PHOTO ELECTRIC EFFECT AND WAVE PARTICLE QUALITY CHAPTER 42

1. $\lambda_{1}=400 \mathrm{~nm}$ to $\lambda_{2}=780 \mathrm{~nm}$
$E=h \nu=\frac{h c}{\lambda} \quad h=6.63 \times 10^{-34} \mathrm{j}-\mathrm{s}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, \lambda_{1}=400 \mathrm{~nm}, \lambda_{2}=780 \mathrm{~nm}$
$E_{1}=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{400 \times 10^{-9}}=\frac{6.63 \times 3}{4} \times 10^{-19}=5 \times 10^{-19} \mathrm{~J}$
$E_{2}=\frac{6.63 \times 3}{7.8} \times 10^{-19}=2.55 \times 10^{-19} \mathrm{~J}$
So, the range is $5 \times 10^{-19} \mathrm{~J}$ to $2.55 \times 10^{-19} \mathrm{~J}$.
2. $\lambda=h / p$
$\Rightarrow \mathrm{P}=\mathrm{h} / \lambda=\frac{6.63 \times 10^{-34}}{500 \times 10^{-9}} \mathrm{~J}-\mathrm{S}=1.326 \times 10^{-27}=1.33 \times 10^{-27} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$.
3. $\lambda_{1}=500 \mathrm{~nm}=500 \times 10^{-9} \mathrm{~m}, \lambda_{2}=700 \mathrm{~nm}=700 \times 10^{-9} \mathrm{~m}$
$E_{1}-E_{2}=$ Energy absorbed by the atom in the process. $=h c\left[1 / \lambda_{1}-1 / \lambda_{2}\right]$
$\Rightarrow 6.63 \times 3[1 / 5-1 / 7] \times 10^{-19}=1.136 \times 10^{-19} \mathrm{~J}$
4. $\mathrm{P}=10 \mathrm{~W} \quad \therefore \mathrm{E}$ in $1 \mathrm{sec}=10 \mathrm{~J} \quad \%$ used to convert into photon $=60 \%$
\therefore Energy used $=6 \mathrm{~J}$
Energy used to take out 1 photon $=\mathrm{hc} / \lambda=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{590 \times 10^{-9}}=\frac{6.633}{590} \times 10^{-17}$
No. of photons used $=\frac{6}{\frac{6.63 \times 3}{590} \times 10^{-17}}=\frac{6 \times 590}{6.63 \times 3} \times 10^{17}=176.9 \times 10^{17}=1.77 \times 10^{19}$
5. a) Here intensity $=\mathrm{I}=1.4 \times 10^{3} \omega / \mathrm{m}^{2}$

Intensity, $I=\frac{\text { power }}{\text { area }}=1.4 \times 10^{3} \omega / \mathrm{m}^{2}$
Let no.of photons/sec emitted $=n$
\therefore Power $=$ Energy emitted $/ \mathrm{sec}=\mathrm{nhc} / \lambda=\mathrm{P}$
No.of photons $/ \mathrm{m}^{2}=\mathrm{nhc} / \lambda=$ intensity
$\mathrm{n}=\frac{\text { intensity } \times \lambda}{\mathrm{hc}}=\frac{1.9 \times 10^{3} \times 5 \times 10^{-9}}{6.63 \times 10^{-34} \times 3 \times 10^{8}}=3.5 \times 10^{21}$
b) Consider no.of two parts at a distance r and $r+d r$ from the source.

The time interval ' dt ' in which the photon travel from one point to another $=\mathrm{dv} / \mathrm{e}=\mathrm{dt}$.
In this time the total no.of photons emitted $=N=n d t=\left(\frac{p \lambda}{h c}\right) \frac{d r}{C}$
These points will be present between two spherical shells of radii 'r' and $r+d r$. It is the distance of the $1^{\text {st }}$ point from the sources. No.of photons per volume in the shell

$$
(r+r+d r)=\frac{N}{2 \pi r 2 d r}=\frac{P \lambda d r}{h c^{2}}=\frac{1}{4 \pi r^{2} c h}=\frac{p \lambda}{4 \pi \mathrm{hc}^{2} \mathrm{r}^{2}}
$$

