+3 \\ (332)\end{array} \right\rvert\, \times 256=258.3 \mathrm{~Hz}\right.$.

from the approaching tuning form $=f^{\prime}$
$f^{\prime \prime}=[(332-3) / 332] \times 256=253.7 \mathrm{~Hz}$.
So, beat produced by them $=258.3-253.7=4.6 \mathrm{~Hz}$.
69. According to the data, $\mathrm{V}_{\mathrm{s}}=5.5 \mathrm{~m} / \mathrm{s}$ for each turning fork.

So, the apparent frequency heard from the tuning fork on the left,
$f^{\prime}=\left(\frac{330}{330-5.5}\right) \times 512=527.36 \mathrm{~Hz}=527.5 \mathrm{~Hz}$
similarly, apparent frequency from the tunning fork on the right,
Velocity of the observer $v_{0}=3 \mathrm{~m} / \mathrm{s}$
So, the apparent frequency heard by the man $=\binom{332+3}{(332)} \times 256=258.3 \mathrm{~Hz}$.

$f^{\prime \prime}=\left(\frac{330}{330+5.5}\right) \times 512=510 \mathrm{~Hz}$
So, beats produced $527.5-510=17.5 \mathrm{~Hz}$.
70. According to the given data

Radius of the circle $=100 / \pi \times 10^{-2} \mathrm{~m}=(1 / \pi)$ metres; $\omega=5 \mathrm{rev} / \mathrm{sec}$.
So the linear speed $v=\omega r=5 / \pi=1.59$
So, velocity of the source $\mathrm{V}_{\mathrm{s}}=1.59 \mathrm{~m} / \mathrm{s}$
As shown in the figure at the position A the observer will listen maximum
 and at the position B it will listen minimum frequency.

So, apparent frequency at $A=\frac{332}{332-1.59} \times 500=515 \mathrm{~Hz}$
Apparent frequency at $B=\frac{332}{332+1.59} \times 500=485 \mathrm{~Hz}$.
71. According to the given data $\mathrm{V}_{\mathrm{s}}=90 \mathrm{~km} / \mathrm{hour}=25 \mathrm{~m} / \mathrm{sec}$.
$\mathrm{v}_{0}=25 \mathrm{~m} / \mathrm{sec}$
So, apparent fresioncey heard by the observer in train B or observer in $=|\quad| \times 500=577 \mathrm{~Hz}$.

72. Here given $\mathrm{f}_{\mathrm{s}}=16 \times 10^{3} \mathrm{~Hz}$

Apparent frequency $f^{\prime}=20 \times 10^{3} \mathrm{~Hz}$ (greater than that value)
Let the velocity of the observer $=v_{0}$
Given $v_{s}=0$
So $20 \times 10^{3}=\left(\begin{array}{l}\left(330+v_{0}\right) \\ (\overline{330+0})\end{array} \times 16 \times 10^{3}\right.$
$\Rightarrow\left(330+v_{0}\right)=\frac{20 \times 330}{16}$
$\Rightarrow v_{0}=\frac{20 \times 330-16 \times 330}{4}=\frac{330}{4} \mathrm{~m} / \mathrm{s}=297 \mathrm{~km} / \mathrm{h}$
b) This speed is not practically attainable ordinary cars.
73. According to the questions velocity of car $A=V_{A}=108 \mathrm{~km} / \mathrm{h}=30 \mathrm{~m} / \mathrm{s}$
$V_{B}=72 \mathrm{~km} / \mathrm{h}=20 \mathrm{~m} / \mathrm{s}, \mathrm{f}=800 \mathrm{~Hz}$
So, the apparent frequency heard by the car B is given by,
$\mathrm{f}^{\prime}=\binom{330-20}{330-30} \quad$ А $\times 800 \Rightarrow 826.9=827 \mathrm{~Hz} . \quad 30 \mathrm{~m} / \mathrm{s} \quad$ в
74. a) According to the questions, $v=1500 \mathrm{~m} / \mathrm{s}, \mathrm{f}=2000 \mathrm{~Hz}, \mathrm{v}_{\mathrm{s}}=10 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{o}}=15 \mathrm{~m} / \mathrm{s}$

So, the apparent frequency heard by the submarine B,

$$
=\binom{1500+15}{1500-10} \times 2000=2034 \mathrm{~Hz}
$$

\qquad

b) Appq3 88 t freguyency received by submarine A,
$=\left(\left.\begin{array}{c}\mid \\ (1500-15)\end{array} \right\rvert\, \times 2034=2068 \mathrm{~Hz}\right.$.
75. Given that, $r=0.17 \mathrm{~m}, F=800 \mathrm{~Hz}, \mathrm{u}=340 \mathrm{~m} / \mathrm{s}$

