CHAPTER - 45
 SEMICONDUCTOR AND SEMICONDUCTOR DEVICES

1. $\mathrm{f}=1013 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~V}=1 \mathrm{~m}^{3}$
$\mathrm{m}=\mathrm{fV}=1013 \times 1=1013 \mathrm{~kg}$
No.of atoms $=\frac{1013 \times 10^{3} \times 6 \times 10^{23}}{23}=264.26 \times 10^{26}$.
a) Total no.of states $=2 \mathrm{~N}=2 \times 264.26 \times 10^{26}=528.52=5.3 \times 10^{28} \times 10^{26}$
b) Total no.of unoccupied states $=2.65 \times 10^{26}$.
2. In a pure semiconductor, the no.of conduction electrons $=$ no.of holes

Given volume $=1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~mm}$

$$
=1 \times 10^{-2} \times 1 \times 10^{-2} \times 1 \times 10^{-3}=10^{-7} \mathrm{~m}^{3}
$$

No.of electrons $=6 \times 10^{19} \times 10^{-7}=6 \times 10^{12}$.
Hence no.of holes $=6 \times 10^{12}$.
3. $E=0.23 \mathrm{eV}, \mathrm{K}=1.38 \times 10^{-23}$
$K T=E$
$\Rightarrow 1.38 \times 10^{-23} \times \mathrm{T}=0.23 \times 1.6 \times 10^{-19}$
$\Rightarrow \mathrm{T}=\frac{0.23 \times 1.6 \times 10^{-19}}{1.38 \times 10^{-23}}=\frac{0.23 \times 1.6 \times 10^{4}}{1.38}=0.2676 \times 10^{4}=2670$.
4. Bandgap $=1.1 \mathrm{eV}, \mathrm{T}=300 \mathrm{~K}$
a) Ratio $=\frac{1.1}{\mathrm{KT}}=\frac{1.1}{8.62 \times 10^{-5} \times 3 \times 10^{2}}=42.53=43$
b) $4.253^{\prime}=\frac{1.1}{8.62 \times 10^{-5} \times \mathrm{T}}$ or $\mathrm{T}=\frac{1.1 \times 10^{5}}{4.253 \times 8.62}=3000.47 \mathrm{~K}$.
5. $2 \mathrm{KT}=$ Energy gap between acceptor band and valency band
$\Rightarrow 2 \times 1.38 \times 10^{-23} \times 300$
$\Rightarrow E=(2 \times 1.38 \times 3) \times 10^{-21} \mathrm{~J}=\frac{6 \times 1.38}{1.6} \times \frac{10^{-21}}{10^{-19}} \mathrm{eV}=\left(\frac{6 \times 1.38}{1.6}\right) \times 10^{-2} \mathrm{eV}$

$$
=5.175 \times 10^{-2} \mathrm{eV}=51.75 \mathrm{meV}=50 \mathrm{meV}
$$

6. Given:

Band gap $=3.2 \mathrm{eV}$,
$\mathrm{E}=\mathrm{hc} / \lambda=1242 / \lambda=3.2$ or $\lambda=388.1 \mathrm{~nm}$.
7. $\lambda=820 \mathrm{~nm}$
$\mathrm{E}=\mathrm{hc} / \lambda=1242 / 820=1.5 \mathrm{eV}$
8. Band Gap $=0.65 \mathrm{eV}, \lambda=$?
$\mathrm{E}=\mathrm{hc} / \lambda=1242 / 0.65=1910.7 \times 10^{-9} \mathrm{~m}=1.9 \times 10^{-5} \mathrm{~m}$.
9. Band gap = Energy need to over come the gap
$\frac{\mathrm{hc}}{\lambda}=\frac{1242 \mathrm{eV}-\mathrm{nm}}{620 \mathrm{~nm}}=2.0 \mathrm{eV}$.
10. Given $\mathrm{n}=\mathrm{e}^{-\Delta \mathrm{E} / 2 \mathrm{KT}}, \Delta \mathrm{E}=$ Diamon $\rightarrow 6 \mathrm{eV} ; \Delta \mathrm{E} \mathrm{Si} \rightarrow 1.1 \mathrm{eV}$

