## SOLUTIONS TO CONCEPTS CHAPTER 19

1. The visual angles made by the tree with the eyes can be calculated be below.

$$
\theta=\frac{\text { Height of the tree }}{\text { Distance from the eye }}=\frac{\mathrm{AB}}{\mathrm{OB}} \Rightarrow \theta \underset{\mathrm{~A}}{ } \quad \frac{2}{50}=0.04
$$

similarly, $\theta_{B}=2.5 / 80=0.03125$

$$
\begin{aligned}
& \theta_{C}=1.8 / 70=0.02571 \\
& \theta_{D}=2.8 / 100=0.028
\end{aligned}
$$



Since, $\theta_{A}>\theta_{B}>\theta_{D}>\theta_{C}$, the arrangement in decreasing order is given by $A, B, D$ and $C$.
2. For the given simple microscope,

$$
f=12 \mathrm{~cm} \text { and } D=25 \mathrm{~cm}
$$

For maximum angular magnification, the image should be produced at least distance of clear vision.

So, $v=-D=-25 \mathrm{~cm}$

A
$B^{\prime}$
$\mathrm{D}=25 \mathrm{~cm}$
(Simple Microscope)
$\Rightarrow{ }_{u}^{1}=\underset{v^{\prime}}{1}-\frac{1}{f}={ }_{-25}^{1}-\frac{1}{12}=-\frac{37}{300}$
$\Rightarrow \mathrm{u}=-8.1 \mathrm{~cm}$
So, the object should be placed 8.1 cm away from the lens.
3. The simple microscope has, $m=3$, when image is formed at $D=25 \mathrm{~cm}$
a) $m=1+{ }_{f}^{D} \Rightarrow 3=1+\frac{25}{f}$

$$
\Rightarrow \mathrm{f}=25 / 2=12.5 \mathrm{~cm}
$$

b) When the image is formed at infinity (normal adjustment)

Magnifying power $=\frac{D}{f}=\frac{25}{12.5} .0$
4. The child has $D=10 \mathrm{~cm}$ and $\mathrm{f}=10 \mathrm{~cm}$

The maximum angular magnification is obtained when the image is formed at near point.

$$
m=1+\frac{D}{f}=1+\frac{10}{10}=1+1=2
$$

5. The simple microscope has magnification of 5 for normal relaxed eye ( $D=25 \mathrm{~cm}$ ).

Because, the eye is relaxed the image is formed at infinity (normal adjustment)
So, $m=5=\frac{D}{f}=\frac{25}{f} \Rightarrow f=5 \mathrm{~cm}$
For the relaxed farsighted eye, $D=40 \mathrm{~cm}$
So, $m=\frac{D}{f}=\frac{40}{5}=8$
So, its magnifying power is 8 X .
6. For the given compound microscope
$\mathrm{f}_{0}=\frac{1}{25 \text { diopter }}=0.04 \mathrm{~m}=4 \mathrm{~cm}, \mathrm{f}_{\mathrm{e}}=\frac{1}{5 \text { diopter }}=0.2 \mathrm{~m}=20 \mathrm{~cm}$
$D=25 \mathrm{~cm}$, separation between objective and eyepiece $=30 \mathrm{~cm}$
The magnifying power is maximum when the image is formed by the eye piece at least distance of clear vision i.e. $D=25 \mathrm{~cm}$
for the eye piece, $v_{e}=-25 \mathrm{~cm}, \mathrm{f}_{\mathrm{e}}=20 \mathrm{~cm}$
For lens formula, $\frac{1}{v_{e}}-\frac{1}{u_{e}}=\frac{1}{f_{e}}$

$$
\Rightarrow \frac{1}{u_{e}} \frac{1}{v_{e}} \frac{1}{f_{e}} \Rightarrow \frac{1}{-25} \frac{1}{20} \quad \Rightarrow u_{e}=11.11 \mathrm{~cm}
$$



