CHAPTER - 23
 HEAT AND TEMPERATURE
 EXERCISES

1. Ice point $=20^{\circ}\left(L_{0}\right) L_{1}=32^{\circ}$

Steam point $=80^{\circ}\left(\mathrm{L}_{100}\right)$
$T=\frac{L_{1}-L_{0}}{L_{100}-L_{0}} \times 100=\frac{32-20}{80-20} \times 100=20^{\circ} \mathrm{C}$
2. $P_{t r}=1.500 \times 10^{4} \mathrm{~Pa}$
$\mathrm{P}=2.050 \times 10^{4} \mathrm{~Pa}$
We know, For constant volume gas Thermometer
$\mathrm{T}=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{tr}}} \times 273.16 \mathrm{~K}=\frac{2.050 \times 10^{4}}{1.500 \times 10^{4}} \times 273.16=373.31$
3. Pressure Measured at M.P $=2.2 \times$ Pressure at Triple Point
$\mathrm{T}=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{tr}}} \times 273.16=\frac{2.2 \times \mathrm{P}_{\mathrm{tr}}}{\mathrm{P}_{\mathrm{tr}}} \times 273.16=600.952 \mathrm{~K} \approx 601 \mathrm{~K}$
4. $\mathrm{P}_{\mathrm{tr}}=40 \times 10^{3} \mathrm{~Pa}, \mathrm{P}=$?
$\mathrm{T}=100^{\circ} \mathrm{C}=373 \mathrm{~K}, \quad \mathrm{~T}=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{tr}}} \times 273.16 \mathrm{~K}$
$\Rightarrow \mathrm{P}=\frac{\mathrm{T} \times \mathrm{P}_{\mathrm{tr}}}{273.16}=\frac{373 \times 49 \times 10^{3}}{273.16}=54620 \mathrm{~Pa}=5.42 \times 10^{3} \mathrm{pa} \approx 55 \mathrm{~K} \mathrm{~Pa}$
5. $\mathrm{P}_{1}=70 \mathrm{~K} \mathrm{~Pa}, \quad \mathrm{P}_{2}=$?
$\mathrm{T}_{1}=273 \mathrm{~K}, \quad \mathrm{~T}_{2}=373 \mathrm{~K}$
$T=\frac{P_{1}}{P_{t r}} \times 273.16 \quad \Rightarrow 273=\frac{70 \times 10^{3}}{P_{t r}} \times 273.16 \quad \Rightarrow P_{t r} \frac{70 \times 273.16 \times 10^{3}}{273}$
$\mathrm{T}_{2}=\frac{\mathrm{P}_{2}}{\mathrm{P}_{\mathrm{tr}}} \times 273.16 \quad \Rightarrow 373=\frac{\mathrm{P}_{2} \times 273}{70 \times 273.16 \times 10^{3}}$
$\Rightarrow \mathrm{P}_{2}=\frac{373 \times 70 \times 10^{3}}{273}=95.6 \mathrm{~K} \mathrm{~Pa}$
6. $P_{\text {ice point }}=P_{0^{\circ}}=80 \mathrm{~cm}$ of Hg
$P_{\text {steam point }}=P_{100^{\circ}} 90 \mathrm{~cm}$ of Hg
$P_{0}=100 \mathrm{~cm}$
$t=\frac{P-P_{0}}{P_{100}-P_{0}} \times 100^{\circ}=\frac{80-100}{90-100} \times 100=200^{\circ} \mathrm{C}$
7. $\mathrm{T}^{\prime}=\frac{\mathrm{V}}{\mathrm{V}-\mathrm{V}^{\prime}} \mathrm{T}_{0} \quad \mathrm{~T}_{0}=273$,
$V=1800 C C, \quad V^{\prime}=200 C C$
$\mathrm{T}^{\prime}=\frac{1800}{1600} \times 273=307.125 \approx 307$
8. $\mathrm{R}_{\mathrm{t}}=86 \Omega ; \mathrm{R}_{0^{\circ}}=80 \Omega ; \quad \mathrm{R}_{100^{\circ}}=90 \Omega$
$t=\frac{R_{t}-R_{0}}{R_{100}-R_{0}} \times 100=\frac{86-80}{90-80} \times 100=60^{\circ} \mathrm{C}$
