Rational Numbers Exercise 1.1

Exercise -1.1.

1) Add the following rational numbers:
(i) $\frac{-5}{7}$ and $\frac{3}{7}$.

Solution:- clearly, denominators of the given numbers are positive

The beam of denominators 7 and 7 is 7 . we have.

$$
\begin{aligned}
\frac{-5}{7}+\frac{3}{7} & =\frac{-5+3}{7} \\
& =\frac{-2}{7}
\end{aligned}
$$

(ii) $\frac{-15}{4}$ and $\frac{7}{4}$.

The $L \mathrm{~cm}$ of denominators 4 and 4 is 4 . we have, $\frac{-15}{4}+\frac{7}{4}=\frac{7-15}{4}$.

$$
\therefore \frac{-15}{4}+\frac{7}{4}=\frac{-8}{4}=-2
$$

(iii) $\frac{-8}{11}$ and $\frac{-4}{11}$

The Lem of denominators 11 and 11 is 11

$$
\text { we have, }-\frac{8}{11}+\left(\frac{-4}{11}\right)=\frac{-8}{11}-\frac{4}{11}=\frac{-8-4}{11}
$$

$$
=-12
$$

Exercise-1.1.

1) Add the following rational numbers:
(i) $\frac{-5}{7}$ and $\frac{3}{7}$.

Solution:- clearly, denominators of the given numbers are positive.

The beam of denominators 7 and 7 is 7 . we have.

$$
\begin{aligned}
\frac{-5}{7}+\frac{3}{7} & =\frac{-5+3}{7} \\
& =\frac{-2}{7}
\end{aligned}
$$

(ii) $\frac{-15}{4}$ and $\frac{7}{4}$.

The Lcm of denominators 4 and 4 is 4 .
we have, $\frac{-15}{4}+\frac{7}{4}=\frac{7-15}{4}$.

$$
\therefore \frac{-15}{4}+\frac{7}{4}=\frac{-8}{4}=-2
$$

(iii) $\frac{-8}{11}$ and $\frac{-4}{11}$

$$
\text { The } L \mathrm{~cm} \text { of denominators } 11 \text { and } 1 \mathrm{l} \text { is } 11
$$

$$
\text { we have, }-\frac{8}{11}+\left(\frac{-4}{11}\right)=\frac{-8}{11}-\frac{4}{11}=\frac{-8-4}{11}
$$

(iii) -3 and $\frac{3}{5}$

The denominators of the given rational numbers are 1 and 5 respectevely.

The Lem of 1 and 5 is 5 .
Now, we re-write the given rational numbers in to forms inwhich both of them have the same denominator

$$
\begin{aligned}
& \frac{-3 \times 5}{1 \times 5}=\frac{-3 \times 5}{5} \text { and } \frac{3}{5} . \\
\therefore & \frac{-15}{5}+\frac{3}{5}=\frac{3-15}{5}=\frac{-12}{5} .
\end{aligned}
$$

(iv) $\frac{-7}{27}$ and $\frac{11}{18}$.

The denominators of the given rational numbers are 27 and 18 respectevely.
The LCm of 27 and is is 54 .
Now, we rewrite the given rational numbers in to forms in which both of them have the
same denominator

$$
\begin{aligned}
& \frac{-7}{27}=\frac{-7 \times 2}{27 \times 2}=\frac{-14}{54} \text { and } \frac{11 \times 3}{18 \times 3}=\frac{33}{54} \\
& \therefore\left(-\frac{7 \times 2}{27 \times 2}\right)+\frac{33}{54}=\frac{33}{54}-\frac{14}{54}=\frac{33-14}{54}=\frac{19}{54}
\end{aligned}
$$

(v) $\frac{31}{-4}$ and $\frac{-5}{8}$.

The denominators of the given rational numbers are $\bar{\phi}$ and 8 respectively. The Lem of ${ }^{-4}$ and 8 is 8 .
Now we re-write the given rational numbers into forms in which both of them have the same denominator.

$$
\begin{aligned}
& \frac{31}{-4}=\frac{31 \times 2}{-4 x^{2}}=\frac{-62}{8} \text { and } \frac{-5}{8} \\
& \therefore \frac{-31 \times 2}{4 \times 2}+\left(\frac{-5}{8}\right)=-\frac{62}{8}-\frac{5}{8}=\frac{-67}{8} .
\end{aligned}
$$

(vi) $\frac{5}{36}$ and $\frac{-7}{12}$.

