CHAPTER - 27

SPECIFIC HEAT CAPACITIES OF GASES

1. $\quad \mathrm{N}=1 \mathrm{~mole}, \quad \mathrm{~W}=20 \mathrm{~g} / \mathrm{mol}, \quad \mathrm{V}=50 \mathrm{~m} / \mathrm{s}$
K.E. of the vessel $=$ Internal energy of the gas
$=(1 / 2) \mathrm{mv}^{2}=(1 / 2) \times 20 \times 10^{-3} \times 50 \times 50=25 \mathrm{~J}$
$25=\mathrm{n} \frac{3}{2} \mathrm{r}(\Delta \mathrm{T}) \Rightarrow 25=1 \times \frac{3}{2} \times 8.31 \times \Delta \mathrm{T} \Rightarrow \Delta \mathrm{T}=\frac{50}{3 \times 8.3} \approx 2 \mathrm{k}$.
2. $\quad \mathrm{m}=5 \mathrm{~g}, \quad \Delta \mathrm{t}=25-15=10^{\circ} \mathrm{C}$
$\mathrm{C}_{\mathrm{V}}=0.172 \mathrm{cal} / \mathrm{g}-{ }^{\circ} \mathrm{CJ}=4.2 \mathrm{~J} / \mathrm{CaI}$.
$d Q=d u+d w$
Now, $\mathrm{V}=0$ (for a rigid body)
So, $d w=0$.
So $d Q=d u$.
$Q=\mathrm{msdt}=5 \times 0.172 \times 10=8.6 \mathrm{cal}=8.6 \times 4.2=36.12$ Joule .
3. $\gamma=1.4, \quad$ w or piston $=50 \mathrm{~kg}$., $\quad \mathrm{A}$ of piston $=100 \mathrm{~cm}^{2}$

Po $=100 \mathrm{kpa}, \quad \mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}, \quad \mathrm{x}=20 \mathrm{~cm}$.
$d w=p d v=\left(\frac{\mathrm{mg}}{\mathrm{A}}+P o\right) A d x=\left(\frac{50 \times 10}{100 \times 10^{-4}}+10^{5}\right) 100 \times 10^{-4} \times 20 \times 10^{-2}=1.5 \times 10^{5} \times 20 \times 10^{-4}=300 \mathrm{~J}$.
$\mathrm{nRdt}=300 \Rightarrow \mathrm{dT}=\frac{300}{\mathrm{nR}}$
$\mathrm{dQ}=\mathrm{nCpdT}=\mathrm{nCp} \times \frac{300}{\mathrm{nR}}=\frac{\mathrm{n} \gamma \mathrm{R} 300}{(\gamma-1) \mathrm{nR}}=\frac{300 \times 1.4}{0.4}=1050 \mathrm{~J}$.
4. $\mathrm{C}_{\mathrm{V}} \mathrm{H}_{2}=2.4 \mathrm{Cal} / \mathrm{g}^{\circ} \mathrm{C}, \quad \mathrm{C}_{\mathrm{P}} \mathrm{H}^{2}=3.4 \mathrm{Cal} / \mathrm{g}^{\circ} \mathrm{C}$
$\mathrm{M}=2 \mathrm{~g} / \mathrm{Mol}, \quad \mathrm{R}=8.3 \times 10^{7} \mathrm{erg} / \mathrm{mol}-{ }^{\circ} \mathrm{C}$
We know, $\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=1 \mathrm{Cal} / \mathrm{g}^{\circ} \mathrm{C}$
So, difference of molar specific heats
$=C_{P} \times M-C_{V} \times M=1 \times 2=2 \mathrm{Cal} / g^{\circ} \mathrm{C}$
Now, $2 \times \mathrm{J}=\mathrm{R} \Rightarrow 2 \times \mathrm{J}=8.3 \times 10^{7} \mathrm{erg} / \mathrm{mol}-{ }^{\circ} \mathrm{C} \quad \Rightarrow \mathrm{J}=4.15 \times 10^{7} \mathrm{erg} / \mathrm{cal}$.
5. $\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}}=7.6, \mathrm{n}=1$ mole, $\quad \Delta \mathrm{T}=50 \mathrm{~K}$
(a) Keeping the pressure constant, $d Q=d u+d w$,
$\Delta \mathrm{T}=50 \mathrm{~K}, \quad \gamma=7 / 6, \mathrm{~m}=1 \mathrm{~mole}$,
$d Q=d u+d w \Rightarrow n C C_{V} d T=d u+R d T \Rightarrow d u=n C p d T-R d T$
$=1 \times \frac{\mathrm{R} \gamma}{\gamma-1} \times \mathrm{dT}-\mathrm{RdT}=\frac{\mathrm{R} \times \frac{7}{6}}{\frac{7}{6}-1} \mathrm{dT}-\mathrm{RdT}$
$=\mathrm{DT}-\mathrm{RdT}=7 \mathrm{RdT}-\mathrm{RdT}=6 \mathrm{RdT}=6 \times 8.3 \times 50=2490 \mathrm{~J}$.
(b) Kipping Volume constant, $\mathrm{dv}=\mathrm{nC} \mathrm{C}_{\mathrm{V}} \mathrm{dT}$

$$
\begin{aligned}
& =1 \times \frac{\mathrm{R}}{\gamma-1} \times \mathrm{dt}=\frac{1 \times 8.3}{\frac{7}{6}-1} \times 50 \\
& =8.3 \times 50 \times 6=2490 \mathrm{~J}
\end{aligned}
$$

(c) Adiabetically $\mathrm{dQ}=0, \quad \mathrm{du}=-\mathrm{dw}$
$=\left[\frac{\mathrm{n} \times \mathrm{R}}{\gamma-1}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)\right]=\frac{1 \times 8.3}{\frac{7}{6}-1}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=8.3 \times 50 \times 6=2490 \mathrm{~J}$
6. $\mathrm{m}=1.18 \mathrm{~g}, \quad \mathrm{~V}=1 \times 10^{3} \mathrm{~cm}^{3}=1 \mathrm{~L} \quad \mathrm{~T}=300 \mathrm{k}, \quad \mathrm{P}=10^{5} \mathrm{~Pa}$
$P V=n R T$ or $n=\frac{P V}{R T}=10^{5}=$ atm.
$N=\frac{P V}{R T}=\frac{1}{8.2 \times 10^{-2} \times 3 \times 10^{2}}=\frac{1}{8.2 \times 3}=\frac{1}{24.6}$
Now, $C_{v}=\frac{1}{n} \times \frac{Q}{d t}=24.6 \times 2=49.2$
$C_{p}=R+C_{v}=1.987+49.2=51.187$
$Q=\mathrm{nC}_{\mathrm{p}} \mathrm{dT}=\frac{1}{24.6} \times 51.187 \times 1=2.08 \mathrm{CaI}$.
7. $V_{1}=100 \mathrm{~cm}^{3}, \quad V_{2}=200 \mathrm{~cm}^{3} \quad P=2 \times 10^{5} \mathrm{~Pa}, \Delta \mathrm{Q}=50 \mathrm{~J}$
(a) $\Delta \mathrm{Q}=\mathrm{du}+\mathrm{dw} \Rightarrow 50=\mathrm{du}+20 \times 10^{5}\left(200-100 \times 10^{-6}\right) \Rightarrow 50=\mathrm{du}+20 \Rightarrow \mathrm{du}=30 \mathrm{~J}$
(b) $30=\mathrm{n} \times \frac{3}{2} \times 8.3 \times 300 \quad\left[\mathrm{U}=\frac{3}{2} \mathrm{nRT}\right.$ for monoatomic $]$