9. R at ice point $\left(R_{0}\right)=20 \Omega$
R at steam point $\left(R_{100}\right)=27.5 \Omega$
R at Zinc point $\left(R_{420}\right)=50 \Omega$
$R_{\theta}=R_{0}\left(1+\alpha \theta+\beta \theta^{2}\right)$
$\Rightarrow R_{100}=R_{0}+R_{0} \alpha \theta+R_{0} \beta \theta^{2}$
$\Rightarrow \frac{\mathrm{R}_{100}-\mathrm{R}_{0}}{\mathrm{R}_{0}}=\alpha \theta+\beta \theta^{2}$
$\Rightarrow \frac{27.5-20}{20}=\alpha \times 100+\beta \times 10000$
$\Rightarrow \frac{7.5}{20}=100 \alpha+10000 \beta$
$\mathrm{R}_{420}=\mathrm{R}_{0}\left(1+\alpha \theta+\beta \theta^{2}\right) \Rightarrow \frac{50-\mathrm{R}_{0}}{\mathrm{R}_{0}}=\alpha \theta+\beta \theta^{2}$
$\Rightarrow \frac{50-20}{20}=420 \times \alpha+176400 \times \beta \quad \Rightarrow \frac{3}{2}=420 \alpha+176400 \beta$
$\Rightarrow \frac{7.5}{20}=100 \alpha+10000 \beta \quad \Rightarrow \frac{3}{2}=420 \alpha+176400 \beta$
10. $\mathrm{L}_{1}=$?, $\quad \mathrm{L}_{0}=10 \mathrm{~m}, \quad \alpha=1 \times 10^{-5} /{ }^{\circ} \mathrm{C}, \quad \mathrm{t}=35$
$\mathrm{L}_{1}=\mathrm{L}_{0}(1+\alpha \mathrm{t})=10\left(1+10^{-5} \times 35\right)=10+35 \times 10^{-4}=10.0035 \mathrm{~m}$
11. $\mathrm{t}_{1}=20^{\circ} \mathrm{C}, \mathrm{t}_{2}=10^{\circ} \mathrm{C}, \mathrm{L}_{1}=1 \mathrm{~cm}=0.01 \mathrm{~m}, \mathrm{~L}_{2}=$?
$\alpha_{\text {steel }}=1.1 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
$\mathrm{L}_{2}=\mathrm{L}_{1}\left(1+\alpha_{\text {steel }} \Delta \mathrm{T}\right)=0.01\left(1+101 \times 10^{-5} \times 10\right)=0.01+0.01 \times 1.1 \times 10^{-4}$
$=10^{4} \times 10^{-6}+1.1 \times 10^{-6}=10^{-6}(10000+1.1)=10001.1$
$=1.00011 \times 10^{-2} \mathrm{~m}=1.00011 \mathrm{~cm}$
12. $\mathrm{L}_{0}=12 \mathrm{~cm}$,
$\alpha=11 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
$\mathrm{tw}=18^{\circ} \mathrm{C} \quad \mathrm{ts}=48^{\circ} \mathrm{C}$
$\mathrm{Lw}=\mathrm{L}_{0}(1+\alpha \mathrm{tw})=12\left(1+11 \times 10^{-5} \times 18\right)=12.002376 \mathrm{~m}$
$\mathrm{Ls}=\mathrm{L}_{0}(1+\alpha \mathrm{ts})=12\left(1+11 \times 10^{-5} \times 48\right)=12.006336 \mathrm{~m}$
$\Delta L=12.006336-12.002376=0.00396 \mathrm{~m} \approx 0.4 \mathrm{~cm}$
13. $d_{1}=2 \mathrm{~cm}=2 \times 10^{-2}$
$\mathrm{t}_{1}=0^{\circ} \mathrm{C}, \quad \mathrm{t}_{2}=100^{\circ} \mathrm{C}$
$\alpha_{a l}=2.3 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
$d_{2}=d_{1}(1+\alpha \Delta t)=2 \times 10^{-2}\left(1+2.3 \times 10^{-5} 10^{2}\right)$
$=0.02+0.000046=0.020046 \mathrm{~m}=2.0046 \mathrm{~cm}$
14. $\mathrm{L}_{\text {st }}=\mathrm{L}_{\mathrm{Al}}$ at $20^{\circ} \mathrm{C}$