Frequency band $=f_{1}-f_{2}=6 \mathrm{~Hz}$
Where f_{1} and f_{2} correspond to the maximum and minimum apparent frequencies (both will occur at the mean position because the velocity is maximum).
Now, $f_{1}=\binom{340}{340-\mathrm{v}} \mathrm{f}$ and $\mathrm{f}_{2}=\left(\begin{array}{c}340 \\ 340+\mathrm{v} \\ \mathrm{s}\end{array}\right) \mathrm{f}$

$\therefore \mathrm{f}_{1}-\mathrm{f}_{2}=8$
$\left.\Rightarrow 340 \mathrm{f} \left\lvert\, \frac{1}{\left(340-\mathrm{v}_{\mathrm{s}}\right.}-\frac{1}{340+\mathrm{v}_{\mathrm{s}}}\right.\right)=8$
$\Rightarrow \frac{2 \mathrm{v}_{\mathrm{s}}}{340^{2}-\mathrm{v}_{\mathrm{s}}{ }^{2}}=\frac{8}{340 \times 800}$
$\Rightarrow 340^{2}-v_{s}{ }^{2}=68000 v_{s}$
Solving for v_{s} we get, $v_{s}=1.695 \mathrm{~m} / \mathrm{s}$
For SHM, $v_{s}=r \omega \Rightarrow \omega=(1.695 / 0.17)=10$
So, $T=2 \pi / \omega=\pi / 5=0.63 \mathrm{sec}$.
76. $u=334 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{b}}=4 \sqrt{2} \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{o}}=0$
so, $v_{s}=V_{b} \cos \theta=4 \sqrt{2} \times(1 / \sqrt{2})=4 \mathrm{~m} / \mathrm{s}$.

77. $u=330 \mathrm{~m} / \mathrm{s}, \quad \mathrm{v}_{0}=26 \mathrm{~m} / \mathrm{s}$
a) Apparent frequency at, $y=-336$
$m=\left(\frac{v-u \sin \theta}{}\right) \times f$
$=\binom{330}{330-26-\sin 230} \times 660$
 [because, $\theta=\tan ^{-1}(140 / 336)=23^{\circ}$] $=680 \mathrm{~Hz}$.
b) At the point $y=0$ the source and listener are on a x-axis sono apparent change in frequency is seen. So, $f=660 \mathrm{~Hz}$.
c) As shown in the figure $\theta=\tan ^{-1}(140 / 336)=23^{\circ}$ Here given, $=330 \mathrm{~m} / \mathrm{s} ; v=\mathrm{V} \sin 23^{\circ}=10.6 \mathrm{~m} / \mathrm{s}$
So, $F^{\prime \prime}=\frac{u}{u+v \sin 23^{\circ}} \times 660=640 \mathrm{~Hz}$.

78. $\mathrm{V}_{\text {train }}$ or $\mathrm{V}_{\mathrm{s}}=108 \mathrm{~km} / \mathrm{h}=30 \mathrm{~m} / \mathrm{s} ; u=340 \mathrm{~m} / \mathrm{s}$
a) The frequency by the passenger sitting near the open window is 500 Hz , he is inside the train and does not hair any relative motion.
b) After the 3 tridin fas passed the apparent frequency heard by a person standing near the track will be, so $f^{\prime \prime}=\left(\begin{array}{l} \\ 340+30\end{array}\right) \times 500=459 \mathrm{~Hz}$
c) The person inside the source will listen the original frequency of the train.

Here, given $\mathrm{V}_{\mathrm{m}}=10 \mathrm{~m} / \mathrm{s}$
For the person standing near the track
Apparent frequency $=\begin{gathered}u+V_{m}+0 \\ u+V_{m}-\left(-V_{s}\right)\end{gathered} \times 500=458 \mathrm{~Hz}$.
79. To find out the apparent frequency received by the wall,
a) $V_{s}=12 \mathrm{~km} / \mathrm{h}=10 / 3=\mathrm{m} / \mathrm{s}$
$V_{0}=0, u=330 \mathrm{~m} / \mathrm{s}$
So, the apparent frequency is given by $=f^{\prime}=\binom{330}{330-10 / 3} \times 1600=1616 \mathrm{~Hz}$
b) The reflected sound from the wall whistles now act as a sources whose frequency is 1616 Hz .