$$
\Rightarrow \mathrm{n}=\frac{2}{3 \times 83}=\frac{2}{249}=0.008
$$

(c) $\mathrm{du}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT} \Rightarrow \mathrm{C}_{\mathrm{v}}=\frac{\text { dndTu }}{=} \frac{30}{0.008 \times 300}=12.5$

$$
C_{p}=C_{v}+R=12.5+8.3=20.3
$$

(d) $C_{v}=12.5$ (Proved above)
8. $\quad Q=A m t$ of heat given

Work done $=\frac{\mathrm{Q}}{2}, \quad \Delta \mathrm{Q}=\mathrm{W}+\Delta \mathrm{U}$
for monoatomic gas $\Rightarrow \Delta U=Q-\frac{Q}{2}=\frac{Q}{2}$
$V=n \frac{3}{2} R T=\frac{Q}{2}=n T \times \frac{3}{2} R=3 R \times n T$
Again $\mathrm{Q}=\mathrm{n}$ CpdT Where $\mathrm{C}_{\mathrm{p}}>$ Molar heat capacity at const. pressure.
$3 R_{n T}=$ ndTC $_{P} \Rightarrow C_{P}=3 R$
9. $\mathrm{P}=\mathrm{KV} \Rightarrow \frac{\mathrm{nRT}}{\mathrm{V}}=\mathrm{KV} \Rightarrow R T=K V^{2} \Rightarrow R \Delta T=2 K V \Delta U \Rightarrow \frac{R \Delta T}{2 K V}=d v$
$d Q=d u+d w \Rightarrow m c d T=C_{v} d T+p d v \Rightarrow m s d T=C_{V} d T+\frac{P R d F}{2 K V}$
$\Rightarrow m s=C_{V}+\frac{R K V}{2 K V} \Rightarrow C_{P}+\frac{R}{2}$
10. $\frac{C_{P}}{C_{V}}=\gamma, \quad C_{P}-C_{V}=R, \quad C_{V}=\frac{r}{\gamma-1}, \quad C_{P}=\frac{\gamma R}{\gamma-1}$
$P d v=\frac{1}{b+1}(R d t)$
$\Rightarrow 0=C_{V} d T+\frac{1}{b+1}(R d t) \Rightarrow \frac{1}{b+1}=\frac{-C_{V}}{R}$
$\Rightarrow b+1=\frac{-R}{C_{V}}=\frac{-\left(C_{P}-C_{V}\right)}{C_{V}}=-\gamma+1 \Rightarrow b=-\gamma$
11. Considering two gases, in $\operatorname{Gas}(1)$ we have,
$\gamma, C p_{1}$ (Sp . Heat at const. ' P '), Cv_{1} (Sp . Heat at const. 'V'), n_{1} (No. of moles)
$\frac{\mathrm{Cp}_{1}}{\mathrm{Cv}_{1}}=\gamma \& \mathrm{Cp}_{1}-\mathrm{Cv}_{1}=\mathrm{R}$
$\Rightarrow \gamma \mathrm{Cv}_{1}-\mathrm{Cv}_{1}=\mathrm{R} \Rightarrow \mathrm{Cv}_{1}(\gamma-1)=\mathrm{R}$
$\Rightarrow \mathrm{Cv}_{1}=\frac{\mathrm{R}}{\gamma-1} \& \mathrm{Cp}_{1}=\frac{\gamma \mathrm{R}}{\gamma-1}$
In $\operatorname{Gas}(2)$ we have, γ, Cp_{2} (Sp. Heat at const. ' P '), Cv_{2} (Sp . Heat at const. ' V '), n_{2} (No. of moles)
$\frac{C p_{2}}{C v_{2}}=\gamma \& C p_{2}-C v_{2}=R \Rightarrow \gamma \mathrm{Cv}_{2}-\mathrm{Cv}_{2}=\mathrm{R} \Rightarrow \mathrm{Cv}_{2}(\gamma-1)=\mathrm{R} \Rightarrow \mathrm{Cv}_{2}=\frac{\mathrm{R}}{\gamma-1} \& \mathrm{Cp}_{2}=\frac{\gamma \mathrm{R}}{\gamma-1}$
Given $\mathrm{n}_{1}: \mathrm{n}_{2}=1: 2$
$\mathrm{dU}_{1}=\mathrm{nCv}_{1} \mathrm{dT} \& \mathrm{dU}_{2}=2 \mathrm{nCv}_{2} \mathrm{dT}=3 \mathrm{nCvdT}$
$\Rightarrow C_{V}=\frac{\mathrm{Cv}_{1}+2 \mathrm{Cv}_{2}}{3}=\frac{\frac{\mathrm{R}}{\gamma-1}+\frac{2 \mathrm{R}}{\gamma-1}}{3}=\frac{3 \mathrm{R}}{3(\gamma-1)}=\frac{\mathrm{R}}{\gamma-1}$
$\& C p=\gamma C v=\frac{\gamma r}{\gamma-1}$
So, $\frac{\mathrm{Cp}}{\mathrm{Cv}}=\gamma[$ from (1) \& (2)]
12. $C p^{\prime}=2.5 R C p^{\prime \prime}=3.5 R$
$\mathrm{Cv}^{\prime}=1.5 \mathrm{R} \quad \mathrm{Cv}^{\prime \prime}=2.5 \mathrm{R}$
$n_{1}=n_{2}=1 \mathrm{~mol} \quad\left(n_{1}+n_{2}\right) C_{v} d T=n_{1} C_{v} d T+n_{2} C_{v} d T$
$\Rightarrow C_{V}=\frac{n_{1} \mathrm{Cv}^{\prime}+\mathrm{n}_{2} \mathrm{Cv}^{\prime \prime}}{\mathrm{n}_{1}+\mathrm{n}_{2}}=\frac{1.5 \mathrm{R}+2.5 \mathrm{R}}{2} 2 \mathrm{R}$
$C_{P}=C_{V}+R=2 R+R=3 R$
$\gamma=\frac{C_{p}}{C_{V}}=\frac{3 R}{2 R}=1.5$
13. $\mathrm{n}=\frac{1}{2}$ mole, $\quad \mathrm{R}=\frac{25}{3} \mathrm{~J} / \mathrm{mol}-\mathrm{k}, \quad \gamma=\frac{5}{3}$
(a) Temp at $A=T_{a}, P_{a} V_{a}=n R T_{a}$
$\Rightarrow \mathrm{T}_{\mathrm{a}}=\frac{\mathrm{P}_{\mathrm{a}} \mathrm{V}_{\mathrm{a}}}{\mathrm{nR}}=\frac{5000 \times 10^{-6} \times 100 \times 10^{3}}{\frac{1}{2} \times \frac{25}{3}}=120 \mathrm{k}$.