The denominators of the given rational numbers are 36 and 12 respectively, The Lem of 36 and 12 is 36 .

Now were write the given rational numbers in to forms in which both of them have the same denominator.

$$
\begin{aligned}
& \frac{5}{36} \text { and } \frac{-7 \times 3}{12 \times 3}=-\frac{21}{36} \\
& \therefore \frac{5}{36}-\frac{21}{36}=-\frac{16}{36}=\frac{-4}{9} .
\end{aligned}
$$

(Vii) $\frac{-5}{16}$ and $\frac{7}{24}$.

$$
\begin{aligned}
& -\frac{5}{16}=\frac{-5 \times 3}{16 \times 3}=\frac{-15}{48} \text { and } \frac{7}{24}=\frac{7 \times 2}{24 x^{2}}=\frac{14}{48} \\
& {[\because \text { Lcm of } 16 \text { and } 24 \text { is } 48] .} \\
& \frac{-5}{16}+\frac{7}{24}=\frac{-15}{48}+\frac{14}{48}=\frac{-1}{48} .
\end{aligned}
$$

(viii) $\frac{7}{-18}$ and $\frac{8}{27}$ The LCM of 18 and 27 is 54 .

$$
\begin{aligned}
& -\frac{7}{18}=\frac{-7 \times 3}{18 \times 3}=\frac{-21}{54} \text { and } \frac{8 \times 2}{27 \times 2}=\frac{16}{54} . \\
& \therefore \frac{-21}{54}+\frac{16}{54}=\frac{16-21}{54}=\frac{-5}{54} .
\end{aligned}
$$

3. simplify:
(i) $\frac{8}{9}+\frac{-11}{6}$

The Lem of 9 and 6 is 18 .

$$
\begin{aligned}
& \frac{8}{9}=\frac{8 \times 2}{9 \times 2}=\frac{16}{18} \text { and } \frac{-11}{6}=\frac{-11 \times 3}{6 \times 3}=\frac{-33}{18} . \\
& \therefore \frac{16}{18}-\frac{33}{18}=\frac{-17}{18} .
\end{aligned}
$$

(ii) $\frac{-5}{16}$ and $\frac{7}{24}$.

The $L \mathrm{~cm}$ of 16 and 24 is 48 .
$\frac{-5 \times 3}{16 \times 3}=\frac{-15}{48}$ and $\frac{7 \times 2}{24 \times 2}=\frac{14}{48}$
(iii) $\frac{1}{-12}+\frac{2}{-15}$

$$
\text { The Lcm of } 12 \text { and } 15 \text { is } 60 \text {.. }
$$

$$
\begin{aligned}
& \frac{-1 \times 5}{12 \times 5}=\frac{-5}{60} \text { and } \frac{2 \times 4}{-15 \times 4}=\frac{-8}{60} \\
& \therefore \frac{-5}{60}+\left(\frac{-8}{60}\right)=-\frac{5}{60}-\frac{8}{60}=\frac{-13}{60} .
\end{aligned}
$$

(iv) $\frac{-8}{19}+\frac{-4}{57}$

The Lem of 19 and 57 is 57 .

$$
\begin{aligned}
& \frac{-8 \times 3}{19 \times 3}=\frac{-24}{57} \text { and } \frac{-4 \times 1}{57 \times 1}=\frac{-4}{57} \\
& \therefore \\
& \therefore \frac{-24}{57}-\frac{4}{57}=\frac{-28}{57} .
\end{aligned}
$$

(v) $\frac{7}{9}+\frac{3}{-4}$.

$$
\text { The lem of } 9 \text { and } 4 \text { is } 36 \text {. }
$$

$$
\begin{aligned}
& \frac{7}{9}=\frac{7 \times 4}{9 \times 4}=\frac{28}{36} \text { and } \frac{3}{-4}=\frac{3 \times 9}{-4 \times 9}=\frac{-27}{36} . \\
& \therefore \frac{28}{36}-\frac{27}{36}=\frac{1}{36} .
\end{aligned}
$$

(vi) $\frac{5}{26}+\frac{11}{-39}$.