In the case $=1.5 \times 10^{11} \mathrm{~m}, \lambda=500 \mathrm{~nm},=500 \times 10^{-9} \mathrm{~m}$

$$
\frac{\mathrm{P}}{4 \pi \mathrm{r}^{2}}=1.4 \times 10^{3}, \therefore \text { No.of photons } / \mathrm{m}^{3}=\frac{\mathrm{P}}{4 \pi \mathrm{r}^{2}} \frac{\lambda}{\mathrm{hc}^{2}}
$$

$=1.4 \times 10^{3} \times \frac{500 \times 10^{-9}}{6.63 \times 10^{-34} \times 3 \times 10^{8}}=1.2 \times 10^{13}$
c) No.of photons $=\left(\right.$ No.of photons $\left./ \mathrm{sec} / \mathrm{m}^{2}\right) \times$ Area

$$
\begin{aligned}
& =\left(3.5 \times 10^{21}\right) \times 4 \pi r^{2} \\
& =3.5 \times 10^{21} \times 4(3.14)\left(1.5 \times 10^{11}\right)^{2}=9.9 \times 10^{44}
\end{aligned}
$$

6. $\lambda=663 \times 10^{-9} \mathrm{~m}, \theta=60^{\circ}, \mathrm{n}=1 \times 10^{19}, \lambda=\mathrm{h} / \mathrm{p}$
$\Rightarrow \mathrm{P}=\mathrm{p} / \lambda=10^{-27}$
Force exerted on the wall $=n(m v \cos \theta-(-m v \cos \theta))=2 n m v \cos \theta$.

$$
=2 \times 1 \times 10^{19} \times 10^{-27} \times 1 / 2=1 \times 10^{-8} \mathrm{~N} .
$$

7. Power $=10 \mathrm{~W} \quad \mathrm{P} \rightarrow$ Momentum
$\lambda=\frac{h}{p} \quad$ or, $P=\frac{h}{\lambda} \quad$ or, $\frac{P}{t}=\frac{h}{\lambda t}$
$E=\frac{h c}{\lambda} \quad$ or, $\frac{E}{t}=\frac{h c}{\lambda t}=\operatorname{Power}(W)$
$\mathrm{W}=\mathrm{Pc} / \mathrm{t} \quad$ or, $\mathrm{P} / \mathrm{t}=\mathrm{W} / \mathrm{c}=$ force .
or Force $=7 / 10$ (absorbed) $+2 \times 3 / 10$ (reflected)
$=\frac{7}{10} \times \frac{\mathrm{W}}{\mathrm{C}}+2 \times \frac{3}{10} \times \frac{\mathrm{W}}{\mathrm{C}} \Rightarrow \frac{7}{10} \times \frac{10}{3 \times 10^{8}}+2 \times \frac{3}{10} \times \frac{10}{3 \times 10^{8}}$
$=13 / 3 \times 10^{-8}=4.33 \times 10^{-8} \mathrm{~N}$.
8. $m=20 \mathrm{~g}$

The weight of the mirror is balanced. Thus force exerted by the photons is equal to weight
$P=\frac{h}{\lambda} \quad E=\frac{h c}{\lambda}=P C$
$\Rightarrow \frac{\mathrm{E}}{\mathrm{t}}=\frac{\mathrm{P}}{\mathrm{t}} \mathrm{C}$
\Rightarrow Rate of change of momentum = Power/C 30% of light passes through the lens.
Thus it exerts force. 70% is reflected.
\therefore Force exerted $=2$ (rate of change of momentum)

$$
\begin{aligned}
&=2 \times \text { Power } / \mathrm{C} \\
& 30 \%\left(\frac{2 \times \text { Power }}{\mathrm{C}}\right)=\mathrm{mg} \\
& \Rightarrow \text { Power }= \\
& \frac{20 \times 10^{-3} \times 10 \times 3 \times 10^{8} \times 10}{2 \times 3}=10 \mathrm{w}=100 \mathrm{MW} .
\end{aligned}
$$

9. Power $=100 \mathrm{~W}$

Radius $=20 \mathrm{~cm}$
60% is converted to light $=60 \mathrm{w}$
Now, Force $=\frac{\text { power }}{\text { velocity }}=\frac{60}{3 \times 10^{8}}=2 \times 10^{-7} \mathrm{~N}$.

