1 | P a g e

CHAPTER - 25

CALORIMETRY

Ans 1. Mass of aluminium $=0.5 \mathrm{~kg}$,

Mass of iron $=0.2 \mathrm{~kg}$
Temp. of iron $=100^{\circ} \mathrm{C}=373 \mathrm{k}$
Sp heat of iron $=470 \mathrm{~J} / \mathrm{kg}-\mathrm{k}$
Heat again $=0.5 \times 910(T-293)+0.2 \times 4200 \times(343-T)$

$$
=(T-292)(0.5 \times 910+0.2 \times 4200)=0.2 \times 470 \times(373-T)
$$

Heat lost $=0.2 \times 470 \times(373-T)$
Heat gain = Heat lost
$(T-292)(0.5 \times 910+0.2 \times 4200)=0.2 \times 470 \times(373-T)$
$\mathrm{T}=298 \mathrm{k}$
$\mathrm{T}=298-273=25^{\circ} \mathrm{C} \underline{\underline{\text { Answer }}}$

Ans 2. Mass of Iron $=100 \mathrm{gm}=0.1 \mathrm{~kg}$
Mass of water $=240 \mathrm{gm}$
$S_{\text {iron }}=470 \mathrm{~J} / \mathrm{kg}-\mathrm{k}$

$$
\text { So, } 0.1 \times 470 \times(\theta-60)=0.24 \times 4200 \times(60-20)
$$

$$
\theta=4200+(2820 / 47)=917.61^{\circ} \mathrm{C} \quad \underline{\underline{\text { Answer }}}
$$

Water eq of calorimeter $=10 \mathrm{gm}$ Let the Temp. Of surface $=0^{\circ} \mathrm{C}$ Total heat gained $=$ Total heat lost.

Ans 3. Temp. Of $\mathrm{A}=12^{\circ} \mathrm{C} ; \mathrm{B}=19^{\circ} \mathrm{C} ; \mathrm{C}=28^{\circ} \mathrm{C}$

Temp of $(A+B)=16^{\circ} \mathrm{C}$; Temp. of $(B+C)=23^{\circ} \mathrm{C}$
In accordance with the principle of calorimetry when A \& B are mixed
$M_{C A}(16-12)=M_{C B}(19-16)$
$C A 4=C B 3 ; C A=3 / 4 C B$
And when $B \& C$ are mixed
$M_{C A}(23-19)=M_{C C}(28-23)$
$2 \mid P$ a g e
$4 C B=5 C C ; C C=4 / 5 C B--(2)$
When $A \& C$ are mixed, if T is the common temperature of mixture
$M_{C A}(T-12)=M_{C C}(28-T)$
$(3 / 4) C B(T-12)=(4 / 5) C B(28-T)$

15T-180 $=448-16 T$
$\mathrm{T}=628 / 31=20.258=20.3^{\circ} \mathrm{C} \underline{\underline{\text { Answer }}}$
Ans4. Part a)
Heat released when temperature of 200 ml changes to $0^{\circ} \mathrm{C}$
$\left(\right.$ Heat $\left._{\text {water }}\right)=200 \times 10^{-6} \times 1000 \times 4200 \times 10=8400 \mathrm{~J}$

Heat required to change $4 \times 8 \mathrm{~cm}^{3}$ ice into water (Heat $_{\text {ice }}$) $=32 \times 10^{-6} \times 900 \times 3.4 \times 10^{5}=97920 \mathrm{~J}$
As, Heat ${ }_{\text {ice }}>$ Heat $_{\text {water }}$. Some ice will be left unmelted and there will be equilibrium between ice and water and of course equilibrium temperature will be $0^{\circ} \mathrm{C}$. Answer

Part b) mass of ice melted $=m$

$$
\begin{aligned}
& m \times 3.4 \times 10^{5}=8400 \\
& m=0.0247 \mathrm{Kg}=25 \mathrm{~g} \underline{\underline{\text { Answer }}}
\end{aligned}
$$