$$
\text { The Lem of } 26 \text { and } 39 \text { is } 78
$$

$$
\frac{5 \times 3}{26 \times 3}=\frac{15}{78} \text { and } \frac{11 \times 2}{-39 \times 2}=\frac{-22}{78}
$$

$$
\therefore \frac{15}{78}-\frac{22}{78}=\frac{-7}{78}
$$

(vii) $\frac{-16}{9}+\frac{-5}{12}$

The Lem of 9 and 12 is 108 .
$\frac{-16}{9} \times \frac{12}{12}=\frac{-192}{108}$ and $\frac{-5}{12}=\frac{-5}{12} \times \frac{9}{9}=\frac{-45}{108}$.
$\frac{-192}{108}-\frac{45}{108}=\frac{-237}{108}=\frac{-79}{36}$.
(vii) $-\frac{13}{8}+\frac{5}{36}$.

The LCm of 8 and 36 is 72.
$\frac{-13}{8} \times \frac{9}{9}=\frac{-117}{72}$ and $\frac{5}{36} \times \frac{2}{2}=\frac{10}{72}$.
$\therefore \frac{10}{72}-\frac{117}{72}=\frac{-107}{72}$.
(lx) $0+\left(\frac{-3}{5}\right)$

The LCM of 0 and 5 is 80.

$$
\therefore 0+\left(\frac{-3}{5}\right)=\frac{-3}{5} .
$$

(x). $1+\left(-\frac{4}{5}\right)$

The L. CM of 1 and 5 is 5 .

$$
\therefore 1+\left(-\frac{4}{5}\right)=\frac{5}{5}-\frac{4}{5}=\frac{1}{5} .
$$

(A) $3+\frac{5}{-7}$

The $L \mathrm{~cm}$ of 1 and 7 is 7 .

$$
3+(-5)=\frac{3(7)}{-}-5=21-5=16
$$

4) Add and express the sum as a mixed fraction
(i) $\frac{-12}{5}$ and $\frac{43}{10}$

The denominators of the given rational numbers 5 and 10 respectevely. The Lem of 5 and 10 is 10 . Now werewrite the given rational numbers into forms in which both of them have the same denominator

$$
\begin{aligned}
& \frac{-12 \times 2}{5 \times 2}=\frac{-24}{10} \text { and } \frac{43}{10} \\
& \therefore \frac{-24}{10}+\left(\frac{43}{10}\right)=\frac{43}{10}-\frac{24}{10}=\frac{19}{10}=1 \frac{9}{10} .
\end{aligned}
$$

(ii) $\frac{24}{7}$ and $\frac{-11}{4}$

The denominators of the given rational numbers 7 and 4 respectevely. The Lcm of 1 and 4 is 28 . Now we rewrite the given rational numbers into forms in which both of them have the same denominator.

$$
\begin{aligned}
& \frac{24}{7} \times \frac{4}{4}=\frac{96}{28} \text { and } \frac{-11}{4} \times \frac{7}{7}=\frac{-77}{28} \\
& \therefore \quad \frac{96}{28}-\frac{77}{28}=\frac{19}{28} .
\end{aligned}
$$

<4>
(III) $\frac{-31}{6}$ and $\frac{-27}{8}$.

The denominators of the given rational numbers 6 and 8 respectevely. The Lcm of 6 and 8 is 24 Now we rewrite the given rational numbers into forms in which both of them have the same denominator.

$$
\begin{aligned}
& -\frac{31}{6} \times \frac{4}{4}=\frac{-124}{24} \text { and } \frac{-27}{8} \times \frac{3}{3}=\frac{-81}{24} . \\
& \therefore \quad \frac{-124}{24}+\left(\frac{-81}{24}\right)=\frac{-124-81}{24}=\frac{-205}{24}=-8 \frac{13}{24}
\end{aligned}
$$

(iv) $\frac{101}{6}$ and $\frac{7}{8}$

The denominators of the given rational numbers 6 and 8 respectevely. The Lem of 6 and 8 is $2 y$. Now we re write the given rational numbers into forms in which both of them have the same denominator r

$$
\begin{aligned}
& \quad \frac{101}{6} \times \frac{4}{4}=\frac{404}{24} \text { and } \frac{7}{8} \times \frac{3}{3}=\frac{21}{24} . \\
& \therefore \quad \frac{404}{24}+\frac{21}{24}=\frac{425}{24}=17 \frac{17}{24} .
\end{aligned}
$$