Similarly temperatures at point $b=240 \mathrm{k}$ at C it is 480 k and at D it is 240 k .
(b) For ab process,
$d Q=n C p d T$
[since $a b$ is isobaric]

$$
=\frac{1}{2} \times \frac{R \gamma}{\gamma-1}\left(T_{b}-T_{a}\right)=\frac{1}{2} \times \frac{\frac{35}{3} \times \frac{5}{3}}{\frac{5}{3}-1} \times(240-120)=\frac{1}{2} \times \frac{125}{9} \times \frac{3}{2} \times 120=1250 \mathrm{~J}
$$

For $b c, \quad d Q=d u+d w \quad[d q=0$, Isochorie process]
$\Rightarrow d Q=d u=n C_{v} d T=\frac{n R}{\gamma-1}\left(T_{c}-T_{a}\right)=\frac{1}{2} \times \frac{\frac{25}{3}}{\left(\frac{5}{3}-1\right)}(240)=\frac{1}{2} \times \frac{25}{3} \times \frac{3}{2} \times 240=1500 \mathrm{~J}$
(c) Heat liberated in $\mathrm{cd}=-\mathrm{nC}_{\mathrm{p}} \mathrm{dT}$
$=\frac{-1}{2} \times \frac{n R}{\gamma-1}\left(T_{d}-T_{c}\right)=\frac{-1}{2} \times \frac{125}{3} \times \frac{3}{2} \times 240=2500 \mathrm{~J}$
Heat liberated in da $=-\mathrm{nC}_{\mathrm{v}} \mathrm{dT}$
$=\frac{-1}{2} \times \frac{R}{\gamma-1}\left(\mathrm{~T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{d}}\right)=\frac{-1}{2} \times \frac{25}{2} \times(120-240)=750 \mathrm{~J}$
14. (a) For $a, b^{\prime} V^{\prime}$ is constant

So, $\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \Rightarrow \frac{100}{300}=\frac{200}{T_{2}} \Rightarrow T_{2}=\frac{200 \times 300}{100}=600 \mathrm{k}$
For b, c ' P ' is constant
So, $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \Rightarrow \frac{100}{600}=\frac{150}{T_{2}} \Rightarrow T_{2}=\frac{600 \times 150}{100}=900 \mathrm{k}$

(b) Work done $=$ Area enclosed under the graph $50 \mathrm{cc} \times 200 \mathrm{kpa}=50 \times 10^{-6} \times 200 \times 10^{3} \mathrm{~J}=10 \mathrm{~J}$
(c) 'Q' Supplied $=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}$

Now, $n=\frac{P V}{R T}$ considering at pt. 'b'
$C_{v}=\frac{R}{\gamma-1} d T=300 a, b$.
$Q_{b c}=\frac{P V}{R T} \times \frac{R}{\gamma-1} d T=\frac{200 \times 10^{3} \times 100 \times 10^{-6}}{600 \times 0.67} \times 300=14.925 \quad(\therefore \gamma=1.67)$
Q supplied to be $\mathrm{nC}_{\mathrm{p}} \mathrm{dT} \quad\left[\therefore \mathrm{C}_{\mathrm{p}}=\frac{\gamma \mathrm{R}}{\gamma-1}\right]$
$=\frac{P V}{R T} \times \frac{\gamma R}{\gamma-1} d T=\frac{200 \times 10^{3} \times 150 \times 10^{-6}}{8.3 \times 900} \times \frac{1.67 \times 8.3}{0.67} \times 300=24.925$
(d) $Q=\Delta U+w$

Now, $\Delta \mathrm{U}=\mathrm{Q}-\mathrm{w}=$ Heat supplied - Work done $=(24.925+14.925)-1=29.850$
15. In Joly's differential steam calorimeter
$C_{v}=\frac{m_{2} L}{m_{1}\left(\theta_{2}-\theta_{1}\right)}$
$\mathrm{m}_{2}=$ Mass of steam condensed $=0.095 \mathrm{~g}, \quad L=540 \mathrm{Cal} / \mathrm{g}=540 \times 4.2 \mathrm{~J} / \mathrm{g}$
$\mathrm{m}_{1}=$ Mass of gas present $=3 \mathrm{~g}, \quad \theta_{1}=20^{\circ} \mathrm{C}, \quad \theta_{2}=100^{\circ} \mathrm{C}$
$\Rightarrow C_{v}=\frac{0.095 \times 540 \times 4.2}{3(100-20)}=0.89 \approx 0.9 \mathrm{~J} / \mathrm{g}-\mathrm{K}$
16. $\gamma=1.5$

Since it is an adiabatic process, So $\mathrm{PV}^{\gamma}=$ const.
(a) $\mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma} \quad$ Given $\mathrm{V}_{1}=4 \mathrm{~L}, \mathrm{~V}_{2}=3 \mathrm{~L}, \quad \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=$?
$\Rightarrow \frac{P_{2}}{P_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}=\left(\frac{4}{3}\right)^{1.5}=1.5396 \approx 1.54$
(b) $\mathrm{TV}^{\gamma-1}=$ Const.
$\mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1} \Rightarrow \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma-1}=\left(\frac{4}{3}\right)^{0.5}=1.154$
17. $\mathrm{P}_{1}=2.5 \times 10^{5} \mathrm{~Pa}, \mathrm{~V}_{1}=100 \mathrm{cc}, \quad \mathrm{T}_{1}=300 \mathrm{k}$
(a) $P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}$ $\Rightarrow 2.5 \times 10^{5} \times V^{1.5}=\left(\frac{V}{2}\right)^{1.5} \times P_{2}$
$\Rightarrow P_{2}=2^{1.5} \times 2.5 \times 10^{5}=7.07 \times 10^{5} \approx 7.1 \times 10^{5}$
(b) $\mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1} \Rightarrow 300 \times(100)^{1.5-1}=\mathrm{T}_{2} \times(50)^{1.5-1}$
$\Rightarrow \mathrm{T}_{2}=\frac{3000}{7.07}=424.32 \mathrm{k} \approx 424 \mathrm{k}$
(c) Work done by the gas in the process
$W=\frac{m R}{\gamma-1}\left[T_{2}-T_{1}\right]=\frac{P_{1} V_{1}}{T(\gamma-1)}\left[T_{2}-T_{1}\right]$
$=\frac{2.5 \times 10^{5} \times 100 \times 10^{-6}}{300(1,5-1)}[424-300]=\frac{2.5 \times 10}{300 \times 0.5} \times 124=20.72 \approx 21 \mathrm{~J}$
18. $\gamma=1.4, \quad \mathrm{~T}_{1}=20^{\circ} \mathrm{C}=293 \mathrm{k}, \quad \mathrm{P}_{1}=2 \mathrm{~atm}, \quad \mathrm{p}_{2}=1 \mathrm{~atm}$