$$
\alpha_{A l}=2.3 \times 10^{-5} /{ }^{\circ} \mathrm{C}
$$

So, $\operatorname{Lo}_{\text {st }}\left(1-\alpha_{\text {st }} \times 20\right)=\operatorname{Lo}_{\mathrm{Al}}\left(1-\alpha_{\mathrm{Al}} \times 20\right) \quad \alpha_{\text {st }}=1.1 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
(a) $\Rightarrow \frac{\mathrm{Lo}_{\text {st }}}{\mathrm{Lo}_{\mathrm{Al}}}=\frac{\left(1-\alpha_{\mathrm{Al}} \times 20\right)}{\left(1-\alpha_{\text {st }} \times 20\right)}=\frac{1-2.3 \times 10^{-5} \times 20}{1-1.1 \times 10^{-5} \times 20}=\frac{0.99954}{0.99978}=0.999$
(b) $\Rightarrow \frac{\mathrm{Lo}_{40 \text { st }}}{\mathrm{Lo}_{40 \mathrm{AI}}}=\frac{\left(1-\alpha_{\mathrm{Al}} \times 40\right)}{\left(1-\alpha_{\text {st }} \times 40\right)}=\frac{1-2.3 \times 10^{-5} \times 20}{1-1.1 \times 10^{-5} \times 20}=\frac{0.99954}{0.99978}=0.999$
$=\frac{\mathrm{Lo}_{\mathrm{Al}}}{\mathrm{Lo}_{\mathrm{st}}} \times \frac{1+2.3 \times 10^{-5} \times 10}{273}=\frac{0.99977 \times 1.00092}{1.00044}=1.0002496 \approx 1.00025$
$\frac{\mathrm{Lo}_{100 \mathrm{Al}}}{\mathrm{Lo}_{100 \mathrm{St}}}=\frac{\left(1+\alpha_{\mathrm{Al}} \times 100\right)}{\left(1+\alpha_{\mathrm{st}} \times 100\right)}=\frac{0.99977 \times 1.00092}{1.00011}=1.00096$
15. (a) Length at $16^{\circ} \mathrm{C}=\mathrm{L}$
$\mathrm{L}=? \quad \mathrm{~T}_{1}=16^{\circ} \mathrm{C}, \quad \mathrm{T}_{2}=46^{\circ} \mathrm{C}$
$\alpha=1.1 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{L}=\mathrm{L} \alpha \Delta \theta=\mathrm{L} \times 1.1 \times 10^{-5} \times 30$
$\%$ of error $=\left(\frac{\Delta L}{L} \times 100\right) \%=\left(\frac{L \alpha \Delta \theta}{2} \times 100\right) \%=1.1 \times 10^{-5} \times 30 \times 100 \%=0.033 \%$
(b) $\mathrm{T}_{2}=6^{\circ} \mathrm{C}$
$\%$ of error $=\left(\frac{\Delta \mathrm{L}}{\mathrm{L}} \times 100\right) \%=\left(\frac{\mathrm{L} \alpha \Delta \theta}{\mathrm{L}} \times 100\right) \%=-1.1 \times 10^{-5} \times 10 \times 100=-0.011 \%$
16. $\mathrm{T}_{1}=20^{\circ} \mathrm{C}, \quad \Delta \mathrm{L}=0.055 \mathrm{~mm}=0.55 \times 10^{-3} \mathrm{~m}$
$\mathrm{t}_{2}=$?
$\alpha_{\text {st }}=11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
We know,
$\Delta \mathrm{L}=\mathrm{L}_{0} \alpha \Delta \mathrm{~T}$
In our case,
$0.055 \times 10^{-3}=1 \times 1.1 \mathrm{I} 10^{-6} \times\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)$
$0.055=11 \times 10^{-3} \times 20 \pm 11 \times 10^{-3} \times \mathrm{T}_{2}$
$\mathrm{T}_{2}=20+5=25^{\circ} \mathrm{C} \quad$ or $20-5=15^{\circ} \mathrm{C}$
The expt. Can be performed from 15 to $25^{\circ} \mathrm{C}$
17. $f_{0^{\circ} \mathrm{C}}=0.098 \mathrm{~g} / \mathrm{m}^{3}, \quad f_{4^{\circ} \mathrm{C}}=1 \mathrm{~g} / \mathrm{m}^{3}$
$f_{0^{\circ} \mathrm{C}}=\frac{f_{4{ }^{\circ} \mathrm{C}}}{1+\gamma \Delta \mathrm{T}} \Rightarrow 0.998=\frac{1}{1+\gamma \times 4} \Rightarrow 1+4 \gamma=\frac{1}{0.998}$
$\Rightarrow 4+\gamma=\frac{1}{0.998}-1 \Rightarrow \gamma=0.0005 \approx 5 \times 10^{-4}$
As density decreases $\gamma=-5 \times 10^{-4}$
18. Iron rod
L_{Fe}
$\alpha_{\mathrm{Fe}}=12 \times 10^{-8} /{ }^{\circ} \mathrm{C}$