Rational Numbers Exercise 1.2

Exercise-1.2

1. Verify commutativity of addition of rational numbers for each of the following pairs of rational numbers (ii) $\frac{-11}{5}$ and $\frac{4}{7}$

The addition of rational numbers is commutakive i.e., if $\frac{a}{b}$ and $\frac{c}{d}$ are any two rational numbers, then.

$$
\frac{a}{b}+\frac{c}{d}=\frac{c}{d}+\frac{a}{b}
$$

verfication: In order to verify this property,
Let us consider two expressions

$$
\frac{-11}{5}+\frac{4}{7} \text { and } \frac{4}{7}+\frac{-11}{5}
$$

we have,

$$
\text { we have, } \begin{aligned}
\frac{-11}{5}+\frac{4}{7} & =\frac{-77}{35}+\frac{20}{35}=\frac{-77+20}{35}=\frac{-57}{35} \text { and, } \\
\frac{4}{7}+\frac{-11}{5} & =\frac{20}{35}+\frac{-77}{35}=\frac{20-77}{35}=\frac{-57}{35} \\
\therefore \frac{-11}{5}+\frac{4}{7} & =\frac{4}{7}+\left(\frac{-11}{5}\right) .
\end{aligned}
$$ rational numbers.

(ii) $\frac{4}{9}$ and $\frac{7}{-12}$

$$
\begin{aligned}
& \frac{4}{9}+\frac{-7}{12}=\frac{16}{36}+\frac{-21}{36}=\frac{16-21}{36}=\frac{-5}{36} \\
& \frac{-7}{12}+\frac{4}{9}=\frac{-21}{36}+\frac{16}{2 c}=1621--5
\end{aligned}
$$

(iii) $\frac{-3}{5}$ and $\frac{-2}{-15}$
verification: $\frac{-3}{5}+\frac{-2}{-15}=\frac{-3}{5}+\frac{2}{15}=\frac{-9}{15}+\frac{2}{15}=\frac{-7}{15}$.

$$
\begin{aligned}
& \frac{-2}{-15}+\frac{-3}{5}=\frac{2}{15}-\frac{3}{5}=\frac{2}{15}-\frac{9}{15}=\frac{2-9}{15}=\frac{-7}{15} \\
& \therefore \frac{-3}{5}+\frac{-2}{-15}=\frac{-2}{-15}+\frac{-3}{5}
\end{aligned}
$$

(iv) $\frac{2}{-7}$ and $\frac{12}{-35}$.
verification: $\frac{2}{-7}+\frac{12}{-35}=\frac{10+12}{-35}=\frac{-22}{35}$.

$$
\begin{gathered}
\frac{12}{-35}+\left(\frac{2}{-7}\right)=\frac{12+2(5)}{-35}=\frac{-22}{35} \\
\therefore \frac{2}{-7}+\frac{12}{-35}=\frac{12}{-35}+\frac{2}{-7}
\end{gathered}
$$

(v) 4 and $\frac{-3}{5}$
verification: $\frac{4}{1}+\frac{-3}{5}=\frac{4 \times 5}{5}-\frac{3}{5}=\frac{20}{5}-\frac{3}{5}=\frac{17}{5}$.

$$
\begin{aligned}
& -\frac{3}{5}+\frac{4}{1}=-\frac{3}{5}+\frac{4}{1}=-\frac{3}{5}+\frac{4}{1}=\frac{-3}{5}+\frac{20}{5}=\frac{17}{5} \\
& \therefore \quad 4+\frac{-3}{5}=-\frac{3}{5}+4 .
\end{aligned}
$$

(VI) -4 and $\frac{4}{7}$

$$
\text { verification: } \frac{-4}{1}+\frac{4}{-7}=\frac{-28}{7}-\frac{4}{7}=\frac{-32}{7}
$$

$$
\frac{4}{-7}+-4=\frac{-4}{7}-\frac{28}{7}=-\frac{32}{7}
$$

$-4+4=\frac{4}{2}+(-4)$
2. Verify associativity of addition of rational numbers. ie. $(x+y)+z=x+(y+z)$.
(i)

$$
x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} .
$$

verification: In order to verify this property, let us consider the following express ions.