Ans 5. Total heat released when temperature drops by $5^{\circ} \mathrm{C}(Q)=m c \theta=10 \times 4200 \times 5=210000 \mathrm{~J}$
Rate of heat taken away when water evaporates $=.0002 x .27 \times 10^{6}=454 \mathrm{~J} / \mathrm{s}$
Time $=\mathrm{Q} / 454=210000 / 454=462.555$ seconds $=7.70$ min $\underline{\underline{\text { Answer }}}$
Ans 6. Let initial temperature $=T$
Let volume of cube $=V \mathrm{~m}^{3}$

Mass of cube $\left(m_{c}\right)=8000 \mathrm{~V} \mathrm{Kg}$

Volume of ice melted $=\mathrm{V}$
Mass of ice melted $\left(m_{w}\right)=900 \mathrm{~V} \mathrm{Kg}$
Heat liberated by cube $=m_{c} x C_{c} x(T-0)=8000 V x 470 x T=3760000 V T$
Heat taken by ice to melt $=900 \mathrm{~V} \times 3.36 \times 10^{5}=302400000 \mathrm{~V} \mathrm{~J}$
Equating both heats, we get $\mathrm{T}=80.42{ }^{\circ} \mathrm{C} \underline{\underline{\text { Answer }}}$
$3 \mid P$ a g e

Ans7. We can see that latent heat of fusion is smaller that latent heat of vaporization. So, ice will Change into water first because less heat is required for this and most possibly there will be equilibrium between steam and water

Heat released when ice changed $\left(\mathrm{H}_{1}\right)=1 \times 3.36 \times 10^{5} \mathrm{~J}$

Heat when temperature of water changes from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}\left(\mathrm{H}_{2}\right)=1 \times 4200 \times 100=420000 \mathrm{~J}$

Total Heat taken by ice to change into water at $100^{\circ} \mathrm{C}=\mathrm{H}_{1}+\mathrm{H}_{2}=420000+336000=756000 \mathrm{~J}$ So this heat will be released by steam to change into water

Mass of steam changed into water $=m$
Heat $=\mathrm{m} x$ latent heat $=756000$
$m=756000 / 2.26 \times 10^{6}=.3345 \mathrm{~kg}$
Total mass of Water $=1+.3345=1.3345 \mathrm{Kg} \underline{\underline{\text { Answer }}}$
Mass of steam $=1-0.3345=0.66548 \mathrm{Kg} \underline{\underline{\text { Answer }}}$

Ans8. Power input $=80 \%$ of $1000=.8 \times 1000=800 \mathrm{~W}$

Heat taken by water $=20 \times 4200 \times(35-10)=2100000$

Time $=$ heat/power $=2100000 / 800=2625$ seconds $=43.75$ min Answer
Ans9. Volume of water $=.5 \mathrm{~m}^{3}$
Density $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Heat liberated by water $=$ mass x specific heat $x \theta=1000 \times .5 \times 4200 \times(20-5)=31500000 \mathrm{~J}$

Heat $=\mathrm{mgh}=10 \times 10 \times \mathrm{m}=31500000=315000 \mathrm{~m}=315 \mathrm{Km} \underline{\underline{\text { Answer }}}$

$$
\begin{aligned}
& \text { Ans10. Mass of bullet }=20 \mathrm{~g}=0.02 \mathrm{~kg} \\
& \begin{aligned}
& \text { Velocity of bullet }=40 \mathrm{~m} / \mathrm{s} \\
& \text { Total energy of bullet }=1 / 2 \mathrm{mv}^{2} \\
&=1 / 2(0.02)(40)^{2} \\
&=16 \mathrm{~J} \text { Answer }
\end{aligned}
\end{aligned}
$$

4 | P a g e

Ans11. Mass of man $=50 \mathrm{~kg}$

$$
\text { velocity }=18 \mathrm{~km} / \mathrm{hr}=5 \mathrm{~m} / \mathrm{sec}
$$

Change in temperature of water $(\theta)=10^{\circ} \mathrm{C}$
Total energy $=1 / 2 m v^{2}$

$$
=1 / 2(50)(5)^{2}=625 \mathrm{~J}
$$

We know, $\mathrm{Q}=\mathrm{mc} \theta$

$$
\begin{aligned}
625 & =m \times 4200 \times 10 \\
m & =0.01488 \mathrm{~kg} \\
& =14.88 \mathrm{gm} \text { Answer }
\end{aligned}
$$