Aluminium rod

L_{Al}
$\alpha_{\mathrm{Al}}=23 \times 10^{-8} /{ }^{\circ} \mathrm{C}$
Since the difference in length is independent of temp. Hence the different always remains constant.
$\mathrm{L}_{\mathrm{Fe}}^{\prime}=\mathrm{L}_{\mathrm{Fe}}\left(1+\alpha_{\mathrm{Fe}} \times \Delta \mathrm{T}\right)$
$L^{\prime}{ }_{A l}=L_{A l}\left(1+\alpha_{A l} \times \Delta T\right)$
$\mathrm{L}^{\prime}{ }_{\mathrm{Fe}}-\mathrm{L}_{\mathrm{Al}}^{\prime}=\mathrm{L}_{\mathrm{Fe}}-\mathrm{L}_{\mathrm{Al}}+\mathrm{L}_{\mathrm{Fe}} \times \alpha_{\mathrm{Fe}} \times \Delta \mathrm{T}-\mathrm{L}_{\mathrm{Al}} \times \alpha_{\mathrm{Al}} \times \Delta \mathrm{T}$
$\frac{\mathrm{L}_{\mathrm{Fe}}}{\mathrm{L}_{\mathrm{Al}}}=\frac{\alpha_{\mathrm{Al}}}{\alpha_{\mathrm{Fe}}}=\frac{23}{12}=23: 12$
19. $g_{1}=9.8 \mathrm{~m} / \mathrm{s}^{2}$,
$\mathrm{g}_{2}=9.788 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{T}_{1}=2 \pi \frac{\sqrt{l_{1}}}{\mathrm{~g}_{1}}$
$T_{2}=2 \pi \frac{\sqrt{I_{2}}}{g_{2}}=2 \pi \frac{\sqrt{l_{1}(1+\Delta T)}}{g}$
$\alpha_{\text {Steel }}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{1}=20^{\circ} \mathrm{C} \quad \mathrm{T}_{2}=$?
$\mathrm{T}_{1}=\mathrm{T}_{2}$
$\Rightarrow 2 \pi \frac{\sqrt{l_{1}}}{g_{1}}=2 \pi \frac{\sqrt{l_{1}(1+\Delta T)}}{g_{2}} \quad \Rightarrow \frac{l_{1}}{g_{1}}=\frac{l_{1}(1+\Delta T)}{g_{2}}$
$\Rightarrow \frac{1}{9.8}=\frac{1+12 \times 10^{-6} \times \Delta \mathrm{T}}{9.788} \Rightarrow \frac{9.788}{9.8}=1+12 \times 10^{-6} \times \Delta \mathrm{T}$
$\Rightarrow \frac{9.788}{9.8}-1=12 \times 10^{-6} \Delta T \quad \Rightarrow \Delta T=\frac{-0.00122}{12 \times 10^{-6}}$
$\Rightarrow T_{2}-20=-101.6$
$\Rightarrow \mathrm{T}_{2}=-101.6+20=-81.6 \approx-82^{\circ} \mathrm{C}$
20. Given
$\mathrm{d}_{\mathrm{St}}=2.005 \mathrm{~cm}, \quad \mathrm{~d}_{\mathrm{Al}}=2.000 \mathrm{~cm}$
$\alpha_{\mathrm{S}}=11 \times 10^{-6} /{ }^{\circ} \mathrm{C} \quad \alpha_{\mathrm{Al}}=23 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
$\mathrm{d}^{\prime} \mathrm{s}=2.005\left(1+\alpha_{\mathrm{s}} \Delta \mathrm{T}\right)$ (where $\Delta \mathrm{T}$ is change in temp.)
$\Rightarrow \mathrm{d}^{\prime} \mathrm{s}=2.005+2.005 \times 11 \times 10^{-6} \Delta \mathrm{~T}$
$\mathrm{d}^{\prime}{ }_{\mathrm{Al}}=2\left(1+\alpha_{\mathrm{Al}} \Delta \mathrm{T}\right)=2+2 \times 23 \times 10^{-6} \Delta \mathrm{~T}$
The two will slip i.e the steel ball with fall when both the diameters become equal.