$$
\begin{aligned}
& \frac{1}{2}+\left(\frac{2}{3}+\left(\frac{-1}{5}\right)\right]=\frac{1}{2}+\left[\frac{10}{15}-\frac{3}{15}\right]=\frac{1}{2}+\frac{7}{15}=\frac{15}{2 \frac{29}{30}} \\
& \left(\frac{1}{2}+\frac{2}{3}\right)+\left(\frac{-1}{5}\right)=\left(\frac{3}{6}+\frac{4}{6}\right)-\frac{1}{5}=\frac{7}{6}-\frac{1}{5}=\frac{29}{30}
\end{aligned}
$$

(ii) $x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10}$.

$$
\begin{gathered}
\frac{-2}{5}+\left(\frac{4}{3}+\left(\frac{-7}{10}\right)\right)=-\frac{2}{5}+\left(\frac{40}{30}-\frac{21}{30}\right)=\frac{-2}{5}+\frac{19}{30} \\
\left(\frac{-2}{5}+\frac{4}{3}\right)+\left(\frac{-7}{10}\right)=\left(-\frac{6}{15}+\frac{20}{15}\right)-\frac{7}{10}=\frac{19}{30}=\frac{7}{30}-\frac{7}{10}=\frac{7}{30} \\
\therefore-\frac{2}{5}+\left(\frac{4}{3}+\left(\frac{-7}{10}\right)\right)=\left(\frac{-2}{5}+\frac{4}{3}\right)+\left(\frac{-7}{10}\right)
\end{gathered}
$$

(iii) $x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22}$.
verification:-

$$
\begin{aligned}
\frac{-7}{11}+\left(\frac{2}{-5}+\left(\frac{-3}{22}\right)=\frac{-7}{11}+\left[\frac{44}{-110}-\frac{15}{110}\right]\right. & =\frac{-7}{11}-\frac{29}{110} \\
\left(\frac{-7}{11}+\frac{2}{-5}\right)+\left(\frac{-3}{22}\right) & =\left(\frac{-35+22}{-55}\right)-\frac{3}{22} \\
& =\frac{-70-29}{110} \\
& =\frac{-99}{110} \\
& =\frac{3}{25}=\frac{-99}{11 n} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (iv) } \begin{aligned}
x=-2, y=\frac{3}{5}, z & =\frac{-4}{3} \\
-2+\left(\frac{3}{5}+\left(-\frac{4}{3}\right)\right) & =\left(-2+\frac{3}{5}\right)+\left(\frac{-4}{3}\right) \\
-2+\left(\frac{9+(-20)}{15}\right) & =\left(\frac{-110+3}{5}\right)-\frac{4}{3} \\
\frac{-30-11}{15} & =\frac{-7}{5}-\frac{4}{3} \\
\frac{-41}{15} & =\frac{-21}{15}-\frac{20}{15} \\
-\frac{41}{15} & =\frac{-41}{15}
\end{aligned}
\end{aligned}
$$

(3) write the additive inverse of each of the following rational numbers
(i) $-\frac{2}{17}$.

The additive inverse of $\frac{-2}{17}$ is $\frac{2}{17}$.
(ii) $\frac{3}{-11}$

The additive inverse of $\frac{3}{-11}$ is $\frac{3}{11}$.
(iii) $\frac{-17}{5}$

The additive inverse of $\frac{-77}{5}$ is $\frac{17}{5}$.
(iv) $\frac{-11}{-25}$.

The additive inverse of $\frac{-11}{25}$.
44) write. the negative (additive inverse) of each of the following
(i) $-\frac{2}{5}$.

The additive inverse of $-\frac{2}{5}$ is $\frac{2}{5}$.
(ii) $\frac{3}{-11}$

The additive inverse of $\frac{3}{-11}$ is $\frac{3}{1}$
(iii) $\frac{-16}{13}$

The additive inverse of $\frac{-16}{13}$ is $\frac{16}{13}$
(iv) $\frac{-5}{1}$

The additive inverse of -5 is 5 .
(v) 0 .