Now, $n_{1}=e^{-\Delta E_{1} / 2 \mathrm{KT}}=e^{\frac{-6}{2 \times 300 \times 8.62 \times 10^{-5}}}$

$$
\begin{aligned}
& \mathrm{n}_{2}=\mathrm{e}^{-\Delta \mathrm{E}_{2} / 2 \mathrm{KT}}=\mathrm{e}^{\frac{-1.1}{2 \times 300 \times 8.62 \times 10^{-5}}} \\
& \frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{4.14772 \times 10^{-51}}{5.7978 \times 10^{-10}}=7.15 \times 10^{-42}
\end{aligned}
$$

Due to more $\Delta \mathrm{E}$, the conduction electrons per cubic metre in diamond is almost zero.
11. $\sigma=T^{3 / 2} e^{-\Delta E / 2 K T}$ at $4^{\circ} K$
$\sigma=4^{3 / 2}=\mathrm{e}^{\frac{-0.74}{2 \times 8.62 \times 10^{-5} \times 4}}=8 \times \mathrm{e}^{-1073.08}$.
At 300 K ,
$\sigma=300^{3 / 2} \mathrm{e}^{\frac{-0.67}{2 \times 8.62 \times 10^{-5} \times 300}}=\frac{3 \times 1730}{8} \mathrm{e}^{-12.95}$.
Ratio $=\frac{8 \times \mathrm{e}^{-1073.08}}{[(3 \times 1730) / 8] \times \mathrm{e}^{-12.95}}=\frac{64}{3 \times 1730} \mathrm{e}^{-1060.13}$.
12. Total no.of charge carriers initially $=2 \times 7 \times 10^{15}=14 \times 10^{15} /$ Cubic meter

Finally the total no.of charge carriers $=14 \times 10^{17} / \mathrm{m}^{3}$
We know :
The product of the concentrations of holes and conduction electrons remains, almost the same.
Let x be the no.of holes.
So, $\left(7 \times 10^{15}\right) \times\left(7 \times 10^{15}\right)=x \times\left(14 \times 10^{17}-x\right)$
$\Rightarrow 14 \mathrm{x} \times 10^{17}-\mathrm{x}^{2}=79 \times 10^{30}$
$\Rightarrow \mathrm{x}^{2}-14 \mathrm{x} \times 10^{17}-49 \times 10^{30}=0$
$x=\frac{14 \times 10^{17} \pm 14^{2} \times \sqrt{10^{34}+4 \times 49 \times 10^{30}}}{2}=14.00035 \times 10^{17}$.
$=$ Increased in no.of holes or the no.of atoms of Boron added.
$\Rightarrow 1$ atom of Boron is added per $\frac{5 \times 10^{28}}{1386.035 \times 10^{15}}=3.607 \times 10^{-3} \times 10^{13}=3.607 \times 10^{10}$.
13. (No. of holes) (No.of conduction electrons) $=$ constant.

At first :
No. of conduction electrons $=6 \times 10^{19}$
No. of holes $=6 \times 10^{19}$
After doping
No.of conduction electrons $=2 \times 10^{23}$
No. of holes $=x$.
$\left(6 \times 10^{19}\right)\left(6 \times 10^{19}\right)=\left(2 \times 10^{23}\right) x$
$\Rightarrow \frac{6 \times 6 \times 10^{19+19}}{2 \times 10^{23}}=x$
$\Rightarrow x=18 \times 10^{15}=1.8 \times 10^{16}$.
14. $\sigma=\sigma_{0} \mathrm{e}^{-\Delta \mathrm{E} / 2 \mathrm{KT}}$
$\Delta \mathrm{E}=0.650 \mathrm{eV}, \mathrm{T}=300 \mathrm{~K}$
According to question, $\mathrm{K}=8.62 \times 10^{-5} \mathrm{eV}$