Pressure $=\frac{\text { force }}{\text { area }}=\frac{2 \times 10^{-7}}{4 \times 3.14 \times(0.2)^{2}}=\frac{1}{8 \times 3.14} \times 10^{-5}$

$$
=0.039 \times 10^{-5}=3.9 \times 10^{-7}=4 \times 10^{-7} \mathrm{~N} / \mathrm{m}^{2}
$$

10. We know,

If a perfectly reflecting solid sphere of radius ' r ' is kept in the path of a parallel beam of light of large aperture if intensity is I,
Force $=\frac{\pi \mathrm{r}^{2} I}{\mathrm{C}}$
$\mathrm{I}=0.5 \mathrm{~W} / \mathrm{m}^{2}, \mathrm{r}=1 \mathrm{~cm}, \mathrm{C}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Force $=\frac{\pi \times(1)^{2} \times 0.5}{3 \times 10^{8}}=\frac{3.14 \times 0.5}{3 \times 10^{8}}$
$=0.523 \times 10^{-8}=5.2 \times 10^{-9} \mathrm{~N}$.
11. For a perfectly reflecting solid sphere of radius ' r ' kept in the path of a parallel beam of light of large aperture with intensity ' 'l', force exerted $=\frac{\pi r^{2} l}{C}$
12. If the i undergoes an elastic collision with a photon. Then applying energy conservation to this collision.

We get, $\mathrm{hC} / \lambda+\mathrm{m}_{0} \mathrm{c}^{2}=\mathrm{mc}^{2}$
and applying conservation of momentum $\mathrm{h} / \lambda=\mathrm{mv}$
Mass of $e=m=\frac{m_{0}}{\sqrt{1-v^{2} / c^{2}}}$
from above equation it can be easily shown that
$V=C \quad$ or $\quad V=0$
both of these results have no physical meaning hence it is not possible for a photon to be completely absorbed by a free electron.
13. $r=1 \mathrm{~m}$

Energy $=\frac{\mathrm{kq}^{2}}{\mathrm{R}}=\frac{\mathrm{kq}}{}{ }^{2}$
Now, $\frac{\mathrm{kq}^{2}}{1}=\frac{\mathrm{hc}}{\lambda} \quad$ or $\lambda=\frac{\mathrm{hc}}{\mathrm{kq}^{2}}$
For max ' λ ', ' q ' should be min,
For minimum ' e ' $=1.6 \times 10^{-19} \mathrm{C}$
$\operatorname{Max} \lambda=\frac{\mathrm{hc}}{\mathrm{kq}^{2}}=0.863 \times 10^{3}=863 \mathrm{~m}$.
For next smaller wavelength $=\frac{6.63 \times 3 \times 10^{-34} \times 10^{8}}{9 \times 10^{9} \times(1.6 \times 2)^{2} \times 10^{-38}}=\frac{863}{4}=215.74 \mathrm{~m}$
14. $\lambda=350 \mathrm{nn}=350 \times 10^{-9} \mathrm{~m}$
$\phi=1.9 \mathrm{eV}$
Max KE of electrons $=\frac{\mathrm{hC}}{\lambda}-\phi=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{350 \times 10^{-9} \times 1.6 \times 10^{-19}}-1.9$