The additive inverse of 0 is 0 .
(vi) 1

The additive inverse of 1 is -1 .
(vii) -1

The additive inverse of -1 is 1 .
5. Using\& commutativity and associativity of addition of rational numbers, express each of the following as a rational number.
(i) $\frac{2}{5}+\frac{7}{3}+\left(-\frac{4}{5}\right)+\frac{-1}{3}$

Rearranging and grouping the numbers in pairs in such away that each group contains a pair of rational numbers with equal denominators. we have.

$$
\begin{aligned}
& \frac{2}{5}+\frac{7}{3}+\frac{-4}{5}+\frac{-1}{3} \\
& \frac{2}{5}-\frac{4}{5}+\frac{7}{3}-\frac{1}{3}=-\frac{2}{5}+\frac{6}{3}=\frac{-6}{15}+\frac{30}{15} \\
&
\end{aligned}
$$

(ii) $\frac{3}{7}+\frac{-4}{9}+\frac{-11}{7}+\frac{7}{9}$.

$$
\begin{aligned}
\frac{3}{7}+\frac{-4}{9}+\frac{-11}{7}+\frac{7}{9} & =\frac{3}{7}-\frac{11}{7}+\frac{7}{9}-\frac{4}{9} \\
& =\frac{-8}{7}+\frac{3}{9} \\
& =-\frac{8}{7}+\frac{1}{3} \\
& =-\frac{24}{21}+\frac{7}{21}=\frac{-17}{21} .
\end{aligned}
$$

(iii) $\frac{2}{5}+\frac{8}{3}-\frac{11}{15}+\frac{4}{5}+\frac{-2}{3}$.

$$
\begin{aligned}
\frac{2}{5}+\frac{8}{3}-\frac{11}{15}+\frac{4}{5}+\frac{-2}{3} & =\frac{2}{5}+\frac{4}{5}+\frac{8}{3}-\frac{2}{3}-\frac{11}{15} \\
& =\frac{6}{5}+\frac{8-2}{3}-\frac{11}{15} \\
& =\frac{6}{5}+\frac{6}{3}+\frac{-11}{15} \\
& =\frac{6 \times 3}{5 \times 3}+\frac{6 \times 5}{3 \times 5}-\frac{11}{15} \\
& =\frac{18}{15}+\frac{30}{15}-\frac{11}{15} \\
& =\frac{18+30-11}{15} \\
& =\frac{37}{15} \\
\text { (iv) } \frac{4}{7}+0+\frac{-8}{9}+\frac{-13}{7}+\frac{17}{21} & \\
\frac{4}{7}-\frac{13}{7}+0+\frac{-8}{9}+\frac{17}{21} & =\frac{4-13}{7}+\frac{17}{21}-\frac{8}{9} \\
& =\frac{-9}{7}+\frac{17}{21}-\frac{8}{9} \\
& =\frac{-9 \times 3}{21}+\frac{17}{21}-\frac{8}{9} \\
& =\frac{-27+17}{21}-\frac{8}{9} \\
& =\frac{-10 \times 9}{21 \times 9}-\frac{8 \times 21}{9 \times 21}
\end{aligned}
$$

6. Re-arrange suitably and find the sum in each of the following. .
(i) $\frac{11}{12}+\frac{-17}{3}+\frac{11}{2}-\frac{25}{2}=\frac{11}{12}-\frac{17}{3}-\frac{14}{2}$

$$
\begin{aligned}
& =\frac{11-68-84}{12} \\
& =\frac{-141}{12} .
\end{aligned}
$$

(ii) $\frac{-6}{7}+\frac{-9}{6}+\frac{-4}{9}+\frac{-15}{7}=\frac{-6}{7}-\frac{15}{7}-\frac{5}{6}-\frac{4}{9}$

$$
\begin{aligned}
& =\frac{-21}{+7}-\frac{5}{6}-\frac{4}{9} \\
& =\frac{-3 \times 18-5 \times 3-4 \times 2}{18} \\
& =\frac{-77}{18} .
\end{aligned}
$$

(iii) $\frac{3}{5}+\frac{7}{3}+\frac{9}{5}+\frac{-13}{15}+\frac{-7}{3}=\frac{3}{5}+\frac{9}{5}+\frac{7}{7}-\frac{7}{3}-\frac{13}{15}$

$$
=\frac{12}{5}-\frac{13}{15}
$$

$$
=\frac{12 \times 3}{5 \times 3}-\frac{13}{15}
$$

$$
=\frac{36-13}{15}
$$

$$
=\frac{23}{15}
$$

Rational Numbers Exercise 1.3

Exercise- 1.3

1. subtract the first rational number from the second in each of the following
(i) $\frac{3}{8}, \frac{95}{8}$

$$
\begin{aligned}
\frac{5}{8}-\frac{3}{8} & =\frac{5-3}{8} \\
& =\frac{2}{8}[\because \text { The Lcm of 8 and } 8 \text { is ' } 8 \text { ' }] \\
& =\frac{1}{4}
\end{aligned}
$$

