SOLUTIONS TO CONCEPTS

CHAPTER 22

1. Radiant Flux $=\frac{\text { Totalenergyemitted }}{\text { Time }}=\frac{45}{15 \mathrm{~s}}=3 \mathrm{~W}$
2. To get equally intense lines on the photographic plate, the radiant flux (energy) should be same.

SO, $10 \mathrm{~W} \times 12 \mathrm{sec}=12 \mathrm{~W} \times \mathrm{t}$
$\Rightarrow t=\frac{10 \mathrm{~W} \times 12 \mathrm{sec}}{12 \mathrm{~W}}=10 \mathrm{sec}$.
3. it can be found out from the graph by the student.
4. Relative luminousity $=\frac{\text { Lu min ous flux of a source of given wavelength }}{\text { Lu } \min \text { ous flux of a source of } 555 \mathrm{~nm} \text { of same power }}$

Let the radiant flux needed be P watt.
Ao, $0.6=\frac{\text { Lu min ous flux of source ' P' watt }}{685 \mathrm{P}}$
\therefore Luminous flux of the source $=(685 \mathrm{P}) \times 0.6=120 \times 685$
$\Rightarrow P=\begin{gathered}120 \\ 0.6\end{gathered}=200 \mathrm{~W}$
5. The luminous flux of the given source of 1 W is 450 lumen/watt
\therefore Relative luminosity $=\begin{aligned} & \text { Lu min ous flux of the source of given wavelength } \\ & \text { Lu min ous flux of } 555 \mathrm{~nm} \text { source of same power }\end{aligned}=\begin{aligned} & 450 \\ & 685\end{aligned}=66 \%$
[\therefore Since, luminous flux of 555 nm source of $1 \mathrm{~W}=685$ lumen]
6. The radiant flux of 555 nm part is 40 W and of the 600 nm part is 30 W
(a) Total radiant flux $=40 \mathrm{~W}+30 \mathrm{~W}=70 \mathrm{~W}$
(b) Luminous flux $=(\text { L.Fllux })_{555 n \mathrm{~nm}}+(\text { L.Flux })_{600 \mathrm{~nm}}$

$$
=1 \times 40 \times 685+0.6 \times 30 \times 685=39730 \text { lumen }
$$

(c) Luminous efficiency $=\begin{gathered}\text { Total lu minous flux } \\ \text { Total radiant flux }\end{gathered}=\begin{gathered}39730 \\ 70\end{gathered}=567.6$ lumen $/ \mathrm{W}$
7. Overall luminous efficiency $=\begin{gathered}\text { Total lu minous flux } \\ \text { Power input }\end{gathered}=\begin{gathered}35 \times 685 \\ 100\end{gathered}=239.75$ lumen $/ \mathrm{W}$
8. Radiant flux $=31.4 \mathrm{~W}$, Solid angle $=4 \pi$

Luminous efficiency $=60$ lumen/W
So, Luminous flux $=60 \times 31.4$ lumen
And luminous intensity $=\frac{\text { Lu minous Flux }}{4 \pi}=\frac{60 \times 31.4}{4 \pi}=150$ candela
9. $I=$ luminous intensity $=\frac{628}{4 \pi}=50$ Candela
$r=1 \mathrm{~m}, \quad \theta=37^{\circ}$
So, illuminance, $E=\frac{\mid \cos \theta}{r^{2}}=\frac{50 \times \cos 37^{\circ}}{1^{2}}=40$ lux

10. Let, I = Luminous intensity of source
$\mathrm{E}_{\mathrm{A}}=900$ lumen $/ \mathrm{m}^{2}$
$E_{B}=400$ lumen $/ \mathrm{m}^{2}$
Now, $E_{a}=\frac{l \cos \theta}{x^{2}}$ and $E_{B}=\frac{I \cos \theta}{(x+10)^{2}}$
So, $I=\xlongequal[A]{\frac{E}{\cos \theta} x^{2}}=\frac{{\underset{B}{B}(x+10)^{2}}_{\cos \theta} \text { (x)}}{}$
$\Rightarrow 900 x^{2}=400(x+10)^{2} \Rightarrow \frac{x}{x+10}=\frac{2}{3} \Rightarrow 3 x=2 x+20 \Rightarrow x=20 \mathrm{~cm}$

So, The distance between the source and the original position is 20 cm .
11. Given that, $\mathrm{E}_{\mathrm{a}}=15$ lux $=\frac{\mathrm{I}_{0}}{60^{2}}$
$\Rightarrow \mathrm{I}_{0}=15 \times(0.6)^{2}=5.4$ candela
So, $\mathrm{E}_{\mathrm{B}}=\xlongequal{0}(\mathrm{OB})^{2} \quad=\frac{\cup t}{1^{2}}=3.24$ lux

12. The illuminance will not change.
13. Let the height of the source is ' h ' and the luminous intensity in the normal direction is I_{0}.

So, illuminance at the book is given by,
$E=\frac{I_{0} \cos \theta}{r^{2}}=\frac{I_{0} h}{r^{3}}=\frac{I_{0} h}{\left(r^{2}+h^{2}\right)^{3 / 2}}$
For maximum $E, \frac{d E}{d h}=0 \Rightarrow \frac{I_{0}\left[\left(R^{2}+h^{2}\right)^{3 / 2}-\frac{3}{2} h \times\left(R^{2}+h^{2}\right)^{1 / 2} \times 2 h\right]}{\left(R^{2}+h^{2}\right)^{3}}$

$\Rightarrow\left(R^{2}+h^{2}\right)^{1 / 2}\left[R^{2}+h^{2}-3 h^{2}\right]=0$
$\Rightarrow R^{2}-2 h^{2}=0 \Rightarrow h=R_{2}$