So, for the objective lens, the image distance should be

$$
v_{0}=30-(11.11)=18.89 \mathrm{~cm}
$$

Now, for the objective lens,
$v_{0}=+18.89 \mathrm{~cm}$ (because real image is produced)

$$
\mathrm{f}_{0}=4 \mathrm{~cm}
$$

So, ${ }^{1}={ }^{1}={ }^{1} \Rightarrow{ }_{0} \underset{\mathrm{f}_{0}}{\Rightarrow} \quad 18.89{ }^{1}{ }^{1}=0.053-0.25=-0.197$

$$
\Rightarrow u_{0}=-5.07 \mathrm{~cm}
$$

So, the maximum magnificent power is given by
$\left.m=-v_{o}^{v_{0}}\left[\left.1+\begin{array}{l}D\rceil=-18.89 \\ f_{e}\end{array} \right\rvert\, 1+25\right] \right\rvert\,$
$=3.7225 \times 2.25=8.376$
7. For the given compound microscope

$$
f_{o}=1 \mathrm{~cm}, f_{e}=6 \mathrm{~cm}, D=24 \mathrm{~cm}
$$

For the eye piece, $\mathrm{v}_{\mathrm{e}}=-24 \mathrm{~cm}, \mathrm{f}_{\mathrm{e}}=6 \mathrm{~cm}$

$$
\begin{aligned}
& \text { Now, }{ }_{v_{e}}^{1}-{ }^{1}={ }_{u_{e}}^{1} f_{e}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow u_{\mathrm{e}}=-4.8 \mathrm{~cm}
\end{aligned}
$$

a) When the separation between objective and eye piece is 9.8 cm , the image distance for the objective
lens must be $(9.8)-(4.8)=5.0 \mathrm{~cm}$
Now, $\frac{1}{v_{0}}-\frac{1}{u_{0}}=\frac{1}{f_{0}}$
$\Rightarrow \frac{1}{u_{0}}=\frac{1}{v_{0}}=\frac{1}{\mathrm{f}_{0}}{ }^{1}=\frac{-}{5}-\frac{1}{5}$
$\Rightarrow u_{0}=-\frac{5}{4}=-1.25 \mathrm{~cm}$
So, the magnifying power is given by,

$$
\mathrm{m}=\frac{\mathrm{v}_{0} \Gamma{ }_{\mathrm{u}}{ }^{\mathrm{D}} \mathrm{D}_{\mathrm{f}} \mid=1}{}-1.25\left[1+\frac{24}{6}\right]=4 \times 5=20
$$

(b) When the separation is 11.8 cm ,

$$
\begin{aligned}
& \mathrm{v}_{0}=11.8-4.8=7.0 \mathrm{~cm}, \\
& \Rightarrow \frac{1}{u_{0}}=\frac{1}{v_{0}}-\frac{1}{\mathrm{f}_{0}}=\frac{1}{7}-\frac{1}{1}=-\frac{\mathrm{f}_{0}=1 \mathrm{~cm}}{\overline{7}}
\end{aligned}
$$



Fig-A


Fig-B

So, the range of magnifying power will be 20 to 30 .
8. For the given compound microscope.
$f_{0}=\frac{1}{20 D}=0.05 \mathrm{~m}=5 \mathrm{~cm}, \quad f_{e}=\frac{1}{10 D}=0.1 \mathrm{~m}=10 \mathrm{~cm}$.
$D=25 \mathrm{~cm}$, separation between objective \& eyepiece $=20 \mathrm{~cm}$
For the minimum separation between two points which can be distinguished by eye using the microscope, the magnifying power should be maximum.

So, the image distance for the objective lens should be,
$\mathrm{V}_{0}=20-\frac{50}{7}=\frac{90}{7} \mathrm{~cm}$
Thus, minimum separation eye can distinguish $=\frac{0.22}{5.5} \mathrm{~mm}=0.04 \mathrm{~mm}$
9. For the give compound microscope,
$\mathrm{f}_{0}=0.5 \mathrm{~cm}$, tube length $=6.5 \mathrm{~cm}$
magnifying power $=100$ (normal adjustment)
Since, the image is formed at infinity, the real image produced by the objective lens should lie on the focus of the eye piece.
So, $v_{0}+f_{e}=6.5 \mathrm{~cm}$
Again, magnifying power $=\frac{v_{0}}{u_{0}} \times \frac{D}{f_{e}}$ [for normal adjustment]

$\Rightarrow 100 \mathrm{f}_{\mathrm{e}}=-\left(1-2 \mathrm{v}_{0}\right) \times 25$
$\Rightarrow 2 \mathrm{v}_{0}-4 \mathrm{f}_{\mathrm{e}}=1$
.(2)