$$
=1.65 \mathrm{ev}=1.6 \mathrm{ev} .
$$

15. $\mathrm{W}_{0}=2.5 \times 10^{-19} \mathrm{~J}$
a) We know $W_{0}=h v_{0}$
$v_{0}=\frac{W_{0}}{h}=\frac{2.5 \times 10^{-19}}{6.63 \times 10^{-34}}=3.77 \times 10^{14} \mathrm{~Hz}=3.8 \times 10^{14} \mathrm{~Hz}$
b) $e V_{0}=h v-W_{0}$
or, $V_{0}=\frac{h v-W_{0}}{e}=\frac{6.63 \times 10^{-34} \times 6 \times 10^{14}-2.5 \times 10^{-19}}{1.6 \times 10^{-19}}=0.91 \mathrm{~V}$
16. $\phi=4 \mathrm{eV}=4 \times 1.6 \times 10^{-19} \mathrm{~J}$
a) Threshold wavelength $=\lambda$ $\phi=\mathrm{hc} / \lambda$
$\Rightarrow \lambda=\frac{\mathrm{hC}}{\phi}=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{4 \times 1.6 \times 10^{-19}}=\frac{6.63 \times 3}{6.4} \times \frac{10^{-27}}{10^{-9}}=3.1 \times 10^{-7} \mathrm{~m}=310 \mathrm{~nm}$.
b) Stopping potential is 2.5 V

$$
E=\phi+e V
$$

$\Rightarrow \mathrm{hc} / \lambda=4 \times 1.6 \times 10^{-19}+1.6 \times 10^{-19} \times 2.5$
$\Rightarrow \lambda=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{\lambda \times 1.6 \times 10^{-19}}=4+2.5$
$\Rightarrow \frac{6.63 \times 3 \times 10^{-26}}{1.6 \times 10^{-19} \times 6.5}=1.9125 \times 10^{-7}=190 \mathrm{~nm}$.
17. Energy of photoelectron

$$
\Rightarrow 1 / 2 \mathrm{mv}^{2}=\frac{\mathrm{hc}}{\lambda}-\mathrm{hv}_{0}=\frac{4.14 \times 10^{-15} \times 3 \times 10^{8}}{4 \times 10^{-7}}-2.5 \mathrm{ev}=0.605 \mathrm{ev}
$$

We know $K E=\frac{P^{2}}{2 m} \Rightarrow P^{2}=2 m \times K E$.
$P^{2}=2 \times 9.1 \times 10^{-31} \times 0.605 \times 1.6 \times 10^{-19}$
$\mathrm{P}=4.197 \times 10^{-25} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
18. $\lambda=400 \mathrm{~nm}=400 \times 10^{-9} \mathrm{~m}$
$\mathrm{V}_{0}=1.1 \mathrm{~V}$

$$
\begin{aligned}
& \frac{\mathrm{hc}}{\lambda}=\frac{\mathrm{hc}}{\lambda_{0}}+\mathrm{ev}_{0} \\
\Rightarrow & \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{400 \times 10^{-9}}=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{\lambda_{0}}+1.6 \times 10^{-19} \times 1.1 \\
\Rightarrow & 4.97=\frac{19.89 \times 10^{-26}}{\lambda_{0}}+1.76 \\
\Rightarrow & \frac{19.89 \times 10^{-26}}{\lambda_{0}}=4.97-17.6=3.21 \\
\Rightarrow & \lambda_{0}=\frac{19.89 \times 10^{-26}}{3.21}=6.196 \times 10^{-7} \mathrm{~m}=620 \mathrm{~nm} .
\end{aligned}
$$

19. a) When $\lambda=350, V_{s}=1.45$
and when $\lambda=400, V_{s}=1$
$\therefore \frac{h c}{350}=W+1.45$
and $\frac{h c}{400}=W+1$

Subtracting (2) from (1) and solving to get the value of h we get $h=4.2 \times 10^{-15} \mathrm{ev}-\mathrm{sec}$
b) Now work function $=w=\frac{h c}{\lambda}=e v-s$

$$
=\frac{1240}{350}-1.45=2.15 \mathrm{ev}
$$

c) $w=\frac{\mathrm{hc}}{\lambda}=\lambda_{\text {there cathod }}=\frac{\mathrm{hc}}{\mathrm{w}}$

$$
=\frac{1240}{2.15}=576.8 \mathrm{~nm}
$$

20. The electric field becomes 01.2×10^{45} times per second.
\therefore Frequency $=\frac{1.2 \times 10^{15}}{2}=0.6 \times 10^{15}$