We know for adiabatic process,
$\mathrm{P}_{1}{ }^{1-\gamma} \times \mathrm{T}_{1}{ }^{\gamma}=\mathrm{P}_{2}{ }^{1-\gamma} \times \mathrm{T}_{2}^{\gamma}$ or $(2)^{1-1.4} \times(293)^{1.4}=(1)^{1-1.4} \times \mathrm{T}_{2}^{1.4}$
$\Rightarrow(2)^{0.4} \times(293)^{1.4}=T_{2}^{1.4} \Rightarrow 2153.78=T_{2}^{1.4} \Rightarrow T_{2}=(2153.78)^{1 / 1.4}=240.3 \mathrm{~K}$
19. $\mathrm{P}_{1}=100 \mathrm{KPa}=10^{5} \mathrm{~Pa}, \quad \mathrm{~V}_{1}=400 \mathrm{~cm}^{3}=400 \times 10^{-6} \mathrm{~m}^{3}, \quad \mathrm{~T}_{1}=300 \mathrm{k}$,
$\gamma=\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}}=1.5$
(a) Suddenly compressed to $\mathrm{V}_{2}=100 \mathrm{~cm}^{3}$
$P_{1} \vee_{1}^{\gamma}=P_{2} V_{2}^{\gamma} \Rightarrow 10^{5}(400)^{1.5}=P_{2} \times(100)^{1.5}$
$\Rightarrow P_{2}=10^{5} \times(4)^{1.5}=800 \mathrm{KPa}$
$\mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1} \Rightarrow 300 \times(400)^{1.5-1}=\mathrm{T}_{2} \times(100)^{1.5-1} \Rightarrow \mathrm{~T}_{2}=\frac{300 \times 20}{10}=600 \mathrm{~K}$
(b) Even if the container is slowly compressed the walls are adiabatic so heat transferred is 0 .

Thus the values remain, $\mathrm{P}_{2}=800 \mathrm{KPa}, \quad \mathrm{T}_{2}=600 \mathrm{~K}$.
20. Given $\frac{C_{P}}{C_{V}}=\gamma \quad P_{0}$ (Initial Pressure), $\quad V_{0}$ (Initial Volume)
(a) (i) Isothermal compression, $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$ or, $\mathrm{P}_{0} \mathrm{~V}_{0}=\frac{\mathrm{P}_{2} \mathrm{~V}_{0}}{2} \Rightarrow \mathrm{P}_{2}=2 \mathrm{P}_{0}$
(ii) Adiabatic Compression $\mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}$ or $2 \mathrm{P}_{0}\left(\frac{\mathrm{~V}_{0}}{2}\right)^{\gamma}=\mathrm{P} 1\left(\frac{\mathrm{~V}_{0}}{4}\right)^{\gamma}$
$\Rightarrow P^{\prime}=\frac{V_{0}^{\gamma}}{2^{\gamma}} \times 2 P_{0} \times \frac{4^{\gamma}}{V_{0}^{\gamma}}=2^{\gamma} \times 2 P_{0} \Rightarrow P_{0} 2^{\gamma+1}$
(b) (i) Adiabatic compression $\mathrm{P}_{1} \mathrm{~V}_{1}{ }^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}$ or $\mathrm{P}_{0} \mathrm{~V}_{0}^{\gamma}=\mathrm{P}^{\prime}\left(\frac{\mathrm{V}_{0}}{2}\right)^{\gamma} \Rightarrow \mathrm{P}^{\prime}=\mathrm{P}_{0} 2^{\gamma}$
(ii) Isothermal compression $P_{1} V_{1}=P_{2} V_{2}$ or $2^{\gamma} P_{0} \times \frac{V_{0}}{2}=P_{2} \times \frac{V_{0}}{4} \Rightarrow P_{2}=P_{0} 2^{\gamma+1}$
21. Initial pressure $=P_{0}$

Initial Volume $=\mathrm{V}_{0}$
$\gamma=\frac{C_{P}}{C_{V}}$
(a) Isothermally to pressure $\frac{\mathrm{P}_{0}}{2}$
$\mathrm{P}_{0} \mathrm{~V}_{0}=\frac{\mathrm{P}_{0}}{2} \mathrm{~V}_{1} \Rightarrow \mathrm{~V}_{1}=2 \mathrm{~V}_{0}$
Adiabetically to pressure $=\frac{P_{0}}{4}$
$\frac{\mathrm{P}_{0}}{2}\left(\mathrm{~V}_{1}\right)^{\gamma}=\frac{\mathrm{P}_{0}}{4}\left(\mathrm{~V}_{2}\right)^{\gamma} \Rightarrow \frac{\mathrm{P}_{0}}{2}\left(2 \mathrm{~V}_{0}\right)^{\gamma}=\frac{\mathrm{P}_{0}}{4}\left(\mathrm{~V}_{2}\right)^{\gamma}$
$\Rightarrow 2^{\gamma+1} \mathrm{~V}_{0}^{\gamma}=\mathrm{V}_{2}^{\gamma} \Rightarrow \mathrm{V}_{2}=2^{(\gamma+1) / \gamma} \mathrm{V}_{0}$
\therefore Final Volume $=2^{(\gamma+1) / \gamma} \mathrm{V}_{0}$
(b) Adiabetically to pressure $\frac{P_{0}}{2}$ to P_{0}
$P_{0} \times\left(2^{\gamma+1} V_{0}^{\gamma}\right)=\frac{P_{0}}{2} \times\left(V^{\prime}\right)^{\gamma}$
Isothermal to pressure $\frac{\mathrm{P}_{0}}{4}$
$\frac{\mathrm{P}_{0}}{2} \times 2^{1 / \gamma} \mathrm{V}_{0}=\frac{\mathrm{P}_{0}}{4} \times \mathrm{V}^{\prime \prime} \Rightarrow \mathrm{V}^{\prime \prime}=2^{(\gamma+1) / \gamma} \mathrm{V}_{0}$
\therefore Final Volume $=2^{(\gamma+1) / \gamma} V_{0}$
22. $P V=n R T$