$$
\begin{gathered}
\sigma_{0} \mathrm{e}^{-\Delta \mathrm{E} / 2 \mathrm{KT}}=2 \times \sigma_{0} \mathrm{e}^{\frac{-\Delta \mathrm{E}}{2 \times \mathrm{K} \times 300}} \\
\Rightarrow \mathrm{e}^{\frac{-0.65}{2 \times 8.62 \times 10^{-5} \times \mathrm{T}}}=6.96561 \times 10^{-5}
\end{gathered}
$$

Taking in on both sides,
We get, $\frac{-0.65}{2 \times 8.62 \times 10^{-5} \times \mathrm{T}^{\prime}}=-11.874525$
$\Rightarrow \frac{1}{\mathrm{~T}^{\prime}}=\frac{11.574525 \times 2 \times 8.62 \times 10^{-5}}{0.65}$
$\Rightarrow \mathrm{T}^{\prime}=317.51178=318 \mathrm{~K}$.
15. Given band gap $=1 \mathrm{eV}$

Net band gap after doping $=\left(1-10^{-3}\right) \mathrm{eV}=0.999 \mathrm{eV}$
According to the question, $\mathrm{KT}_{1}=0.999 / 50$
$\Rightarrow \mathrm{T}_{1}=231.78=231.8$
For the maximum limit $\mathrm{KT}_{2}=2 \times 0.999$
$\Rightarrow \mathrm{T}_{2}=\frac{2 \times 1 \times 10^{-3}}{8.62 \times 10^{-5}}=\frac{2}{8.62} \times 10^{2}=23.2$.
Temperature range is $(23.2-231.8)$.
16. Depletion region ' d ' $=400 \mathrm{~nm}=4 \times 10^{-7} \mathrm{~m}$

Electric field $E=5 \times 10^{5} \mathrm{~V} / \mathrm{m}$
a) Potential barrier $\mathrm{V}=\mathrm{E} \times \mathrm{d}=0.2 \mathrm{~V}$
b) Kinetic energy required $=$ Potential barrier $\times \mathrm{e}=0.2 \mathrm{eV}$ [Where $\mathrm{e}=$ Charge of electron]
17. Potential barrier $=0.2$ Volt
a) K.E. $=($ Potential difference $) \times \mathrm{e}=0.2 \mathrm{eV}$ (in unbiased cond ${ }^{\mathrm{n}}$)
b) In forward biasing

$$
\mathrm{KE}+\mathrm{Ve}=0.2 \mathrm{e}
$$

$\Rightarrow \mathrm{KE}=0.2 \mathrm{e}-0.1 \mathrm{e}=0.1 \mathrm{e}$.
c) In reverse biasing

$$
\mathrm{KE}-\mathrm{Ve}=0.2 \mathrm{e}
$$

$\Rightarrow K E=0.2 \mathrm{e}+0.1 \mathrm{e}=0.3 \mathrm{e}$.
18. Potential barrier ' d ' $=250 \mathrm{meV}$

Initial KE of hole $=300 \mathrm{meV}$
We know : KE of the hole decreases when the junction is forward biased and increases when reverse blased in the given 'Pn' diode.
So,
a) Final $\mathrm{KE}=(300-250) \mathrm{meV}=50 \mathrm{meV}$
b) Initial $K E=(300+250) \mathrm{meV}=550 \mathrm{meV}$
19. $\mathrm{i}_{1}=25 \mu \mathrm{~A}, \mathrm{~V}=200 \mathrm{mV}, \mathrm{i}_{2}=75 \mu \mathrm{~A}$
a) When in unbiased condition drift current = diffusion current
\therefore Diffusion current $=25 \mu \mathrm{~A}$.
b) On reverse biasing the diffusion current becomes ' O '.
c) On forward biasing the actual current be x.
$\mathrm{x}-$ Drift current $=$ Forward biasing current
$\Rightarrow x-25 \mu \mathrm{~A}=75 \mu \mathrm{~A}$
$\Rightarrow x=(75+25) \mu A=100 \mu A$.
20. Drift current $=20 \mu \mathrm{~A}=20 \times 10^{-6} \mathrm{~A}$.