$$
\mathrm{h} v=\phi_{0}+\mathrm{kE}
$$

$\Rightarrow \mathrm{h} v-\phi_{0}=\mathrm{KE}$
$\Rightarrow \mathrm{KE}=\frac{6.63 \times 10^{-34} \times 0.6 \times 10^{15}}{1.6 \times 10^{-19}}-2$
$=0.482 \mathrm{ev}=0.48 \mathrm{ev}$.
21. $E=E_{0} \sin \left[\left(1.57 \times 10^{7} \mathrm{~m}^{-1}\right)(x-c t)\right]$
$W=1.57 \times 10^{7} \times C$
$\Rightarrow \mathrm{f}=\frac{1.57 \times 10^{7} \times 3 \times 10^{8}}{2 \pi} \mathrm{~Hz} \quad \mathrm{~W}_{0}=1.9 \mathrm{ev}$
Now $\mathrm{eV}_{0}=\mathrm{h} v-\mathrm{W}_{0}$

$$
\begin{aligned}
& =4.14 \times 10^{-15} \times \frac{1.57 \times 3 \times 10^{15}}{2 \pi}-1.9 \mathrm{ev} \\
& =3.105-1.9=1.205 \mathrm{ev}
\end{aligned}
$$

So, $V_{0}=\frac{1.205 \times 1.6 \times 10^{-19}}{1.6 \times 10^{-19}}=1.205 \mathrm{~V}$.
22. $\left.E=100 \sin \left[\left(3 \times 10^{15} \mathrm{~s}^{-1}\right) \mathrm{t}\right] \sin \left[6 \times 10^{15} \mathrm{~s}^{-1}\right) \mathrm{t}\right]$

$$
=1001 / 2\left[\cos \left[\left(9 \times 10^{15} \mathrm{~s}^{-1}\right) \mathrm{t}\right]-\cos \left[3 \times 10^{15} \mathrm{~s}^{-1}\right) \mathrm{t}\right]
$$

The w are 9×10^{15} and 3×10^{15}
for largest K.E.

$$
f_{\max }=\frac{w_{\max }}{2 \pi}=\frac{9 \times 10^{15}}{2 \pi}
$$

$E-\phi_{0}=K . E$.
$\Rightarrow \mathrm{hf}-\phi_{0}=$ K.E.
$\Rightarrow \frac{6.63 \times 10^{-34} \times 9 \times 10^{15}}{2 \pi \times 1.6 \times 10^{-19}}-2=\mathrm{KE}$
$\Rightarrow \mathrm{KE}=3.938 \mathrm{ev}=3.93 \mathrm{ev}$.
23. $W_{0}=h v-e v_{0}$

$$
\begin{aligned}
& =\frac{5 \times 10^{-3}}{8 \times 10^{15}}-1.6 \times 10^{-19} \times 2\left(\text { Given } \mathrm{V}_{0}=2 \mathrm{~V}, \text { No. of photons }=8 \times 10^{15}, \text { Power }=5 \mathrm{~mW}\right) \\
& =6.25 \times 10^{-19}-3.2 \times 10^{-19}=3.05 \times 10^{-19} \mathrm{~J} \\
& =\frac{3.05 \times 10^{-19}}{1.6 \times 10^{-19}}=1.906 \mathrm{eV}
\end{aligned}
$$

24. We have to take two cases:

Case I... $\mathrm{v}_{0}=1.656$

$$
v=5 \times 10^{14} \mathrm{~Hz}
$$

Case II... $\mathrm{V}_{0}=0$

$$
v=1 \times 10^{14} \mathrm{~Hz}
$$

We know ;
a) $e v_{0}=h \nu-w_{0}$

$$
\begin{align*}
& 1.656 \mathrm{e}=\mathrm{h} \times 5 \times 10^{14}-\mathrm{w}_{0} \tag{1}\\
& 0=5 \mathrm{~h} \times 10^{14}-5 \mathrm{w}_{0} \tag{2}\\
& 1.656 \mathrm{e}=4 \mathrm{w}_{0} \\
\Rightarrow & \mathrm{w}_{0}=\frac{1.656}{4} \mathrm{ev}=0.414 \mathrm{ev}
\end{align*}
$$