(ii) $-\frac{7}{9}, \frac{4}{9}$.

$$
\frac{4}{9}-\left(-\frac{7}{9}\right)=\frac{4}{9}+\frac{7}{9}=\frac{4+7}{9}=\frac{11}{9}
$$

(iii) $\frac{-2}{11}, \frac{-9}{11}$.

$$
\frac{-9}{11}-\left(\frac{-2}{11}\right)=\frac{-9}{11}+\frac{2}{11}=\frac{2}{11}-\frac{9}{11}=\frac{-7}{11}
$$

(iv) $\frac{11}{13}, \frac{-4}{13}$.

$$
\frac{-4}{13}-\frac{11}{13}=\frac{-4-11}{13}=\frac{-15}{13}
$$

(v) $\frac{1}{4},-\frac{3}{8}$

$$
-\frac{3}{8}-\frac{1}{4}=\frac{-3-2}{8}=\frac{-5}{8}
$$

(vi) $-\frac{2}{3}, \frac{5}{6}$

$$
\frac{5}{6}-\left(-\frac{2}{3}\right)=\frac{5}{6}+\frac{2}{3}=\frac{5+4}{6}=\frac{9}{6}=\frac{3}{2}
$$

(vii) $\frac{-6}{7}, \frac{-13}{14}$.

$$
\frac{-13}{14}+\frac{6}{7}=\frac{-13+12}{14}=\frac{-1}{14}
$$

(viii) $\frac{-8}{33}, \frac{-7}{22}$.
$\frac{-1}{22}-\left(\frac{-8}{33}\right)=\frac{-7}{22}+\frac{8}{33}=\frac{-21+16}{66}=\frac{-5}{66}$.
2. Evaluate each of the following:
(i) $\frac{2}{3}+\frac{-3}{5}$

$$
\frac{2}{3}-\frac{3}{5}=\frac{2 \times 5-3 \times 3}{15}=\frac{1}{15}
$$

(ii) $\frac{-4}{7}-\frac{2}{-3}$

$$
-\frac{4}{7}+\frac{2}{3}=\frac{-4 \times 3+2 \times 7}{21}=\frac{14-12}{21}=\frac{2}{21}
$$

(iii) $\frac{4}{7}-\frac{-5}{-7}$.

$$
\frac{4}{7}-\frac{-5}{-7}=\frac{4}{7}-\frac{5}{7}=\frac{4-5}{7}=\frac{-1}{7}
$$

(iv) $-2-\frac{5}{9}$

$$
\frac{-2 \times 9-5}{9}=\frac{-23}{9}
$$

$$
\begin{aligned}
& \text { (v) } \frac{-3}{-8}-\frac{-2}{7} \\
& \frac{-3}{-8}-\frac{-2}{7}=\frac{3}{8}+\frac{2}{7}=\frac{3 \times 7+2 \times 8}{56}=\frac{21+16}{56}=\frac{37}{56}
\end{aligned}
$$

$$
\text { (vi) } \frac{-4}{13}-\frac{-5}{26}
$$

$$
\frac{-4}{13}+\frac{5}{26}=\frac{5}{26}-\frac{4}{13}=\frac{5-4 \times 2}{26}=\frac{-3}{26}
$$

$$
\text { (VII) } \frac{-5}{14}-\frac{-2}{7}
$$

$$
\frac{-5}{14}+\frac{2}{7}=\frac{2}{7}-\frac{5}{14}=\frac{2 \times 2-5}{14}=\frac{-1}{14}
$$

(vil) $\frac{13}{15}-\frac{12}{25}$.

$$
\frac{13}{15}-\frac{12}{25}=\frac{13 \times 5-12 \times 3}{75}=\frac{65-36}{75}=\frac{29}{75}
$$

$$
\text { (ix) } \frac{-6}{13}-\frac{-7}{13}
$$

$$
\frac{-6}{13}+\frac{7}{13}=\frac{7}{13}-\frac{6}{13}=\frac{7-6}{13}=\frac{1}{13}
$$

$$
(x) \frac{7}{24}-\frac{19}{36}
$$

$$
\frac{7}{24}-\frac{19}{36}=\frac{7 \times 3-19 \times 2}{72}=\frac{21-38}{72}=\frac{-17}{72}
$$

$$
\text { (xi) } \frac{5}{63}-\frac{8}{21}=\frac{5}{63}+\frac{8}{21}=5 \times \frac{8+8 \times 3}{63}=\frac{5+24}{63}=\frac{29}{63}
$$