Given $P=150 \mathrm{KPa}=150 \times 10^{3} \mathrm{~Pa}, \quad \mathrm{~V}=150 \mathrm{~cm}^{3}=150 \times 10^{-6} \mathrm{~m}^{3}, \quad \mathrm{~T}=300 \mathrm{k}$
(a) $n=\frac{P V}{R T}=\frac{150 \times 10^{3} \times 150 \times 10^{-6}}{8.3 \times 300}=9.036 \times 10^{-3}=0.009$ moles.
(b) $\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}}=\gamma \Rightarrow \frac{\gamma \mathrm{R}}{(\gamma-1) \mathrm{C}_{V}}=\gamma \quad\left[\therefore \mathrm{C}_{\mathrm{P}}=\frac{\gamma \mathrm{R}}{\gamma-1}\right]$
$\Rightarrow C_{V}=\frac{R}{\gamma-1}=\frac{8.3}{1.5-1}=\frac{8.3}{0.5}=2 \mathrm{R}=16.6 \mathrm{~J} / \mathrm{mole}$
(c) Given $\mathrm{P}_{1}=150 \mathrm{KPa}=150 \times 10^{3} \mathrm{~Pa}, \quad \mathrm{P}_{2}=$?
$V_{1}=150 \mathrm{~cm}^{3}=150 \times 10^{-6} \mathrm{~m}^{3}, \quad \gamma=1.5$
$\mathrm{V}_{2}=50 \mathrm{~cm}^{3}=50 \times 10^{-6} \mathrm{~m}^{3}, \quad \mathrm{~T}_{1}=300 \mathrm{k}, \quad \mathrm{T}_{2}=$?
Since the process is adiabatic Hence $-\mathrm{P}_{1} \mathrm{~V}_{1}{ }^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}{ }^{\gamma}$

$$
\begin{aligned}
& \Rightarrow 150 \times 10^{3}\left(150 \times 10^{-6}\right)^{\gamma}=P_{2} \times\left(50 \times 10^{-6}\right)^{\gamma} \\
& \Rightarrow P_{2}=150 \times 10^{3} \times\left(\frac{150 \times 10^{-6}}{50 \times 10^{-6}}\right)^{1.5}=150000 \times 3^{1.5}=779.422 \times 10^{3} \mathrm{~Pa} \approx 780 \mathrm{KPa}
\end{aligned}
$$

(d) $\Delta Q=W+\Delta U$ or $W=-\Delta U \quad[\therefore \Delta U=0$, in adiabatic $]$
$=-\mathrm{nC} \mathrm{V}_{\mathrm{V}} \mathrm{dT}=-0.009 \times 16.6 \times(520-300)=-0.009 \times 16.6 \times 220=-32.8 \mathrm{~J} \approx-33 \mathrm{~J}$
(e) $\Delta \mathrm{U}=\mathrm{nC} \mathrm{C}_{\mathrm{V}} \mathrm{dT}=0.009 \times 16.6 \times 220 \approx 33 \mathrm{~J}$
23. $V_{A}=V_{B}=V_{C}$

For A , the process is isothermal
$P_{A} V_{A}=P_{A^{\prime}} V_{A^{\prime}}^{\prime} \Rightarrow P_{A^{\prime}}^{\prime}=P_{A} \frac{V_{A}}{V_{A}^{\prime}}=P_{A} \times \frac{1}{2}$
For B, the process is adiabatic,
$P_{A}\left(\mathrm{~V}_{\mathrm{B}}\right)^{\gamma}=\mathrm{P}_{\mathrm{A}^{\prime}}\left(\mathrm{V}_{\mathrm{B}}\right)^{\gamma}=\mathrm{P}_{\mathrm{B}}{ }^{\prime}=\mathrm{P}_{\mathrm{B}}\left(\frac{\mathrm{V}_{\mathrm{B}}}{\mathrm{V}_{\mathrm{B}}^{\prime}}\right)^{\gamma}=\mathrm{P}_{\mathrm{B}} \times\left(\frac{1}{2}\right)^{1.5}=\frac{\mathrm{P}_{\mathrm{B}}}{2^{1.5}}$
For, C , the process is isobaric
$\frac{\mathrm{V}_{\mathrm{C}}}{\mathrm{T}_{\mathrm{C}}}=\frac{\mathrm{V}_{\mathrm{C}}{ }^{\prime}}{\mathrm{T}_{\mathrm{C}}{ }^{\prime}} \Rightarrow \frac{\mathrm{V}_{\mathrm{C}}}{\mathrm{T}_{\mathrm{C}}}=\frac{2 \mathrm{~V}_{\mathrm{C}}{ }^{\prime}}{\mathrm{T}_{\mathrm{C}}{ }^{\prime}} \Rightarrow \mathrm{T}_{\mathrm{C}^{\prime}}=\frac{2}{\mathrm{~T}_{\mathrm{C}}}$
Final pressures are equal.
$=\frac{p_{A}}{2}=\frac{P_{B}}{2^{1.5}}=P_{C} \Rightarrow P_{A}: P_{B}: P_{C}=2: 2^{1.5}: 1=2: 2 \sqrt{2}: 1$
24. $\mathrm{P}_{1}=$ Initial Pressure $\quad \mathrm{V}_{1}=$ Initial Volume $\quad \mathrm{P}_{2}=$ Final Pressure $\quad \mathrm{V}_{2}=$ Final Volume

Given, $\mathrm{V}_{2}=2 \mathrm{~V}_{1}$, Isothermal workdone $=\mathrm{nRT} \mathrm{T}_{1} \operatorname{Ln}\left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right)$