b) Putting value of w_{0} in equation (2)
$\Rightarrow 5 \mathrm{w}_{0}=5 \mathrm{~h} \times 10^{14}$
$\Rightarrow 5 \times 0.414=5 \times \mathrm{h} \times 10^{14}$
$\Rightarrow \mathrm{h}=4.414 \times 10^{-15} \mathrm{ev}-\mathrm{s}$
25. $w_{0}=0.6 \mathrm{ev}$

For w_{0} to be min ' λ ' becomes maximum.
$\mathrm{w}_{0}=\frac{\mathrm{hc}}{\lambda}$ or $\lambda=\frac{\mathrm{hc}}{\mathrm{w}_{0}}=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{0.6 \times 1.6 \times 10^{-19}}$
$=20.71 \times 10^{-7} \mathrm{~m}=2071 \mathrm{~nm}$
26. $\lambda=400 \mathrm{~nm}, \mathrm{P}=5 \mathrm{w}$
E of 1 photon $=\frac{h c}{\lambda}=\left(\frac{1242}{400}\right) \mathrm{ev}$
No.of electrons $=\frac{5}{\text { Energy of } 1 \text { photon }}=\frac{5 \times 400}{1.6 \times 10^{-19} \times 1242}$
No.of electrons $=1$ per 10^{6} photon.
No.of photoelectrons emitted $=\frac{5 \times 400}{1.6 \times 1242 \times 10^{-19} \times 10^{6}}$
Photo electric current $=\frac{5 \times 400}{1.6 \times 1242 \times 10^{6} \times 10^{-19}} \times 1.6 \times 10^{-19}=1.6 \times 10^{-6} \mathrm{~A}=1.6 \mu \mathrm{~A}$.
27. $\lambda=200 \mathrm{~nm}=2 \times 10^{-7} \mathrm{~m}$
E of one photon $=\frac{\mathrm{hc}}{\lambda}=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{2 \times 10^{-7}}=9.945 \times 10^{-19}$
No.of photons $=\frac{1 \times 10^{-7}}{9.945 \times 10^{-19}}=1 \times 10^{11}$ no.s
Hence, No.of photo electrons $=\frac{1 \times 10^{11}}{10^{4}}=1 \times 10^{7}$

Net amount of positive charge ' q ' developed due to the outgoing electrons

$$
=1 \times 10^{7} \times 1.6 \times 10^{-19}=1.6 \times 10^{-12} \mathrm{C}
$$

Now potential developed at the centre as well as at the surface due to these charger

$$
=\frac{\mathrm{Kq}}{\mathrm{r}}=\frac{9 \times 10^{9} \times 1.6 \times 10^{-12}}{4.8 \times 10^{-2}}=3 \times 10^{-1} \mathrm{~V}=0.3 \mathrm{~V}
$$

28. $\phi_{0}=2.39 \mathrm{eV}$
$\lambda_{1}=400 \mathrm{~nm}, \lambda_{2}=600 \mathrm{~nm}$
for B to the minimum energy should be maximum
$\therefore \lambda$ should be minimum.
$\mathrm{E}=\frac{\mathrm{hc}}{\lambda}-\phi_{0}=3.105-2.39=0.715 \mathrm{eV}$.
The presence of magnetic field will bend the beam there will be no current if
 the electron does not reach the other plates.

$$
\begin{aligned}
r & =\frac{m v}{q B} \\
\Rightarrow & r=\frac{\sqrt{2 m E}}{q B} \\
\Rightarrow & 0.1=\frac{\sqrt{2 \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-19} \times 0.715}}{1.6 \times 10^{-19} \times B} \\
\Rightarrow & B=2.85 \times 10^{-5} \mathrm{~T}
\end{aligned}
$$