Solving equation (1) and (2) we can get,
$\mathrm{V}_{0}=4.5 \mathrm{~cm}$ and $\mathrm{f}_{\mathrm{e}}=2 \mathrm{~cm}$
So, the focal length of the eye piece is 2 cm .
10. Given that,
$\mathrm{f}_{\mathrm{o}}==1 \mathrm{~cm}, \mathrm{f}_{\mathrm{e}}=5 \mathrm{~cm}, \quad \mathrm{u}_{0}=0.5 \mathrm{~cm}, \quad \mathrm{v}_{\mathrm{e}}=30 \mathrm{~cm}$
For the objective lens, $u_{0}=-0.5 \mathrm{~cm}, \mathrm{f}_{0}=1 \mathrm{~cm}$.
From lens formula,
$\frac{1}{v_{0}}{\frac{1}{u_{0}}}^{1} \frac{1}{f_{0}} \quad \Rightarrow \frac{1}{v_{0}}=\frac{1}{u_{0}}+\frac{1}{f_{0}}=\frac{1}{-0.5}+\frac{1}{1}=-1$
$\Rightarrow \mathrm{v}_{0}=-1 \mathrm{~cm}$


So, a virtual image is formed by the objective on the same side as that of the object at a distance of 1 cm from the objective lens. This image acts as a virtual object for the eyepiece.
For the eyepiece,
$\frac{1}{v_{0}}-\frac{1}{u_{0}}=\frac{1}{f_{0}} \quad \Rightarrow \frac{1}{u_{0}} \quad \frac{1}{v_{0}}-\frac{1}{f_{0}}=\frac{1}{30}-\frac{1}{5}=\frac{-5}{30}=\frac{-1}{6} \Rightarrow u_{0}=-6 \mathrm{~cm}$
So, as shown in figure,
Separation between the lenses $=u_{0}-v_{0}=6-1=5 \mathrm{~cm}$
11. The optical instrument has
$f_{0}=\frac{1}{25 D}=0.04 \mathrm{~m}=4 \mathrm{~cm}$
$f_{e}=\frac{1}{20 \mathrm{D}}=0.05 \mathrm{~m}=5 \mathrm{~cm}$
tube length $=25 \mathrm{~cm}$ (normal adjustment)
(a) The instrument must be a microscope as $f_{0}<f_{e} \quad$ A
(b) Since the final image is formed at infinity, the image produced by the objective should lie on the focal plane of the eye piece.
So, image distance for objective $=\mathrm{v}_{0}=25-5=20 \mathrm{~cm}$
Now, using lens formula.

So, angular magnification $=m=-\mathrm{v}_{0} \times \frac{u_{0}}{f_{e}}$ [Taking $D=25 \mathrm{~cm}$ ]
$=-\frac{20}{-5} \times \frac{25}{5}=20$
12. For the astronomical telescope in normal adjustment.

Magnifying power $=m=50$, length of the tube $=L=102 \mathrm{~cm}$
Let $f_{0}$ and $f_{e}$ be the focal length of objective and eye piece respectively.
$m=\frac{f_{0}}{f_{e}}=50 \Rightarrow f_{0}=50 f_{e}$
and, $L=f_{0}+f_{e}=102 \mathrm{~cm}$
Putting the value of $f_{0}$ from equation (1) in (2), we get,
$\mathrm{f}_{0}+\mathrm{f}_{\mathrm{e}}=102 \Rightarrow 51 \mathrm{f}_{\mathrm{e}}=102 \Rightarrow \mathrm{f}_{\mathrm{e}}=2 \mathrm{~cm}=0.02 \mathrm{~m}$
So, $f_{0}=100 \mathrm{~cm}=1 \mathrm{~m}$

$\therefore$ Power of the objective lens $=\frac{1}{f_{0}}=1 D$
And Power of the eye piece lens $=\frac{1}{f_{e}}=\frac{1}{0.02}=50 \mathrm{D}$
13. For the given astronomical telescope in normal adjustment,
$\mathrm{F}_{\mathrm{e}}=10 \mathrm{~cm}, \quad \mathrm{~L}=1 \mathrm{~m}=100 \mathrm{~cm}$
SO, $f_{0}=L-f_{e}=100-10=90 \mathrm{~cm}$
and, magnifying power $=\frac{f_{0}}{f_{e}}=\frac{90}{10}=9$
14. For the given Galilean telescope, (When the image is formed at infinity)
$f_{0}=30 \mathrm{~cm}, \quad L=27 \mathrm{~cm}$
Since $L=f_{0}-f_{e}$
[Since, concave eyepiece lens is used in Galilean Telescope]
$\Rightarrow \mathrm{f}_{\mathrm{e}}=\mathrm{f}_{0}-\mathrm{L}=30-27=3 \mathrm{~cm}$
15. For the far sighted person,
$u=-20 \mathrm{~cm}, \quad \mathrm{v}=-50 \mathrm{~cm}$
from lens formula $\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
$\frac{1}{f}=\frac{1}{-50} \frac{1}{-20}=\frac{1}{20}^{\frac{1}{50}} \frac{3}{100} \quad \Rightarrow f=\frac{100}{3} \mathrm{~cm}={ }^{1} \frac{\mathrm{~m}}{3}$
So, power of the lens $=\frac{1}{f}=3$ Diopter
16. For the near sighted person,
$u=\infty$ and $v=-200 \mathrm{~cm}=-2 \mathrm{~m}$
So, ${ }^{1}={ }^{1}-{ }^{1}={ }^{1}-{ }^{1}=-{ }^{1}=-0.5$
$f \quad v \quad u \quad-2 \infty 2$
So, power of the lens is -0.5 D
17. The person wears glasses of power-2.5D