Adiabatic workdone $=\frac{P_{1} \mathrm{~V}_{1}-\mathrm{P}_{2} \mathrm{~V}_{2}}{\gamma-1}$
Given that workdone in both cases is same.
Hence $n R T_{1} \operatorname{Ln}\left(\frac{V_{2}}{V_{1}}\right)=\frac{P_{1} V_{1}-P_{2} V_{2}}{\gamma-1} \Rightarrow(\gamma-1) \ln \left(\frac{V_{2}}{V_{1}}\right)=\frac{P_{1} V_{1}-P_{2} V_{2}}{n R T_{1}}$
$\Rightarrow(\gamma-1) \ln \left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)=\frac{\mathrm{nRT} T_{1}-\mathrm{nRT}_{2}}{\mathrm{nRT}} \Rightarrow(\gamma-1) \ln 2=\frac{\mathrm{T}_{1}-\mathrm{T}_{1}}{\mathrm{~T}_{1}} \quad \ldots$ (i) $\quad\left[\therefore \mathrm{V}_{2}=2 \mathrm{~V}_{1}\right]$
We know TV ${ }^{-1}=$ const. in adiabatic Process.
$\mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1}$, or $\mathrm{T}_{1}\left(\mathrm{~V}_{2}\right)^{\gamma-1}=\mathrm{T}_{2} \times(2)^{\gamma-1} \times\left(\mathrm{V}_{1}\right)^{\gamma-1}$
Or, $\mathrm{T}_{1}=2^{\gamma-1} \times \mathrm{T}_{2}$ or $\mathrm{T}_{2}=\mathrm{T}_{1}^{1-\gamma}$
From (i) \& (ii)
$(\gamma-1) \ln 2=\frac{T_{1}-T_{1} \times 2^{1-\gamma}}{T_{1}} \Rightarrow(\gamma-1) \ln 2=1-2^{1-\gamma}$
25. $\gamma=1.5, \quad \mathrm{~T}=300 \mathrm{k}, \quad \mathrm{V}=1 \mathrm{Lv}=\frac{1}{2} \mathrm{l}$
(a) The process is adiabatic as it is sudden,
$P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} \Rightarrow P_{1}\left(V_{0}\right)^{\gamma}=P_{2}\left(\frac{V_{0}}{2}\right)^{\gamma} \Rightarrow P_{2}=P_{1}\left(\frac{1}{1 / 2}\right)^{1.5}=P_{1}(2)^{1.5} \Rightarrow \frac{P_{2}}{P_{1}}=2^{1.5}=2 \sqrt{2}$
(b) $\mathrm{P}_{1}=100 \mathrm{KPa}=10^{5} \mathrm{~Pa} W=\frac{\mathrm{nR}}{\gamma-1}\left[\mathrm{~T}_{1}-\mathrm{T}_{2}\right]$
$\mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma-1} \Rightarrow 300 \times(1)^{1.5-1}=\mathrm{T}_{2}(0.5)^{1.5-1} \Rightarrow 300 \times 1=\mathrm{T}_{2} \sqrt{0.5}$
$\mathrm{T}_{2}=300 \times \sqrt{\frac{1}{0.5}}=300 \sqrt{2} \mathrm{~K}$
$P_{1} V_{1}=n R T_{1} \Rightarrow n=\frac{P_{1} V_{1}}{R T_{1}}=\frac{10^{5} \times 10^{-3}}{R \times 300}=\frac{1}{3 R} \quad\left(V\right.$ in $\left.m^{3}\right)$
$w=\frac{n R}{\gamma-1}\left[T_{1}-T_{2}\right]=\frac{1 R}{3 R(1.5-1)}[300-300 \sqrt{2}]=\frac{300}{3 \times 0.5}(1-\sqrt{2})=-82.8 \mathrm{~J} \approx-82 \mathrm{~J}$.
(c) Internal Energy,
$d Q=0, \quad \Rightarrow d u=-d w=-(-82.8) \mathrm{J}=82.8 \mathrm{~J} \approx 82 \mathrm{~J}$.
(d) Final Temp $=300 \sqrt{2}=300 \times 1.414 \times 100=424.2 \mathrm{k} \approx 424 \mathrm{k}$.
(e) The pressure is kept constant. \therefore The process is isobaric.

Work done $=n R d T=\frac{1}{3 R} \times R \times(300-300 \sqrt{2}) \quad$ Final Temp $=300 \mathrm{~K}$

$$
=-\frac{1}{3} \times 300(0.414)=-41.4 \mathrm{~J} . \text { Initial Temp }=300 \sqrt{2}
$$

(f) Initial volume $\Rightarrow \frac{V_{1}}{T_{1}}=\frac{V_{1}^{\prime}}{T_{1}^{\prime}}=V_{1}^{\prime}=\frac{V_{1}}{T_{1}} \times T_{1}^{\prime}=\frac{1}{2 \times 300 \times \sqrt{2}} \times 300=\frac{1}{2 \sqrt{2}} \mathrm{~L}$.

Final volume $=1 \mathrm{~L}$
Work done in isothermal $=n R T \ln \frac{V_{2}}{V_{1}}$

$$
=\frac{1}{3 R} \times R \times 300 \ln \left(\frac{1}{1 / 2 \sqrt{2}}\right)=100 \times \ln (2 \sqrt{2})=100 \times 1.039 \approx 103
$$

(g) Net work done $=W_{A}+W_{B}+W_{C}=-82-41.4+103=-20.4 \mathrm{~J}$.
26. Given $\gamma=1.5$

We know fro adiabatic process $\mathrm{TV}^{\gamma-1}=$ Const.
So, $\mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1}$
As, it is an adiabatic process and all the other conditions are same. Hence the
 above equation can be applied.
So, $T_{1} \times\left(\frac{3 V}{4}\right)^{1.5-1}=T_{2} \times\left(\frac{V}{4}\right)^{1.5-1} \Rightarrow T_{1} \times\left(\frac{3 V}{4}\right)^{0.5}=T_{2} \times\left(\frac{V}{4}\right)^{0.5}$
$\Rightarrow \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\left(\frac{\mathrm{V}}{4}\right)^{0.5} \times\left(\frac{4}{3 \mathrm{~V}}\right)^{0.5}=\frac{1}{\sqrt{3}}$
So, $T_{1}: T_{2}=1: \sqrt{3}$

27. $\mathrm{V}=200 \mathrm{~cm}^{3}, \quad \mathrm{C}=12.5 \mathrm{~J} / \mathrm{mol}-\mathrm{k}, \quad \mathrm{T}=300 \mathrm{k}, \quad \mathrm{P}=75 \mathrm{~cm}$
(a) No. of moles of gas in each vessel,
$\frac{P V}{R T}=\frac{75 \times 13.6 \times 980 \times 200}{8.3 \times 10^{7} \times 300}=0.008$
(b) Heat is supplied to the gas but $d v=0$
$\mathrm{dQ}=\mathrm{du} \Rightarrow 5=\mathrm{nC}_{\mathrm{V}} \mathrm{dT} \Rightarrow 5=0.008 \times 12.5 \times \mathrm{dT} \Rightarrow \mathrm{dT}=\frac{5}{0.008 \times 12.5}$ for (A)
For (B) $\mathrm{dT}=\frac{10}{0.008 \times 12.5} \quad \because \frac{\mathrm{P}}{\mathrm{T}}=\frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{A}}}$ [For container A$]$
$\Rightarrow \frac{75}{300}=\frac{P_{A} \times 0.008 \times 12.5}{5} \Rightarrow P_{A}=\frac{75 \times 5}{300 \times 0.008 \times 12.5}=12.5 \mathrm{~cm}$ of Hg .
$\because \frac{P}{T}=\frac{P_{B}}{T_{B}}$ [For Container $\left.B\right] \Rightarrow \frac{75}{300}=\frac{P_{B} \times 0.008 \times 12.5}{10} \Rightarrow P_{B}=2 P_{A}=25 \mathrm{~cm}$ of Hg.
Mercury moves by a distance $\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{A}}=25-12.5=12.5 \mathrm{Cm}$.
28. $\mathrm{mHe}=0.1 \mathrm{~g}, \quad \gamma=1.67, \quad \mu=4 \mathrm{~g} / \mathrm{mol}, \quad \mathrm{mH}_{2}=$?
$\mu=28 / \mathrm{mol} \gamma_{2}=1.4$
Since it is an adiabatic surrounding
$\mathrm{He} \mathrm{dQ}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}=\frac{0.1}{4} \times \frac{\mathrm{R}}{\gamma-1} \times \mathrm{dT}=\frac{0.1}{4} \times \frac{\mathrm{R}}{(1.67-1)} \times \mathrm{dT}$
$\mathrm{H}_{2}=\mathrm{nC}_{\mathrm{V}} \mathrm{dT}=\frac{\mathrm{m}}{2} \times \frac{\mathrm{R}}{\gamma-1} \times \mathrm{dT}=\frac{\mathrm{m}}{2} \times \frac{\mathrm{R}}{1.4-1} \times \mathrm{dT} \quad$ [Where m is the rqd.