Ans 12. Mass $=4.0 \mathrm{~kg}$
Height $=1 m+2 m=3 m$
Potential energy $=m g h$

$$
=4 \times 9.81 \times 3=117.72 \mathrm{~J}
$$

Thermal energy produced $=117.72 \times 80 \%=94.176 \mathrm{~J}=94.176 / 4.187 \mathrm{cal}=22.492 \mathrm{cal}$. Answer
Ans 13. Mass $=1500 \mathrm{~kg}$ Velocity $=54 \mathrm{~km} / \mathrm{hr}=15 \mathrm{~m} / \mathrm{sec}$

Time to stop $=10 \mathrm{sec}$

Total energy of the system $=1 / 2(1500)(15)^{2}=168750 \mathrm{~J}=40303.3198 \mathrm{cal}$

Energy loss in $10 \mathrm{sec}=40303.3198 \mathrm{cal}$

Rate of loss of energy $=4030.33198 \mathrm{cal} / \mathrm{sec} \underline{\underline{\text { Answer }}}$

Ans 14. Mass = $100 \mathrm{gm}=0.1 \mathrm{~kg}$
Change in energy $=1 / 2 m v_{1}{ }^{2}-1 / 2 m v_{2}{ }^{2}$

$$
=1 / 2(.1)\left(10^{2}-5^{2}\right)=3.75 \mathrm{~J}
$$

Ans 15. Energy of $1^{\text {st }}$ block $=1 / 2 \times 10 \times 10^{2}=500 \mathrm{~J}$
Energy of $2^{\text {nd }}$ block $=1 / 2 \times 20 \times 20^{2}=4000 \mathrm{~J}$

Total energy $=4500 \mathrm{~J}$

Conservation of momentum,

$$
m_{1} \times v_{1}+m_{2} \times v_{2}=M \times V
$$

5 | P a g e

$$
10 \times 10+20 \times 20=30 \times V
$$

$\mathrm{V}=16.66 \mathrm{~m} / \mathrm{sec}$
Energy of system after collision $=1 / 2 M V^{2}=1 / 2 \times 30 \times(16.666)^{2}=4166.66 \mathrm{~J}$

Change in energy $=4500-4166.66=333.33 \mathrm{~J} \underline{\underline{\text { Answer }}}$

Ans16. Initial potential Energy $=\mathrm{mgh}_{1}=9.8 \times 2 \mathrm{~m}=19.8 \mathrm{~m} \mathrm{~J}$
Final Potential Energy $=\mathrm{mgh}_{2}=9.8 \times 1.5 \mathrm{~m}=14.7 \mathrm{~m} \mathrm{~J}$
Mechanical loss $=19.8-14.7=5.1 \mathrm{~J}$
40% of mechanical loss $=.4 \times 5.1=2.04 \mathrm{~J}$

Rise in temperature $=2.04 / 800=2.55 \times 10^{-3}{ }^{\circ} \mathrm{C}$

Ans17. Mechanical energy will be lost by friction only.

Here friction force(f) $=\mathrm{mg} \sin \theta=0.2 \times 9.8 x \sin 37=1.17955 \mathrm{~N}$
Work done (energy lost or thermal energy)(H) $=1.17955 x 0.6=0.7077344 \mathrm{~J}$
$\mathrm{H}=\mathrm{mC} \theta=0.2 \times 420 \times \theta=.7077344$
$\theta=8.4 \times 10^{-6}{ }^{\circ} \mathrm{C}$

Ans18. When spring is broken, block falls from 40 cm .
Loss in Energy $=\mathrm{mgh}=1.2 \times 9.8 \mathrm{x} .4=4.707 \mathrm{~J}$

This heat will rise temperature of block as well as water and also temperature of both will be same because they are in equilibrium.
$m_{\text {block }} \times C_{\text {block }} \times \theta+m_{\text {water }} \times C_{\text {water }} \times \theta=4.707$
$\theta(.26 \times 4200+1.2 \times 250)=4.707$

$$
\theta=3.38 \times 10^{-3} \mathrm{C}
$$

