SOLUTIONS TO CONCEPTS

CHAPTER 21

1. In the given Fizeau' apparatus,
$\mathrm{D}=12 \mathrm{~km}=12 \times 10^{3} \mathrm{~m}$
$\mathrm{n}=180$
$\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
We know, $\mathrm{c}=\frac{2 \mathrm{Dn} \omega}{\pi}$
$\Rightarrow \omega=\frac{\pi \mathrm{C}}{\frac{\mathrm{rad}}{2 \mathrm{Dn}} / \mathrm{sec}=}=\frac{\pi \mathrm{c}}{2 \mathrm{Dn}} \times \frac{180}{\pi} \mathrm{deg} / \mathrm{sec}$
$\Rightarrow \omega=\frac{180 \times 3 \times 10^{8}}{24 \times 10^{3} \times 180}=1.25 \times 10^{4} \mathrm{deg} / \mathrm{sec}$
2. In the given Focault experiment,
$R=$ Distance between fixed and rotating mirror $=16 \mathrm{~m}$
$\omega=$ Angular speed $=356 \mathrm{rev} /{ }^{\prime}=356 \times 2 \pi \mathrm{rad} / \mathrm{sec}$
$b=$ Distance between lens and rotating mirror $=6 \mathrm{~m}$
$\mathrm{a}=$ Distance between source and lens $=2 \mathrm{~m}$
$\mathrm{s}=$ shift in image $=0.7 \mathrm{~cm}=0.7 \times 10^{-3} \mathrm{~m}$
So, speed of light is given by,
$C=\begin{gathered}4 R^{2} \omega \mathrm{a} \\ \mathrm{s}(\mathrm{R}+\mathrm{b})\end{gathered}=\begin{gathered}4 \times 16^{2} \times 356 \times 2 \pi \times 2 \\ 0.7 \times 10^{-3}(16+6)\end{gathered}=2.975 \times 10^{8} \mathrm{~m} / \mathrm{s}$
3. In the given Michelsonexperiment,
$\mathrm{D}=4.8 \mathrm{~km}=4.8 \times 10^{3} \mathrm{~m}$
$\mathrm{N}=8$
We know, $c=\begin{gathered}D \omega N \\ 2 \pi\end{gathered}$
$\Rightarrow \omega=\begin{gathered}2 \pi \mathrm{c} \\ \mathrm{DN}\end{gathered} \quad \mathrm{rad} / \mathrm{sec}=\begin{gathered}\mathrm{C} \\ \mathrm{DN}\end{gathered} \mathrm{rev} / \mathrm{sec}=\begin{gathered}3 \times 10^{8} \\ 4.8 \times 10^{3} \times 8\end{gathered}=7.8 \times 10^{3} \mathrm{rev} / \mathrm{sec}$