Mass of H_{2}]
Since equal amount of heat is given to both and $\Delta \mathrm{T}$ is same in both.
Equating (i) \& (ii) we get
$\frac{0.1}{4} \times \frac{R}{0.67} \times \mathrm{dT}=\frac{\mathrm{m}}{2} \times \frac{\mathrm{R}}{0.4} \times \mathrm{dT} \Rightarrow \mathrm{m}=\frac{0.1}{2} \times \frac{0.4}{0.67}=0.0298 \approx 0.03 \mathrm{~g}$
29. Initial pressure $=P_{0}, \quad$ Initial Temperature $=T_{0}$

Initial Volume $=V_{0}$
$\frac{C_{P}}{C_{V}}=\gamma$

(a) For the diathermic vessel the temperature inside remains constant
$P_{1} \mathrm{~V}_{1}-\mathrm{P}_{2} \mathrm{~V}_{2} \Rightarrow \mathrm{P}_{0} \mathrm{~V}_{0}=\mathrm{P}_{2} \times 2 \mathrm{~V}_{0} \Rightarrow \mathrm{P}_{2}=\frac{\mathrm{P}_{0}}{2}, \quad$ Temperature $=\mathrm{T}_{\mathrm{o}}$
For adiabatic vessel the temperature does not remains constant. The process is adiabatic
$\mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1} \Rightarrow \mathrm{~T}_{0} \mathrm{~V}_{0}^{\gamma-1}=\mathrm{T}_{2} \times\left(2 \mathrm{~V}_{0}\right)^{\gamma-1} \Rightarrow \mathrm{~T}_{2}=\mathrm{T}_{0}\left(\frac{\mathrm{~V}_{0}}{2 \mathrm{~V}_{0}}\right)^{\gamma-1}=\mathrm{T}_{0} \times\left(\frac{1}{2}\right)^{\gamma-1}=\frac{\mathrm{T}_{0}}{2^{\gamma-1}}$
$P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} \Rightarrow P_{0} V_{0}^{\gamma}=p_{1}\left(2 V_{0}\right)^{\gamma} \Rightarrow P_{1}=P_{0}\left(\frac{V_{0}}{2 V_{0}}\right)^{\gamma}=\frac{P_{0}}{2^{\gamma}}$
(b) When the values are opened, the temperature remains T_{0} through out
$P_{1}=\frac{n_{1} R T_{0}}{4 V_{0}}, P_{2}=\frac{n_{2} R T_{0}}{4 V_{0}}$ [Total value after the expt $=2 \mathrm{~V}_{0}+2 \mathrm{~V}_{0}=4 \mathrm{~V}_{0}$]
$\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}=\frac{\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right) \mathrm{RT} T_{0}}{4 \mathrm{~V}_{0}}=\frac{2 n R T_{0}}{4 \mathrm{~V}_{0}}=\frac{n R T_{0}}{2 \mathrm{~V}}=\frac{\mathrm{P}_{0}}{2}$
30. For an adiabatic process, $\mathrm{Pv}^{\gamma}=$ Const.

There will be a common pressure ' P ' when the equilibrium is reached
Hence $P_{1}\left(\frac{V_{0}}{2}\right)^{\gamma}=P\left(V^{\prime}\right)^{\gamma}$

For left $P=P_{1}\left(\frac{V_{0}}{2}\right)^{\gamma}\left(V^{\prime}\right)^{\gamma}$
For Right $P=P_{2}\left(\frac{V_{0}}{2}\right)^{\gamma}\left(V_{0}-V^{\prime}\right)^{\gamma}$

Equating ' P ' for both left \& right
$=\frac{\mathrm{P}_{1}}{\left(\mathrm{~V}^{\prime}\right)^{\gamma}}=\frac{\mathrm{P}_{2}}{\left(\mathrm{~V}_{0}-\mathrm{V}^{\prime}\right)^{\gamma}}$ or $\frac{\mathrm{V}_{0}-\mathrm{V}^{\prime}}{\mathrm{V}^{\prime}}=\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{1 / \gamma}$
$\Rightarrow \frac{V_{0}}{V^{\prime}}-1=\frac{P_{2}^{1 / \gamma}}{P_{1}^{1 / \gamma}} \Rightarrow \frac{V_{0}}{V^{\prime}}=\frac{P_{2}^{1 / \gamma}+P_{1}^{1 / \gamma}}{P_{1}^{1 / \gamma}} \Rightarrow V^{\prime}=\frac{V_{0} P_{1}^{1 / \gamma}}{P_{1}^{1 / \gamma}+P_{2}^{1 / \gamma}} \quad$ For left \ldots.
Similarly $\mathrm{V}_{0}-\mathrm{V}^{\prime}=\frac{\mathrm{V}_{0} \mathrm{P}_{2}^{1 / \gamma}}{\mathrm{P}_{1}^{1 / \gamma}+\mathrm{P}_{2}^{1 / \gamma}}$ For right ..
(b) Since the whole process takes place in adiabatic surroundings. The separator is adiabatic. Hence heat given to the gas in the left part = Zero.
(c) From (1) Final pressure $P=\frac{P_{1}\left(\frac{V_{0}}{2}\right)^{y}}{\left(V^{\prime}\right)^{\gamma}}$

Again from (3) $\mathrm{V}^{\prime}=\frac{\mathrm{V}_{0} \mathrm{P}_{1}^{1 / \gamma}}{\mathrm{P}_{1}^{1 / \gamma}+\mathrm{P}_{2}^{1 / \gamma}}$ or $\mathrm{P}=\frac{\mathrm{P}_{1} \frac{\left(\mathrm{~V}_{0}\right)^{\gamma}}{2^{\gamma}}}{\left(\frac{\mathrm{V}_{0} \mathrm{P}_{1}^{1 / \gamma}}{\mathrm{P}_{1}^{1 / \gamma}+\mathrm{P}_{2}^{1 / \gamma}}\right)^{\gamma}}=\frac{\mathrm{P}_{1}\left(\mathrm{~V}_{0}\right)^{\gamma}}{2^{\gamma}} \times \frac{\left(\mathrm{P}_{1}^{1 / \gamma}+\mathrm{P}_{2}^{1 / \gamma}\right)^{\gamma}}{\left(\mathrm{V}_{0}\right)^{\gamma} \mathrm{P}_{1}}=\left(\frac{\mathrm{P}_{1}^{1 / \gamma}+\mathrm{P}_{2}^{1 / \gamma}}{2}\right)^{\gamma}$
31. $\mathrm{A}=1 \mathrm{~cm}^{2}=1 \times 10^{-4} \mathrm{~m}^{2}, \quad \mathrm{M}=0.03 \mathrm{~g}=0.03 \times 10^{-3} \mathrm{~kg}$,
$\mathrm{P}=1 \mathrm{~atm}=10^{5}$ pascal, $\mathrm{L}=40 \mathrm{~cm}=0.4 \mathrm{~m}$.
$L_{1}=80 \mathrm{~cm}=0.8 \mathrm{~m}, \quad P=0.355 \mathrm{~atm}$
The process is adiabatic
$\mathrm{P}(\mathrm{V})^{\gamma}=\mathrm{P}\left(\mathrm{V}^{\prime}\right)^{\gamma}=\Rightarrow 1 \times(\mathrm{AL})^{\gamma}=0.355 \times(\mathrm{A} 2 \mathrm{~L})^{\gamma} \Rightarrow 11=0.3552^{\gamma} \Rightarrow \frac{1}{0.355}=2^{\gamma}$
$=\gamma \log 2=\log \left(\frac{1}{0.355}\right)=1.4941$
$V=\sqrt{\frac{\gamma \mathrm{P}}{f}}=\sqrt{\frac{1.4941 \times 10^{5}}{\mathrm{~m} / \mathrm{v}}}=\sqrt{\frac{1.4941 \times 10^{5}}{\left(\frac{0.03 \times 10^{-3}}{10^{-4} \times 1 \times 0.4}\right)}}=\sqrt{\frac{1.441 \times 10^{5} \times 4 \times 10^{-5}}{3 \times 10^{-5}}}=446.33 \approx 447 \mathrm{~m} / \mathrm{s}$
32. $\mathrm{V}=1280 \mathrm{~m} / \mathrm{s}, \quad \mathrm{T}=0^{\circ} \mathrm{C}, \quad f \mathrm{OH}_{2}=0.089 \mathrm{~kg} / \mathrm{m}^{3}, \quad \mathrm{rR}=8.3 \mathrm{~J} / \mathrm{mol}-\mathrm{k}$,