Both holes and electrons are moving
So, no.of electrons $=\frac{20 \times 10^{-6}}{2 \times 1.6 \times 10^{-19}}=6.25 \times 10^{13}$.
21. a) $e^{\mathrm{aV} / K T}=100$

$$
\begin{aligned}
& \Rightarrow e^{\frac{V}{8.62 \times 10^{-5} \times 300}}=100 \\
& \Rightarrow \frac{V}{8.62 \times 10^{-5} \times 300}=4.605 \Rightarrow V=4.605 \times 8.62 \times 3 \times 10^{-3}=119.08 \times 10^{-3} \\
& R=\frac{V}{I}=\frac{V}{I_{0}\left(e^{\mathrm{ev} / \mathrm{KT}-1}\right)}=\frac{119.08 \times 10^{-3}}{10 \times 10^{-6} \times(100-1)}=\frac{119.08 \times 10^{-3}}{99 \times 10^{-5}}=1.2 \times 10^{2} \\
& V_{0}=I_{0} R \\
& \Rightarrow 10 \times 10^{-6} \times 1.2 \times 10^{2}=1.2 \times 10^{-3}=0.0012 \mathrm{~V}
\end{aligned}
$$

c) $0.2=\frac{\mathrm{KT}}{\mathrm{ei}_{0}} \mathrm{e}^{-\mathrm{eV} / \mathrm{KT}}$
$\mathrm{K}=8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}, \mathrm{T}=300 \mathrm{~K}$
$\mathrm{i}_{0}=10 \times 10^{-5} \mathrm{~A}$.
Substituting the values in the equation and solving
We get $V=0.25$
22. a) $\mathrm{i}_{0}=20 \times 10^{-6} \mathrm{~A}, \mathrm{~T}=300 \mathrm{~K}, \mathrm{~V}=300 \mathrm{mV}$
$i=i_{0} e^{\frac{\mathrm{ev}}{\mathrm{KT}}-1}=20 \times 10^{-6}\left(\mathrm{e}^{\frac{100}{8.62}}-1\right)=2.18 \mathrm{~A}=2 \mathrm{~A}$.
b) $4=20 \times 10^{-6}\left(e^{\frac{V}{8.62 \times 3 \times 10^{-2}}}-1\right) \Rightarrow e^{\frac{V \times 10^{3}}{8.62 \times 3}}-1=\frac{4 \times 10^{6}}{20}$
$\Rightarrow e^{\frac{V \times 10^{3}}{8.62 \times 3}}=200001 \Rightarrow \frac{V \times 10^{3}}{8.62 \times 3}=12.2060$
$\Rightarrow \mathrm{V}=315 \mathrm{mV}=318 \mathrm{mV}$.
23. a) Current in the circuit = Drift current
(Since, the diode is reverse biased $=20 \mu \mathrm{~A}$)
b) Voltage across the diode $=5-\left(20 \times 20 \times 10^{-6}\right)$

$$
=5-\left(4 \times 10^{-4}\right)=5 \mathrm{~V}
$$

24. From the figure :

According to wheat stone bridge principle, there is no current through the diode.
Hence net resistance of the circuit is $\frac{40}{2}=20 \Omega$.

25. a) Since both the diodes are forward biased net resistance $=0$
$i=\frac{2 V}{2 \Omega}=1 \mathrm{~A}$
b) One of the diodes is forward biased and other is reverse biase.