So, $u=330 \mathrm{~m} / \mathrm{s}, V_{s}=0, V_{o}=10 / 3 \mathrm{~m} / \mathrm{s}$
So, the frogqueqgy/by the man from the wall,

$$
\left.\Rightarrow \mathrm{f}^{\prime \prime}=\left\lvert\, \frac{}{330}\right.\right) \mid \times 1616=1632 \mathrm{~m} / \mathrm{s}
$$

80. Here given, $u=330 \mathrm{~m} / \mathrm{s}, \mathrm{f}=1600 \mathrm{~Hz}$

So, apparent frequency received by the car
$f^{\prime}=\left(\left.\begin{array}{l}\left(u-V_{0}\right) \\ u-V^{2}\end{array}\right|_{f}=\binom{330-20)}{\mathrm{s}} \times 1600 \mathrm{~Hz} \ldots\left[\mathrm{~V}_{0}=20 \mathrm{~m} / \mathrm{s}, \mathrm{V}_{\mathrm{s}}=0\right]\right.$

The reflected sound from the car acts as the source for the person.

\therefore This is the frequency heard by the person from the car.
81. a) $f=400 \mathrm{~Hz},, u=335 \mathrm{~m} / \mathrm{s}$
$\Rightarrow \lambda(v / f)=(335 / 400)=0.8 \mathrm{~m}=80 \mathrm{~cm}$
b) The frequency received and reflected by the wall,
$f^{\prime}=\left(\begin{array}{l}u-V_{0} \\ \mathrm{U} \\ \mathrm{s}\end{array}\right) \times f=320 \times 400 \ldots\left[V_{s}=54 \mathrm{~m} / \mathrm{s}\right.$ and $\left.V_{0}=0\right]$
$\Rightarrow x^{\prime}=(\mathrm{v} / \mathrm{f})=\frac{\frac{320 \times 335}{335 \times 400}}{3}=0.8 \mathrm{~m}=80 \mathrm{~cm}$
c) The freghyengy recgived by the person sitting inside the car from reflected wave,
$\mathrm{f}^{\prime}=(335-15) \quad\left[\mathrm{V}_{\mathrm{s}}=0\right.$ and $\left.\mathrm{V}_{0}=-15 \mathrm{~m} / \mathrm{s}\right]$
d) Because, the difference between the original frequency and the apparent frequency from the wall is very high ($437-440=37 \mathrm{~Hz}$), he will not hear any beats. mm)
82. $f=400 \mathrm{~Hz}, u=324 \mathrm{~m} / \mathrm{s}, \mathrm{f}^{\prime}=\frac{u-(-v)}{\mathrm{u}} \mathrm{f}=\frac{324+\mathrm{v} \times 400}{324}$
for the reflected wave,
$f^{\prime \prime}=410=\frac{u-0}{u-v} f^{\prime}$

$\Rightarrow 410=\frac{324}{324-v} \times \frac{324+v}{324} \times 400$
$\Rightarrow 810 \mathrm{v}=324 \times 10$
$\Rightarrow v=\frac{324 \times 10}{810}=4 \mathrm{~m} / \mathrm{s}$.
83. $f=2 \mathrm{kHz}, \mathrm{v}=330 \mathrm{~m} / \mathrm{s}, \mathrm{u}=22 \mathrm{~m} / \mathrm{s}$

At $t=0$, the source crosses P
a) Time taken to reach at Q is
$t=\frac{S}{v}=\frac{330}{330}=1 \mathrm{sec}$
b) The frequency heard by the listner is

$$
\begin{aligned}
& f^{\prime}=f\binom{v}{v-u \cos \theta} \\
& \text { since, } \theta=90^{\circ} \\
& f^{\prime}=2 \times(v / u)=2 \mathrm{KHz}
\end{aligned}
$$

c) After 1 sec , the source is at 22 m from P towards right.
84. $\mathrm{t}=4000 \mathrm{~Hz}, \mathrm{u}=22 \mathrm{~m} / \mathrm{s}$

Let ' t ' be the time taken by the source to reach at ' O '. Since observer hears the sound at the instant it crosses the ' O ', ' t ' is also time taken to the sound to reach at P .
$\therefore \mathrm{OQ}=\mathrm{ut}$ and $\mathrm{QP}=\mathrm{vt}$
Cos $\theta=u / v$