29. Given : fringe width,

$$
\begin{aligned}
y & =1.0 \mathrm{~mm} \times 2=2.0 \mathrm{~mm}, \mathrm{D}=0.24 \mathrm{~mm}, W_{0}=2.2 \mathrm{ev}, \mathrm{D}=1.2 \mathrm{~m} \\
y & =\frac{\lambda D}{\mathrm{~d}} \\
\text { or, } \lambda & =\frac{y d}{D}=\frac{2 \times 10^{-3} \times 0.24 \times 10^{-3}}{1.2}=4 \times 10^{-7} \mathrm{~m} \\
E & =\frac{\mathrm{hc}}{\lambda}=\frac{4.14 \times 10^{-15} \times 3 \times 10^{8}}{4 \times 10}=3.105 \mathrm{ev}
\end{aligned}
$$

Stopping potential $\mathrm{eV}_{0}=3.105-2.2=0.905 \mathrm{~V}$
30. $\phi=4.5 \mathrm{eV}, \lambda=200 \mathrm{~nm}$

Stopping potential or energy $=\mathrm{E}-\phi=\frac{\mathrm{WC}}{\lambda}-\phi$
Minimum 1.7 V is necessary to stop the electron
The minimum K.E. $=2 \mathrm{eV}$
[Since the electric potential of 2 V is reqd. to accelerate the electron to reach the plates] the maximum K.E. $=(2+1,7) \mathrm{ev}=3.7 \mathrm{ev}$.
31. Given
$\sigma=1 \times 10^{-9} \mathrm{~cm}^{-2}, \mathrm{~W}_{0}\left(\mathrm{C}_{\mathrm{s}}\right)=1.9 \mathrm{eV}, \mathrm{d}=20 \mathrm{~cm}=0.20 \mathrm{~m}, \lambda=400 \mathrm{~nm}$
we know \rightarrow Electric potential due to a charged plate $=\mathrm{V}=\mathrm{E} \times \mathrm{d}$
Where $\mathrm{E} \rightarrow$ elelctric field due to the charged plate $=\sigma / \mathrm{E}_{0}$
$\mathrm{d} \rightarrow$ Separation between the plates.
$\mathrm{V}=\frac{\sigma}{\mathrm{E}_{0}} \times \mathrm{d}=\frac{1 \times 10^{-9} \times 20}{8.85 \times 10^{-12} \times 100}=22.598 \mathrm{~V}=22.6$
$\mathrm{V}_{0} \mathrm{e}=\mathrm{h} v-\mathrm{w}_{0}=\frac{\mathrm{hc}}{\lambda}-\mathrm{w}_{0}=\frac{4.14 \times 10^{-15} \times 3 \times 10^{8}}{4 \times 10^{-7}}-1.9$
$=3.105-1.9=1.205 \mathrm{ev}$
or, $\mathrm{V}_{0}=1.205 \mathrm{~V}$
As V_{0} is much less than ' V '
Hence the minimum energy required to reach the charged plate must be $=22.6 \mathrm{eV}$
For maximum KE, the V must be an accelerating one.
Hence $\max K E=V_{0}+V=1.205+22.6=23.8005 \mathrm{ev}$
32. Here electric field of metal plate $=E=P / E_{0}$
$=\frac{1 \times 10^{-19}}{8.85 \times 10^{-12}}=113 \mathrm{v} / \mathrm{m}$
accl. de $=\phi=q E / \mathrm{m}$
$=\frac{1.6 \times 10^{-19} \times 113}{9.1 \times 10^{-31}}=19.87 \times 10^{12}$
$\mathrm{t}=\frac{\sqrt{2 \mathrm{y}}}{\mathrm{a}}=\frac{\sqrt{2 \times 20 \times 10^{-2}}}{19.87 \times 10^{-31}}=1.41 \times 10^{-7} \mathrm{sec}$

