SOLUTIONS TO CONCEPTS

CHAPTER - 20

1. Given that,

Refractive index of flint glass $=\mu_{f}=1.620$
Refractive index of crown glass $=\mu_{c}=1.518$
Refracting angle of flint prism $=A_{f}=6.0^{\circ}$
For zero net deviation of mean ray
$\left(\mu_{f}-1\right) A_{f}=\left(\mu_{c}-1\right) A_{c}$
$\Rightarrow A_{c} \quad \frac{\mu_{f}-1}{\mu_{c}-1^{f}} A=\frac{1.620-1}{1.518-1}(6.0)^{\circ}=7.2^{\circ}$.
2. Given that
$\mu_{r}=1.56, \mu_{y}=1.60$, and $\mu_{v}=1.68$
(a) Dispersive power $=\omega=\frac{\mu_{v}-\mu_{r}}{\mu_{y}-1}=\frac{1.68-1.56}{1.60-1}=0.2$
(b) Angular dispersion $=\left(\mu_{v}-\mu_{r}\right) \mathrm{A}=0.12 \times 6^{\circ}=7.2^{\circ}$
3. The focal length of a lens is given by
$f=(\mu-1)\left(\begin{array}{cc}1 & 1 \\ R & -R \\ 1 & 2\end{array}\right)$
$\Rightarrow(\mu-1)={ }_{f}^{1} \times\left(\begin{array}{cc}1 & 1 \\ R_{1} & - \\ R_{2}\end{array}\right)=\begin{aligned} & K \\ & f\end{aligned}$
So, $\mu_{r}-1={ }^{K}$
$\mu_{y}-1=\begin{gathered}K \\ 98\end{gathered}$
And μ_{v}
So, Dispersive power $=\omega=\frac{\frac{\mu-\mu_{r}}{v}}{\mu_{y}-1}=\frac{(\mu-1)-(\mu-1)}{\left(\mu_{y}-1\right)}=\frac{\underset{\underline{K}}{96}-\frac{\underline{K}}{100}}{\begin{array}{c}K \\ 98\end{array}}=\begin{aligned} & 98 \times_{4} \\ & 9600\end{aligned}=0.0408$
4. Given that, $\mu_{v}-\mu_{r}=0.014$

Again, $\mu_{y}=\frac{\text { Re al depth }}{\text { Apparent depth }}=\frac{2.00}{1.30}=1.515$
So, dispersive power $=\frac{\mu_{\mathrm{v}}-\mu_{\mathrm{r}}}{\mu_{\mathrm{y}}-1}=\frac{0.014}{1.515-1}=0.027$
5. Given that, $\mu_{r}=1.61, \mu_{v}=1.65, \omega=0.07$ and $\delta_{y}=4^{\circ}$

Now, $\omega=\frac{\mu_{v}-\mu_{r}}{\mu_{y}-1}$
$\Rightarrow 0.07=\frac{1.65-1.61}{\mu_{y}-1}$
$\underset{=}{\Rightarrow} \mu_{y}-1 \quad \frac{0.04}{0.07}=\frac{4}{7}$
Again, $\delta=(\mu-1) \mathrm{A}$
$\Rightarrow \mathrm{A}=\frac{\delta_{y}}{\mu_{y}-1}=\frac{4}{(4 / 7)}=7^{\circ}$
6. Given that, $\delta_{r}=38.4^{\circ}, \delta_{y}=38.7^{\circ}$ and $\delta_{v}=39.2^{\circ}$

Dispersive power $=\frac{\mu_{v}-\mu_{r}}{\mu_{y}-1}=\frac{(\mu-1)-(\mu-1)}{\left(\mu_{y}-1\right)}=\frac{\left(\begin{array}{c}\left.\delta_{v}\right)\left(\delta_{r}\right) \\ \left(\left.\begin{array}{c}\delta_{v}\end{array} \right\rvert\,\right. \\ \left.\frac{A}{A}\right)\end{array}\right]}{(\because \delta=(\mu-1) A]}$
$=\frac{\delta_{v}-\delta_{r}}{\delta_{y}}=\frac{39.2-38.4}{38.7}=0.0204$
7. Two prisms of identical geometrical shape are combined.

Let $A=$ Angle of the prisms
$\mu^{\prime}{ }_{v}=1.52$ and $\mu_{v}=1.62, \delta_{v}=1^{\circ}$
$\delta_{v}=\left(\mu_{v}-1\right) A-\left(\mu_{v}^{\prime}-1\right) A$ [since $\left.A=A^{\prime}\right]$
$\Rightarrow \delta_{v}=\left(\mu_{v}-\mu_{v}^{\prime}\right) A$
$\Rightarrow \mathrm{A}=\frac{\delta_{v}}{\mu_{\mathrm{v}}-\mu_{\mathrm{v}}^{\prime}}=\frac{1}{1.62-1.52}=10^{\circ}$