At STP, $\mathrm{P}=10^{5} \mathrm{~Pa}$, We know
$V_{\text {sound }}=\sqrt{\frac{\gamma P}{f o}} \Rightarrow 1280=\sqrt{\frac{\gamma \times 10^{5}}{0.089}} \Rightarrow(1280)^{2}=\frac{\gamma \times 10^{5}}{0.089} \Rightarrow \gamma=\frac{0.089 \times(1280)^{2}}{10^{5}} \approx 1.458$
Again,
$C_{V}=\frac{R}{\gamma-1}=\frac{8.3}{1.458-1}=18.1 \mathrm{~J} / \mathrm{mol}-\mathrm{k}$

Again, $\frac{C_{P}}{C_{V}}=\gamma$ or $C_{P}=\gamma C_{V}=1.458 \times 18.1=26.3 \mathrm{~J} / \mathrm{mol}-\mathrm{k}$
33. $\mu=4 \mathrm{~g}=4 \times 10^{-3} \mathrm{~kg}, \quad \mathrm{~V}=22400 \mathrm{~cm}^{3}=22400 \times 10^{-6} \mathrm{~m}^{3}$
$\mathrm{C}_{\mathrm{P}}=5 \mathrm{cal} / \mathrm{mol}-\mathrm{ki}=5 \times 4.2 \mathrm{~J} / \mathrm{mol}-\mathrm{k}=21 \mathrm{~J} / \mathrm{mol}-\mathrm{k}$
$C_{P}=\frac{\gamma R}{\gamma-1}=\frac{\gamma \times 8.3}{\gamma-1}$
$\Rightarrow 21(\gamma-1)=\gamma(8.3) \Rightarrow 21 \gamma-21=8.3 \gamma \Rightarrow \gamma=\frac{21}{12.7}$
Since the condition is STP, $P=1 \mathrm{~atm}=10^{5} \mathrm{pa}$

34. Given $f 0=1.7 \times 10^{-3} \mathrm{~g} / \mathrm{cm}^{3}=1.7 \mathrm{~kg} / \mathrm{m}^{3}, \quad \mathrm{P}=1.5 \times 10^{5} \mathrm{~Pa}, \quad \mathrm{R}=8.3 \mathrm{~J} / \mathrm{mol}-\mathrm{k}$,
$f=3.0 \mathrm{KHz}$.
Node separation in a Kundt' tube $=\frac{\lambda}{2}=6 \mathrm{~cm}, \Rightarrow \lambda=12 \mathrm{~cm}=12 \times 10^{-3} \mathrm{~m}$
So, $\mathrm{V}=f \lambda=3 \times 10^{3} \times 12 \times 10^{-2}=360 \mathrm{~m} / \mathrm{s}$
We know, Speed of sound $=\sqrt{\frac{\gamma \mathrm{P}}{f \mathrm{o}}} \Rightarrow(360)^{2}=\frac{\gamma \times 1.5 \times 10^{5}}{1.7} \Rightarrow \gamma=\frac{(360)^{2} \times 1.7}{1.5 \times 10^{5}}=1.4688$
But $\mathrm{C}_{\mathrm{V}}=\frac{\mathrm{R}}{\gamma-1}=\frac{8.3}{1.488-1}=17.72 \mathrm{~J} / \mathrm{mol}-\mathrm{k}$
Again $\frac{C_{P}}{C_{V}}=\gamma \quad$ So, $C_{P}=\gamma C_{V}=17.72 \times 1.468=26.01 \approx 26 \mathrm{~J} / \mathrm{mol}-\mathrm{k}$
35. $f=5 \times 10^{3} \mathrm{~Hz}, \quad \mathrm{~T}=300 \mathrm{~Hz}, \quad \frac{\lambda}{2}=3.3 \mathrm{~cm} \Rightarrow \lambda=6.6 \times 10^{-2} \mathrm{~m}$
$V=f \lambda=5 \times 10^{3} \times 6.6 \times 10^{-2}=(66 \times 5) \mathrm{m} / \mathrm{s}$
$\mathrm{V}=\frac{\lambda \mathrm{P}}{f}\left[\mathrm{Pv}=\mathrm{nRT} \Rightarrow \mathrm{P}=\frac{\mathrm{m}}{\mathrm{mV}} \times \mathrm{Rt} \Rightarrow \mathrm{PM}=f \circ \mathrm{RT} \Rightarrow \frac{\mathrm{P}}{f \mathrm{O}}=\frac{\mathrm{RT}}{\mathrm{m}}\right]$
$=\sqrt{\frac{\gamma \mathrm{RT}}{\mathrm{m}}}(66 \times 5)=\sqrt{\frac{\gamma \times 8.3 \times 300}{32 \times 10^{-3}}} \Rightarrow(66 \times 5)^{2}=\frac{\gamma \times 8.3 \times 300}{32 \times 10^{-3}} \Rightarrow \gamma=\frac{(66 \times 5)^{2} \times 32 \times 10^{-3}}{8.3 \times 300}=1.3995$
$C_{v}=\frac{R}{\gamma-1}=\frac{8.3}{0.3995}=20.7 \mathrm{~J} / \mathrm{mol}-\mathrm{k}$,
$C_{P}=C_{V}+R=20.77+8.3=29.07 \mathrm{~J} / \mathrm{mol}-\mathrm{k}$.