K.E. $=\frac{h c}{\lambda}-w=1.2 \mathrm{eV}$
$=1.2 \times 1.6 \times 10^{-19} \mathrm{~J}$ [because in previous problem i.e. in problem $31: \mathrm{KE}=1.2 \mathrm{ev}$]
$\therefore V=\frac{\sqrt{2 \mathrm{KE}}}{\mathrm{m}}=\frac{\sqrt{2 \times 1.2 \times 1.6 \times 10^{-19}}}{4.1 \times 10^{-31}}=0.665 \times 10^{-6}$
\therefore Horizontal displacement $=\mathrm{V}_{\mathrm{t}} \times \mathrm{t}$
$=0.655 \times 10^{-6} \times 1.4 \times 10^{-7}=0.092 \mathrm{~m}=9.2 \mathrm{~cm}$.
33. When $\lambda=250 \mathrm{~nm}$

Energy of photon $=\frac{\mathrm{hc}}{\lambda}=\frac{1240}{250}=4.96 \mathrm{ev}$
\therefore K.E. $=\frac{\mathrm{hc}}{\lambda}-\mathrm{w}=4.96-1.9 \mathrm{ev}=3.06 \mathrm{ev}$.
Velocity to be non positive for each photo electron
The minimum value of velocity of plate should be = velocity of photo electron
\therefore Velocity of photo electron $=\sqrt{2 \mathrm{KE} / \mathrm{m}}$

$$
=\sqrt{\frac{3.06}{9.1 \times 10^{-31}}}=\sqrt{\frac{3.06 \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31}}}=1.04 \times 10^{6} \mathrm{~m} / \mathrm{sec} .
$$

34. Work function $=\phi$, distance $=\mathrm{d}$

The particle will move in a circle
When the stopping potential is equal to the potential due to the singly charged ion at that point.
$e V_{0}=\frac{h c}{\lambda}-\phi$
$\Rightarrow \mathrm{V}_{0}=\left(\frac{\mathrm{hc}}{\lambda}-\phi\right) \frac{1}{\mathrm{e}} \Rightarrow \frac{\mathrm{ke}}{2 \mathrm{~d}}=\left(\frac{\mathrm{hc}}{\lambda}-\phi\right) \frac{1}{\mathrm{e}}$

$\Rightarrow \frac{\mathrm{Ke}^{2}}{2 \mathrm{~d}}=\frac{\mathrm{hc}}{\lambda}-\phi \Rightarrow \frac{\mathrm{hc}}{\lambda}=\frac{\mathrm{Ke}^{2}}{2 \mathrm{~d}}+\phi=\frac{\mathrm{Ke}^{2}+2 \mathrm{~d} \phi}{2 \mathrm{~d}}$
$\Rightarrow \lambda=\frac{\text { hc } 2 \mathrm{~d}}{\mathrm{Ke}^{2}+2 \mathrm{~d} \phi}=\frac{2 \mathrm{hcd}}{\frac{1}{4 \pi \varepsilon_{0} \mathrm{e}^{2}}+2 \mathrm{~d} \phi}=\frac{8 \pi \varepsilon_{0} \mathrm{hcd}}{\mathrm{e}^{2}+8 \pi \varepsilon_{0} \mathrm{~d} \phi}$.
35. a) When $\lambda=400 \mathrm{~nm}$

Energy of photon $=\frac{\mathrm{hc}}{\lambda}=\frac{1240}{400}=3.1 \mathrm{eV}$
This energy given to electron
But for the first collision energy lost $=3.1 \mathrm{ev} \times 10 \%=0.31 \mathrm{ev}$
for second collision energy lost $=3.1 \mathrm{ev} \times 10 \%=0.31 \mathrm{ev}$
Total energy lost the two collision $=0.31+0.31=0.62 \mathrm{ev}$
K.E. of photon electron when it comes out of metal
$=\mathrm{hc} / \lambda-$ work function - Energy lost due to collision
$=3.1 \mathrm{ev}-2.2-0.62=0.31 \mathrm{ev}$
b) For the $3^{\text {rd }}$ collision the energy lost $=0.31 \mathrm{ev}$

Which just equative the KE lost in the $3^{\text {rd }}$ collision electron. It just comes out of the metal
Hence in the fourth collision electron becomes unable to come out of the metal
Hence maximum number of collision $=4$.