So,
$\Rightarrow 2.005+2.005 \times 11 \times 10^{-6} \Delta \mathrm{~T}=2+2 \times 23 \times 10^{-6} \Delta \mathrm{~T}$
$\Rightarrow(46-22.055) 10^{-6} \times \Delta \mathrm{T}=0.005$
$\Rightarrow \Delta \mathrm{T}=\frac{0.005 \times 10^{6}}{23.945}=208.81$

Now $\Delta \mathrm{T}=\mathrm{T}_{2}-\mathrm{T}_{1}=\mathrm{T}_{2}-10^{\circ} \mathrm{C}\left[\therefore \mathrm{T}_{1}=10^{\circ} \mathrm{C}\right.$ given $]$
$\Rightarrow T_{2}=\Delta T+T_{1}=208.81+10=281.81$
21. The final length of aluminium should be equal to final length of glass.

Let the initial length o faluminium $=1$
$\mathrm{I}\left(1-\alpha_{\mathrm{A}} \Delta \mathrm{T}\right)=20\left(1-\alpha_{0} \Delta \theta\right)$
$\Rightarrow \mathrm{I}\left(1-24 \times 10^{-6} \times 40\right)=20\left(1-9 \times 10^{-6} \times 40\right)$
$\Rightarrow I(1-0.00096)=20(1-0.00036)$
$\Rightarrow I=\frac{20 \times 0.99964}{0.99904}=20.012 \mathrm{~cm}$
Let initial breadth of aluminium $=b$
$b\left(1-\alpha_{A l} \Delta T\right)=30\left(1-\alpha_{0} \Delta \theta\right)$
$\Rightarrow b=\frac{30 \times\left(1-9 \times 10^{-6} \times 40\right)}{\left(1-24 \times 10^{-6} \times 40\right)}=\frac{30 \times 0.99964}{0.99904}=30.018 \mathrm{~cm}$
22. $\mathrm{V}_{\mathrm{g}}=1000 \mathrm{CC}$,

$$
\begin{aligned}
& \mathrm{T}_{1}=20^{\circ} \mathrm{C} \\
& \gamma_{\mathrm{Hg}}=1.8 \times 10^{-4} /{ }^{\circ} \mathrm{C} \\
& \gamma_{\mathrm{g}}=9 \times 10^{-6} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$\mathrm{V}_{\mathrm{Hg}}=$?
ΔT remains constant
Volume of remaining space $=\mathrm{V}_{\mathrm{g}}-\mathrm{V}^{\prime} \mathrm{Hg}$
Now
$\mathrm{V}_{\mathrm{g}}{ }^{\prime}=\mathrm{V}_{\mathrm{g}}\left(1+\gamma_{g} \Delta \mathrm{~T}\right)$
$\mathrm{V}^{\prime}{ }_{\mathrm{Hg}}=\mathrm{V}_{\mathrm{Hg}}\left(1+\gamma_{\mathrm{Hg}} \Delta \mathrm{T}\right)$
Subtracting (2) from (1)
$\mathrm{V}_{\mathrm{g}}{ }^{-}-\mathrm{V}^{\prime}{ }_{\mathrm{Hg}}=\mathrm{V}_{\mathrm{g}}-\mathrm{V}_{\mathrm{Hg}}+\mathrm{V}_{\mathrm{g}} \gamma_{\mathrm{g}} \Delta \mathrm{T}-\mathrm{V}_{\mathrm{Hg}} \gamma_{\mathrm{Hg}} \Delta \mathrm{T}$
$\Rightarrow \frac{V_{g}}{V_{H g}}=\frac{\gamma_{\mathrm{Hg}}}{\gamma_{\mathrm{g}}} \Rightarrow \frac{1000}{\mathrm{~V}_{\mathrm{Hg}}}=\frac{1.8 \times 10^{-4}}{9 \times 10^{-6}}$
$\Rightarrow V_{H G}=\frac{9 \times 10^{-3}}{1.8 \times 10^{-4}}=500 \mathrm{CC}$.
23. Volume of water $=500 \mathrm{~cm}^{3}$