8. Total deviation for yellow ray produced by the prism combination is
$\delta_{y}=\delta_{c y}-\delta_{\text {fy }}+\delta_{c y}=2 \delta_{c y}-\delta_{\text {fy }}=2\left(\mu_{c y}-1\right) \mathrm{A}-\left(\mu_{c y}-1\right) \mathrm{A}^{\prime}$
Similarly the angular dispersion produced by the combination is
$\delta_{v}-\delta_{r}=\left[\left(\mu_{\mathrm{vc}}-1\right) \mathrm{A}-\left(\mu_{\mathrm{vf}}-1\right) \mathrm{A}^{\prime}+\left(\mu_{\mathrm{vc}}-1\right) \mathrm{A}\right]-\left[\left(\mu_{\mathrm{rc}}-1\right) \mathrm{A}-\left(\mu_{\mathrm{rf}}-1\right) \mathrm{A}^{\prime}+\left(\mu_{\mathrm{r}}-1\right)\right.$
A)]
$=2\left(\mu_{\mathrm{vc}}-1\right) \mathrm{A}-\left(\mu_{\mathrm{vf}}-1\right) \mathrm{A}^{\prime}$
(a) For net angular dispersion to be zero,

$$
\begin{aligned}
& \delta_{\mathrm{v}}-\delta_{\mathrm{r}}=0 \\
& \Rightarrow 2\left(\mu_{\mathrm{vc}}-1\right) \mathrm{A}=\left(\mu_{\mathrm{vf}}-1\right) \mathrm{A}^{\prime} \\
& \Rightarrow \begin{array}{c}
\mathrm{A}^{\prime}=2\left(\mu_{\mathrm{cv}}-\mu_{\mathrm{rc}}\right) \\
A \\
\mathrm{~A} \\
\left(\mu_{\mathrm{vf}}-\mu_{\mathrm{rf}}\right)
\end{array}=\begin{array}{r}
2\left(\mu_{\mathrm{v}}-\mu_{\mathrm{r}}\right) \\
\left(\mu_{\mathrm{v}}^{\prime}-\mu_{\mathrm{r}}^{\prime}\right)
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\text { A Flint } \\
\text { Crown } A^{\prime} \text { Crown }
\end{gathered}
$$

$5^{\circ} \quad 5^{\circ}$
$=\left(\mu_{\mathrm{cv}}+\mu_{\mathrm{fv}}-\mu_{\mathrm{cr}}-\mu_{\mathrm{fr}}\right) \mathrm{A}=(1.525+1.632-1.515-1.612) 5=0.15^{\circ}$
10. Given that, $\mathrm{A}^{\prime}=6^{\circ}, \quad \omega^{\prime}=0.07, \quad \mu_{y}^{\prime}=1.50$
$A=? \quad \omega=0.08, \quad \mu_{y}=1.60$
The combination produces no deviation in the mean ray.
(a) $\delta_{y}=\left(\mu_{y}-1\right) \mathrm{A}-\left(\mu_{y}^{\prime}-1\right) \mathrm{A}^{\prime}=0 \quad$ [Prism must be oppositely directed]

$$
\begin{aligned}
& \Rightarrow(1.60-1) \mathrm{A}=\left((1.50-1) \mathrm{A}^{\prime}\right. \\
& \Rightarrow \mathrm{A}=\frac{0.50 \times 6^{\circ}}{0.60}=5^{\circ}
\end{aligned}
$$

(b) When a beam of white light passes through it, Net angular dispersion $=\left(\mu_{y}-1\right) \omega A-\left(\mu_{y}^{\prime}-1\right) \omega^{\prime} A^{\prime}$
$\Rightarrow(1.60-1)(0.08)\left(5^{\circ}\right)-(1.50-1)(0.07)\left(6^{\circ}\right)$
$\Rightarrow 0.24^{\circ}-0.21^{\circ}=0.03^{\circ}$
(c) If the prisms are similarly directed,

$$
\begin{aligned}
& \delta_{y}=\left(\mu_{y}-1\right) \mathrm{A}+\left(\mu_{y}^{\prime}-1\right) \mathrm{A} \\
& =(1.60-1) 5^{\circ}+(1.50-1) 6^{\circ}=3^{\circ}+3^{\circ}=6^{\circ}
\end{aligned}
$$

(d) Similarly, if the prisms are similarly directed, the net angular dispersion is given by,
$\delta_{v}-\delta_{r}=\left(\mu_{y}-1\right) \omega \mathrm{A}-\left(\mu_{y}^{\prime}-1\right) \omega^{\prime} \mathrm{A}^{\prime}=0.24^{\circ}+0.21^{\circ}=0.45^{\circ}$

11. Given that, $\mu^{\prime}{ }_{v}-\mu_{r}^{\prime}=0.014$ and $\mu_{v}-\mu_{r}=0.024$
$A^{\prime}=5.3^{\circ}$ and $A=3.7^{\circ}$
(a) When the prisms are oppositely directed, angular dispersion $=\left(\mu_{v}-\mu_{r}\right) \mathrm{A}-\left(\mu_{v}^{\prime}-\mu_{r}^{\prime}\right) \mathrm{A}^{\prime}$ $=0.024 \times 3.7^{\circ}-0.014 \times 5.3^{\circ}=0.0146^{\circ}$

(b) When they are similarly directed, angular dispersion $=\left(\mu_{v}-\mu_{r}\right) A+\left(\mu_{v}^{\prime}-\mu_{r}^{\prime}\right) A^{\prime}$

$$
=0.024 \times 3.7^{\circ}+0.014 \times 5.3^{\circ}=0.163^{\circ}
$$