So, the person must be near sighted.
$u=\infty, \quad v=$ far point,$\quad f=\begin{gathered}1 \\ -2.5\end{gathered}=-0.4 m=-40 \mathrm{~cm}$
Now, ${ }^{1}{ }_{-}^{1}=1$
$\Rightarrow \begin{aligned} & 1={ }^{1}+{ }^{v}{ }^{u}=0+1 \\ & v \quad u \quad f\end{aligned} \quad \Rightarrow v=-40 \mathrm{~cm}$
So, the far point of the person is 40 cm
18. On the $50^{\text {th }}$ birthday, he reads the card at a distance 25 cm using a glass of +2.5 D .

Ten years later, his near point must have changed.
So after ten years,
$\mathrm{u}=-50 \mathrm{~cm}, \quad \mathrm{f}=\frac{1}{2.5 \mathrm{D}}=0.4 \mathrm{~m}=40 \mathrm{~cm} \quad \mathrm{c}=$ near point
Now, $\frac{1}{v}-\frac{1}{u}=\frac{1}{f} \Rightarrow \frac{1}{v}=\frac{1}{u^{\prime}} \stackrel{1}{f}=\frac{1}{-50}+\frac{1}{40}=\frac{1}{200}$
So, near point $=v=200 \mathrm{~cm}$
To read the farewell letter at a distance of 25 cm ,
$U=-25 \mathrm{~cm}$
For lens formula,
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f} \Rightarrow \frac{1}{f}=\frac{1}{200}-\frac{1}{-25}=\frac{1}{200} \frac{1}{25} \frac{9}{200} \Rightarrow f=\frac{200}{9} \mathrm{~cm}=\frac{2}{9} \mathrm{~m}$
$\Rightarrow$ Power of the lens $=\frac{1}{f}=\frac{9}{2}=4.5 \mathrm{D}$
$\therefore$ He has to use a lens of power +4.5 D .
19. Since, the retina is 2 cm behind the eye-lens
$v=2 \mathrm{~cm}$
(a) When the eye-lens is fully relaxed

$$
\begin{aligned}
& u=\infty, v=2 \mathrm{~cm}=0.02 \mathrm{~m} \\
& \Rightarrow \frac{1}{\bar{f}}=\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\frac{1}{0.02} \frac{1}{\infty}=50 \mathrm{D}
\end{aligned}
$$

So, in this condition power of the eye-lens is 50D
(b) When the eye-lens is most strained,

$$
\begin{aligned}
& u=-25 \mathrm{~cm}=-0.25 \mathrm{~m}, \\
& \Rightarrow \frac{1}{\mathrm{f}}=\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\frac{1}{0.02}-\frac{1}{-0.25}=50+4=54 \mathrm{D}
\end{aligned}
$$

In this condition power of the eye lens is 54D.
20. The child has near point and far point 10 cm and 100 cm respectively.

Since, the retina is 2 cm behind the eye-lens, $v=2 \mathrm{~cm}$
For near point $u=-10 \mathrm{~cm}=-0.1 \mathrm{~m}, \quad v=2 \mathrm{~cm}=0.02 \mathrm{~m}$
So, $\frac{1}{f_{\text {near }}}={ }^{1} \bar{v} \frac{1}{\bar{u}} \quad \frac{1}{0.02}-\frac{1}{-0.1}=50+10=60 \mathrm{D}$
For far point, $u=-100 \mathrm{~cm}=-1 \mathrm{~m}, \quad v=2 \mathrm{~cm}=0.02 \mathrm{~m}$
So, ${ }_{f_{f a r}}^{1}={ }_{v}^{1}-\frac{1}{u}=\frac{1}{0.02}-1-1=50+1=51 \mathrm{D}$
So, the rage of power of the eye-lens is +60D to +51D
21. For the near sighted person,
$v=$ distance of image from glass
= distance of image from eye - separation between glass and eye