Area of cross section of can $=125 \mathrm{~m}^{2}$
Final Volume of water
$=500(1+\gamma \Delta \theta)=500\left[1+3.2 \times 10^{-4} \times(80-10)\right]=511.2 \mathrm{~cm}^{3}$
The aluminium vessel expands in its length only so area expansion of base cab be neglected.
Increase in volume of water $=11.2 \mathrm{~cm}^{3}$
Considering a cylinder of volume $=11.2 \mathrm{~cm}^{3}$
Height of water increased $=\frac{11.2}{125}=0.089 \mathrm{~cm}$
24. $V_{0}=10 \times 10 \times 10=1000 C C$
$\Delta \mathrm{T}=10^{\circ} \mathrm{C}, \quad \mathrm{V}^{\prime}{ }_{\mathrm{Hg}}-\mathrm{V}_{\mathrm{g}}=1.6 \mathrm{~cm}^{3}$
$\alpha_{\mathrm{g}}=6.5 \times 10^{-6} /{ }^{\circ} \mathrm{C}, \quad \gamma_{\mathrm{Hg}}=?, \quad \gamma_{\mathrm{g}}=3 \times 6.5 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}^{\prime} \mathrm{Hg}=\mathrm{V}_{\mathrm{HG}}\left(1+\gamma_{\mathrm{Hg}} \Delta \mathrm{T}\right)$
$\mathrm{V}_{\mathrm{g}}^{\prime}=\mathrm{V}_{\mathrm{g}}\left(1+\gamma_{\mathrm{g}} \Delta \mathrm{T}\right) \quad \ldots(2)$
$\mathrm{V}^{\prime} \mathrm{Hg}-\mathrm{V}_{\mathrm{g}}^{\prime}=\mathrm{V}_{\mathrm{Hg}}-\mathrm{V}_{\mathrm{g}}+\mathrm{V}_{\mathrm{Hg}} \gamma_{\mathrm{Hg}} \Delta \mathrm{T}-\mathrm{V}_{\mathrm{g}} \gamma_{\mathrm{g}} \Delta \mathrm{T}$
$\Rightarrow 1.6=1000 \times \gamma_{\mathrm{Hg}} \times 10-1000 \times 6.5 \times 3 \times 10^{-6} \times 10$
$\Rightarrow \gamma_{\mathrm{Hg}}=\frac{1.6+6.3 \times 3 \times 10^{-2}}{10000}=1.789 \times 10^{-4} \approx 1.8 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
25. $f_{\omega}=880 \mathrm{Kg} / \mathrm{m}^{3}, \quad f_{\mathrm{b}}=900 \mathrm{Kg} / \mathrm{m}^{3}$
$\mathrm{T}_{1}=0^{\circ} \mathrm{C}, \quad \gamma_{\omega}=1.2 \times 10^{-3} /{ }^{\circ} \mathrm{C}$,
$\gamma_{\mathrm{b}}=1.5 \times 10^{-3} /{ }^{\circ} \mathrm{C}$
The sphere begins t sink when,
$(\mathrm{mg})_{\text {sphere }}=$ displaced water
$\Rightarrow V f^{\prime}{ }_{\omega} \mathrm{g}=\mathrm{V} f^{\prime}{ }_{\mathrm{b}} \mathrm{g}$
$\Rightarrow \frac{f_{\omega}}{1+\gamma_{\omega} \Delta \theta}=\frac{f_{\mathrm{b}}}{1+\gamma_{\mathrm{b}} \Delta \theta}$
$\Rightarrow \frac{880}{1+1.2 \times 10^{-3} \Delta \theta}=\frac{900}{1+1.5 \times 10^{-3} \Delta \theta}$
$\Rightarrow 880+880 \times 1.5 \times 10^{-3}(\Delta \theta)=900+900 \times 1.2 \times 10^{-3}(\Delta \theta)$
$\Rightarrow\left(880 \times 1.5 \times 10^{-3}-900 \times 1.2 \times 10^{-3}\right)(\Delta \theta)=20$
$\Rightarrow(1320-1080) \times 10^{-3}(\Delta \theta)=20$
$\Rightarrow \Delta \theta=83.3^{\circ} \mathrm{C} \approx 83^{\circ} \mathrm{C}$
26. $\Delta \mathrm{L}=100^{\circ} \mathrm{C}$

A longitudinal strain develops if and only if, there is an opposition to the expansion.
Since there is no opposition in this case, hence the longitudinal stain here $=$ Zero.