Thus the resistance of one becomes ∞.

$$
i=\frac{2}{2+\infty}=0 \mathrm{~A} .
$$

Both are forward biased.
Thus the resistance is 0 .

$$
i=\frac{2}{2}=1 \mathrm{~A} .
$$

One is forward biased and other is reverse biased.
Thus the current passes through the forward biased diode.

$$
\therefore \mathrm{i}=\frac{2}{2}=1 \mathrm{~A} .
$$

26. The diode is reverse biased. Hence the resistance is infinite. So, current through A_{1} is zero.
For A_{2}, current $=\frac{2}{10}=0.2 \mathrm{Amp}$.

27. Both diodes are forward biased. Thus the net diode resistance is 0 .
$i=\frac{5}{(10+10) / 10.10}=\frac{5}{5}=1 \mathrm{~A}$.
One diode is forward biased and other is reverse biased.

Current passes through the forward biased diode only.
$i=\frac{V}{R_{\text {net }}}=\frac{5}{10+0}=1 / 2=0.5 \mathrm{~A}$.
28. a) When $\mathrm{R}=12 \Omega$

The wire EF becomes ineffective due to the net (-)ve voltage.
Hence, current through $R=10 / 24=0.4166=0.42 \mathrm{~A}$.
b) Similarly for $R=48 \Omega$.

$$
i=\frac{10}{(48+12)}=10 / 60=0.16 \mathrm{~A} .
$$

29.

Since the diode 2 is reverse biased no current will pass through it.

30. Let the potentials at A and B be V_{A} and V_{B} respectively.
i) If $V_{A}>V_{B}$

Then current flows from A to B and the diode is in forward biased.

Eq. Resistance $=10 / 2=5 \Omega$.
ii) If $V_{A}<V_{B}$

Then current flows from B to A and the diode is reverse biased.
Hence Eq.Resistance $=10 \Omega$.
31. $\delta I_{\mathrm{b}}=80 \mu \mathrm{~A}-30 \mu \mathrm{~A}=50 \mu \mathrm{~A}=50 \times 10^{-6} \mathrm{~A}$
$\delta \mathrm{I}_{\mathrm{c}}=3.5 \mathrm{~mA}-1 \mathrm{~mA}=-2.5 \mathrm{~mA}=2.5 \times 10^{-3} \mathrm{~A}$
$\beta=\left(\frac{\delta I_{c}}{\delta l_{b}}\right) V_{c e}=$ constant
$\Rightarrow \frac{2.5 \times 10^{-3}}{50 \times 10^{-6}}=\frac{2500}{50}=50$.
Current gain $=50$.
32. $\beta=50, \delta l_{b}=50 \mu \mathrm{~A}$,
$V_{0}=\beta \times R G=50 \times 2 / 0.5=200$.
a) $V G=V_{0} / V_{1}=\frac{V_{0}}{V_{i}}=\frac{V_{0}}{\delta I_{b} \times R_{i}}=\frac{200}{50 \times 10^{-6} \times 5 \times 10^{2}}=8000 \mathrm{~V}$.
b) $\delta \mathrm{V}_{\mathrm{i}}=\delta \mathrm{I}_{\mathrm{b}} \times \mathrm{R}_{\mathrm{i}}=50 \times 10^{-6} \times 5 \times 10^{2}=0.00025 \mathrm{~V}=25 \mathrm{mV}$.
c) Power gain $=\beta^{2} \times R G=\beta^{2} \times \frac{R_{0}}{R_{i}}=2500 \times \frac{2}{0.5}=10^{4}$.

33. $X=A \overline{B C}+B \overline{C A}+C \overline{A B}$
a) $A=1, B=0, C=1$
$X=1$.
b) $A=B=C=1$
$X=0$.
34. For $A \overline{B C}+B \overline{C A}$

35. $\mathrm{LHS}=\mathrm{AB} \times \overline{\mathrm{AB}}=\mathrm{X}+\overline{\mathrm{X}} \quad[\mathrm{X}=\mathrm{AB}]$

If $X=0, \bar{X}=1$
If $\bar{X}=0, X=1$
$\Rightarrow 1+0$ or $0+1=1$
\Rightarrow RHS $=1$ (Proved)