Velocity of the sound along QP is $(u \cos \theta)$.
$u=22 \mathrm{~m} / \mathrm{s} \quad \theta \quad \mathrm{P}$
$\begin{aligned} f^{\prime}=f \mid & \left(\frac{v-0}{v-u \cos \theta}\right)= \\ & \left(\left.\left|\xlongequal{\left.\left\lvert\, v-\frac{u^{2}}{v}\right.\right)}\right|^{v} \right\rvert\,\right.\end{aligned}$
$\mathrm{S}^{\prime} \mathrm{O}$

Putting the values in the above equation, $\mathrm{f}^{\prime}=4000 \times \frac{330^{2}}{330^{2}-22^{2}}=4017.8=4018 \mathrm{~Hz}$.
85. a) Given that, $f=1200 \mathrm{~Hz}, u=170 \mathrm{~m} / \mathrm{s}, \mathrm{L}=200 \mathrm{~m}, v=340 \mathrm{~m} / \mathrm{s}$

From Doppler's equation (as in problem no.84)
$f^{\prime}=f\left(V^{2}-u^{2}\right.$
$U_{2}^{1} 200 \times \quad 340^{2}-170^{2}=1600 \mathrm{~Hz}$.
b) $v=$ velocity of sound, $u=$ velocity of source
let, t be the time taken by the sound to reach at D
$D O=v t^{\prime}=L$, and $S^{\prime} \mathrm{O}=u t^{\prime}$
$\mathrm{t}^{\prime}=\mathrm{L} / \mathrm{V}$

$S^{\prime} D=\sqrt{S^{\prime} O^{2}+D O^{2}}=\sqrt{{ }^{2}{v^{2}}^{2}+{ }^{2}{ }^{2}} \begin{aligned} & L \\ & v^{2}\end{aligned}{\sqrt{u}{ }^{2}}^{u+v^{2}}$
Putting the values in the above equation, we get
$S^{\prime} D=\frac{220}{340} \sqrt{170^{2}+340^{2}}=223.6 \mathrm{~m}$.
86. Given that, $r=1.6 \mathrm{~m}, \mathrm{f}=500 \mathrm{~Hz}, \mathrm{u}=330 \mathrm{~m} / \mathrm{s}$
a) At A, velocity of the particle is given by
$\mathrm{v}_{\mathrm{A}}=\sqrt{\mathrm{rg}}=\sqrt{1.6 \times 10}=4 \mathrm{~m} / \mathrm{s}$
and at $\mathrm{C}, \mathrm{v}_{\mathrm{c}}=\sqrt{5 \mathrm{rg}}=\sqrt{5 \times 1.6 \times 10}=8.9 \mathrm{~m} / \mathrm{s}$
So, maximum frequency at C ,

$f_{c}^{\prime}=\frac{u}{u-v_{s}} f=\frac{330}{330-8.9} \times 500=513.85 \mathrm{~Hz}$.
Similarly, maximum frequency at A is given by $f_{A}^{\prime}=\frac{u}{u-\left(-v_{s}\right)} f=\frac{330}{330+4}(500)=494 \mathrm{~Hz}$.
b) Velocity at $B=3 \mathrm{rg}=\sqrt{3 \times 1.6 \times 10}=6.92 \mathrm{~m} / \mathrm{s}$

So, frequency at B is given by,
$f_{B}=\underset{u+v_{s}}{u} \times f=\begin{gathered}330 \\ 330+6.92\end{gathered} \times 500=490 \mathrm{~Hz}$
and frequency at D is given by,

$$
f_{D}=\underset{u-v_{s}}{u} \times f=\frac{330}{330-6.92} \times 500
$$

87. Let the distance between the source and the observer is ' x ' (initially)

So, time taken for the first pulse to reach the observer is $t_{1}=x / v$
and the second pulse starts after T_{1} (where, $T=1 / \mathrm{v}$)
and it should travel a distance $\left(\begin{array}{c}\left.x-\begin{array}{c}a T^{2} \\ 2\end{array}\right), ~\end{array}\right.$

$$
x-1 / 2 a t^{2}
$$

So, $t_{2}=T+x-1 / 2 a T^{2}$

$t=0$	$t=T$
S	S

$t_{2}-t_{1}=T+\begin{gathered}x-1 / 2 a T^{2} \\ v\end{gathered}=\begin{gathered}x \\ v\end{gathered}=T-1 a T^{2}$
Putting $=T=1 / v$, we get
$\mathrm{t}_{2}-\mathrm{t}_{1}=\frac{2 \mathrm{uv}-\mathrm{a}}{2 \mathrm{vv}^{2}}$
so, frequency heard $=\frac{2 v v^{2}}{2 u v-a}\left(\right.$ because, $\left.f=\frac{1}{t_{2}-t_{1}}\right)$