27. $\theta_{1}=20^{\circ} \mathrm{C}, \theta_{2}=50^{\circ} \mathrm{C}$
$\alpha_{\text {steel }}=1.2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
Longitudinal stain $=$?
Stain $=\frac{\Delta \mathrm{L}}{\mathrm{L}}=\frac{\mathrm{L} \alpha \Delta \theta}{\mathrm{L}}=\alpha \Delta \theta$
$=1.2 \times 10^{-5} \times(50-20)=3.6 \times 10^{-4}$
28. $A=0.5 \mathrm{~mm}^{2}=0.5 \times 10^{-6} \mathrm{~m}^{2}$
$\mathrm{T}_{1}=20^{\circ} \mathrm{C}, \mathrm{T}_{2}=0^{\circ} \mathrm{C}$
$\alpha_{\mathrm{s}}=1.2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$,
$\mathrm{Y}=2 \times 2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
Decrease in length due to compression $=L \alpha \Delta \theta$

$Y=\frac{\text { Stress }}{\text { Strain }}=\frac{F}{A} \times \frac{L}{\Delta L} \Rightarrow \Delta L=\frac{F L}{A Y}$
Tension is developed due to (1) \& (2)
Equating them,
$L \alpha \Delta \theta=\frac{\mathrm{FL}}{\mathrm{AY}} \Rightarrow \mathrm{F}=\alpha \Delta \theta \mathrm{A} Y$
$=1.2 \times 10^{-5} \times(20-0) \times 0.5 \times 10^{-5} 2 \times 10^{11}=24 \mathrm{~N}$
29. $\theta_{1}=20^{\circ} \mathrm{C}, \quad \theta_{2}=100^{\circ} \mathrm{C}$
$A=2 \mathrm{~mm}^{2}=2 \times 10^{-6} \mathrm{~m}^{2}$
$\alpha_{\text {steel }}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}, \quad Y_{\text {steel }}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
Force exerted on the clamps = ?
$\frac{\left(\frac{F}{A}\right)}{\text { Strain }}=Y \Rightarrow F=\frac{Y \times \Delta L}{L} \times L=\frac{Y L \alpha \Delta \theta A}{L}=Y A \alpha \Delta \theta$
$=2 \times 10^{11} \times 2 \times 10^{-6} \times 12 \times 10^{-6} \times 80=384 \mathrm{~N}$
30. Let the final length of the system at system of temp. $0^{\circ} \mathrm{C}=\ell_{\theta}$

Initial length of the system $=\ell_{0}$
When temp. changes by θ.
Strain of the system $=\ell_{1}-\frac{\ell_{0}}{\ell_{\theta}}$

Steel
Aluminium
Steel

But the total strain of the system $=\frac{\text { total stress of system }}{\text { total young's modulusof of system }}$
Now, total stress = Stress due to two steel rod + Stress due to Aluminium
But the total strain of the system $=\frac{\text { total stress of system }}{\text { total young's modulusof of system }}$
Now, total stress = Stress due to two steel rod + Stress due to Aluminium
$=\gamma_{s} \alpha_{s} \theta+\gamma_{\mathrm{s}}$ ds $\theta+\gamma_{\mathrm{al}}$ at $\theta=2 \% \alpha_{\mathrm{s}} \theta+\gamma 2 \mathrm{Al} \theta$
Now young' modulus of system $=\gamma_{\mathrm{s}}+\gamma_{\mathrm{s}}+\gamma_{\mathrm{al}}=2 \gamma_{\mathrm{s}}+\gamma_{\mathrm{al}}$
\therefore Strain of system $=\frac{2 \gamma_{\mathrm{s}} \alpha_{\mathrm{s}} \theta+\gamma_{\mathrm{s}} \alpha_{\mathrm{al}} \theta}{2 \gamma_{\mathrm{s}}+\gamma_{\mathrm{al}}}$
$\Rightarrow \frac{\ell_{\theta}-\ell_{0}}{\ell_{0}}=\frac{2 \gamma_{\mathrm{s}} \alpha_{\mathrm{s}} \theta+\gamma_{\mathrm{s}} \alpha_{\mathrm{al}} \theta}{2 \gamma_{\mathrm{s}}+\gamma_{\mathrm{al}}}$
$\Rightarrow \ell_{\theta}=\ell_{0}\left[\frac{1+\alpha_{\mathrm{al}} \gamma_{\mathrm{al}}+2 \alpha_{\mathrm{s}} \gamma_{\mathrm{s}} \theta}{\gamma_{\mathrm{al}}+2 \gamma_{\mathrm{s}}}\right]$
31. The ball tries to expand its volume. But it is kept in the same volume. So it is kept at a constant volume.