$$
=25 \mathrm{~cm}-1 \mathrm{~cm}=24 \mathrm{~cm}=0.24 \mathrm{~m}
$$

So, for the glass, $u=\infty$ and $v=-24 \mathrm{~cm}=-0.24 \mathrm{~m}$
So, ${ }_{f}^{1}={ }^{1}{ }^{1}{ }^{1}={ }_{u}=-0.24-{ }_{\infty}^{1}=-4.2 \mathrm{D}$
22. The person has near point 100 cm . It is needed to read at a distance of 20 cm .
(a) When contact lens is used,

$$
\begin{aligned}
& u=-20 \mathrm{~cm}=-0.2 \mathrm{~m}, \\
& \text { So, } \frac{1}{\bar{f}}=\frac{1}{\bar{v}}-\bar{u}=\frac{1}{-1}-\frac{1}{-0.2}=-1+5=-100 \mathrm{~cm}=-1 \mathrm{~m} \\
&
\end{aligned}
$$

(b) When spectacles are used,
$u=-(20-2)=-18 \mathrm{~cm}=-0.18 \mathrm{~m}, \quad \mathrm{v}=-100 \mathrm{~cm}=-1 \mathrm{~m}$
So, $\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\frac{1}{-1}-\frac{1}{-0.18}=-1+5.55=+4.5 \mathrm{D}$
23. The lady uses +1.5 D glasses to have normal vision at 25 cm .

So, with the glasses, her least distance of clear vision $=\mathrm{D}=25 \mathrm{~cm}$
Focal length of the glasses $=\frac{1}{1.5} \mathrm{~m}=\frac{100}{1.5} \mathrm{~cm}$
So, without the glasses her least distance of distinct vision should be more
If, $u=-25 \mathrm{~cm}, \quad f=\frac{100}{1.5} \mathrm{~cm}$
Now, $\frac{1}{v}-\frac{1}{u}=\frac{1}{f}=\frac{1.5}{100}-\frac{1}{25}=\frac{1.5-4}{100}=\frac{-2.5}{100} \quad \Rightarrow v=-40 \mathrm{~cm}=$ near point without glasses.
Focal length of magnifying glass $=\frac{1}{20} \mathrm{~m}=0.05 \mathrm{~m}=5 \mathrm{~cm}=f$
(a) The maximum magnifying power with glasses

$$
m=1+\frac{D}{f}=1+\frac{25}{5}=6 \quad[\because D=25 \mathrm{~cm}]
$$

(b) Without the glasses, $\mathrm{D}=40 \mathrm{~cm}$

$$
\text { So, } m=1+\frac{D}{f}=1+\frac{40}{5}=9
$$

24. The lady can not see objects closer than 40 cm from the left eye and 100 cm from the right eye.

For the left glass lens,
$v=-40 \mathrm{~cm}, \quad u=-25 \mathrm{~cm}$
$\therefore \underset{f}{\frac{1}{v}}=\frac{1}{\bar{u}}=\frac{1}{-40}{ }^{1} \frac{1}{-25}=\frac{1}{25} \frac{1}{40} \quad \frac{3}{200} \quad \Rightarrow f=\frac{200}{3} \mathrm{~cm}$
For the right glass lens,
$v=-100 \mathrm{~cm}, \quad u=-25 \mathrm{~cm}$
$\frac{1}{f}=\frac{1}{v}-\frac{1}{u}=\frac{1}{-100}-\frac{1}{-25}=\frac{1}{25}-\frac{1}{100}=\frac{3}{100} \quad \Rightarrow f=\frac{100}{3} \mathrm{~cm}$
(a) For an astronomical telescope, the eye piece lens should have smaller focal length. So, she should use the right lens $\left(f={ }_{3}^{100} \mathrm{~cm}\right)$ as the eye piece lens.
(b) With relaxed eye, (normal adjustment)

$$
\mathrm{f}_{0}=\begin{gathered}
200 \\
3
\end{gathered} \mathrm{~cm}, \quad \mathrm{f}_{\mathrm{e}}=\begin{gathered}
100 \\
3
\end{gathered} \mathrm{~cm}
$$

magnification $=m=\frac{f_{0}}{f_{e}}=\frac{(200 / 3)}{(100 / 3)}=2$