So the stress arises
$\frac{P}{\left(\frac{\Delta V}{V}\right)}=B \Rightarrow P=B \frac{\Delta V}{V}=B \times \gamma \Delta \theta$
$=B \times 3 \alpha \Delta \theta=1.6 \times 10^{11} \times 10^{-6} \times 3 \times 12 \times 10^{-6} \times(120-20)=57.6 \times 19^{7} \approx 5.8 \times 10^{8} \mathrm{pa}$.
32. Given
$\mathrm{I}_{0}=$ Moment of Inertia at $0^{\circ} \mathrm{C}$
$\alpha=$ Coefficient of linear expansion
To prove, $\mathrm{I}=\mathrm{I}_{0}=(1+2 \alpha \theta)$
Let the temp. change to θ from $0^{\circ} \mathrm{C}$
$\Delta \mathrm{T}=\theta$
Let ' R ' be the radius of Gyration,
Now, $\mathrm{R}^{\prime}=\mathrm{R}(1+\alpha \theta), \quad \mathrm{I}_{0}=\mathrm{MR}^{2} \quad$ where M is the mass.
Now, $\mathrm{I}^{\prime}=\mathrm{MR}^{\prime 2}=\mathrm{MR}^{2}(1+\alpha \theta)^{2} \approx=\mathrm{MR}^{2}(1+2 \alpha \theta)$
[By binomial expansion or neglecting $\alpha^{2} \theta^{2}$ which given a very small value.]
So, $\mathrm{I}=\mathrm{I}_{0}(1+2 \alpha \theta) \quad$ (proved)
33. Let the initial m.I. at $0^{\circ} \mathrm{C}$ be I_{0}
$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{K}}}$
$\mathrm{I}=\mathrm{I}_{0}(1+2 \alpha \Delta \theta) \quad$ (from above question)
At $5^{\circ} \mathrm{C}, \quad \mathrm{T}_{1}=2 \pi \sqrt{\frac{\mathrm{I}_{0}(1+2 \alpha \Delta \theta)}{\mathrm{K}}}=2 \pi \sqrt{\frac{\mathrm{I}_{0}(1+2 \alpha 5)}{\mathrm{K}}}=2 \pi \sqrt{\frac{\mathrm{I}_{0}(1+10 \alpha)}{\mathrm{K}}}$
At $45^{\circ} \mathrm{C}, \quad \mathrm{T}_{2}=2 \pi \sqrt{\frac{\mathrm{I}_{0}(1+2 \alpha 45)}{\mathrm{K}}}=2 \pi \sqrt{\frac{\mathrm{I}_{0}(1+90 \alpha)}{\mathrm{K}}}$
$\frac{T_{2}}{T_{1}}=\sqrt{\frac{1+90 \alpha}{1+10 \alpha}}=\sqrt{\frac{1+90 \times 2.4 \times 10^{-5}}{1+10 \times 2.4 \times 10^{-5}}} \sqrt{\frac{1.00216}{1.00024}}$
$\%$ change $=\left(\frac{T_{2}}{T_{1}}-1\right) \times 100=0.0959 \%=9.6 \times 10^{-2} \%$
34. $\mathrm{T}_{1}=20^{\circ} \mathrm{C}, \quad \mathrm{T}_{2}=50^{\circ} \mathrm{C}, \quad \Delta \mathrm{T}=30^{\circ} \mathrm{C}$
$\alpha=1.2 \times 10^{5} /{ }^{\circ} \mathrm{C}$
ω remains constant
$\begin{array}{ll}\text { (I) } \omega=\frac{V}{R} & \text { (II) } \omega=\frac{\mathrm{V}^{\prime}}{\mathrm{R}^{\prime}}\end{array}$
Now, $\mathrm{R}^{\prime}=\mathrm{R}(1+\alpha \Delta \theta)=\mathrm{R}+\mathrm{R} \times 1.2 \times 10^{-5} \times 30=1.00036 \mathrm{R}$
From (I) and (II)
$\frac{\mathrm{V}}{\mathrm{R}}=\frac{\mathrm{V}^{\prime}}{\mathrm{R}^{\prime}}=\frac{\mathrm{V}^{\prime}}{1.00036 \mathrm{R}}$
$\Rightarrow V^{\prime}=1.00036 \mathrm{~V}$
$\%$ change $=\frac{(1.00036 \mathrm{~V}-\mathrm{V})}{\mathrm{V}} \times 100=0.00036 \times 100=3.6 \times 10^{-2}$