3. The sum of the two numbers is $\frac{5}{9}$. If one of the numbers is $\frac{1}{3}$, find the other

It is given that.
sumof the numbers $=\frac{5}{9}$, one of the numbers $=\frac{1}{3}$.
suppose the other rational number is x. Since
the sum is $\frac{5}{9}$

$$
\begin{aligned}
& \therefore x+\frac{1}{3}=\frac{5}{9} \\
& \Rightarrow \frac{3 x+1}{3}=\frac{5}{9} \\
& \Rightarrow 3 x+1=\frac{15}{9} \\
& \Rightarrow 3 x+1=\frac{5}{3} \\
& \Rightarrow x=\frac{\frac{5}{3}-1}{3}=\frac{2}{9}
\end{aligned}
$$

4. The sum of two numbers is $\frac{-1}{3}$. If one of the numbers is $-\frac{12}{3}$, find the other.

It is given that.
$\Rightarrow x+\frac{-1}{3} \frac{\left.-\frac{12}{3}\right) \quad \Rightarrow \frac{3 x-1}{8}=\frac{-12}{3}}{3}$

$$
\Rightarrow \quad 3 x=1-12
$$

3. The sum of the two numbers is $\frac{5}{9}$. If one of the numbers is $\frac{1}{3}$, find the other.

It is given that
sum of the numbers $=\frac{5}{9}$, one of the numbers $=\frac{1}{3}$
Suppose the other rational number is x. Since
the sum is $\frac{5}{9}$

$$
\begin{aligned}
& \therefore x+\frac{1}{3}=\frac{5}{9} \\
& \Rightarrow \frac{3 x+1}{3}=\frac{5}{9} \\
& \Rightarrow 3 x=\frac{5}{3}-1 \\
& \Rightarrow x=\frac{2}{3 \times 3}=\frac{2}{9}
\end{aligned}
$$

4. The sum of two numbers is $\frac{-1}{3}$. If one of the numbers is $-\frac{12}{3}$, find the other.

It is given that.

Suppose the rational number is x. Then.

$$
\begin{aligned}
& \therefore x+\frac{-12}{3}=\frac{-1}{3} \\
& \Rightarrow \frac{3 x-12}{3}=\frac{-1}{3} \\
& \Rightarrow 3 x=12-01 \Rightarrow x=\frac{11}{3}
\end{aligned}
$$

5. The sum of two numbers is $\frac{-4}{3}$. If one of the numbers is -5 , find the other.

It is given that.

Sum of two numbers is $-\frac{4}{3}$, one of the numbers $=-5$ suppose the other rational number is x. Since the sum is $\frac{-4}{3}$.

$$
\begin{aligned}
& \therefore x+(-5)=\frac{-4}{3} \\
& \Rightarrow x-5=\frac{-4}{3} \\
& \Rightarrow x=5-\frac{4}{3}=\frac{5 \times 3-4}{2}=\frac{15-4}{3}=\frac{11}{3} .
\end{aligned}
$$

6. The sum of two rational numbers is -8 . If one of the numbers is $\frac{-15}{7}$, find the other

It is given that.
Sum of two rational numbers is -8 .
Suppose
the $\$$ othe rational number be x since the sum is

$$
\begin{aligned}
x+\frac{-15}{7}=-8 & \Rightarrow \frac{x \times 7}{7}-\frac{15}{7}=-8 . \\
\frac{7 x-15}{7}=-8 & \Rightarrow 7 x-15=-8 \times 7 \\
& \Rightarrow 7 x=-56+15 \\
& \Rightarrow x=\frac{-41}{7}
\end{aligned}
$$

7. What should be added to $\frac{-7}{8}$ so as to get $\frac{5}{9}$.
suppose x is the rational number to beaded to $\frac{-7}{8}$ to get $\frac{5}{9}$. Then, $-\frac{7}{8}+x=\frac{5}{9}$ $x=\frac{5}{9}+\frac{7}{8}$ $x=\frac{5 \times 8}{9 \times 8}+\frac{7 \times 9}{8 \times 9}$
$x=\frac{40+63}{7^{2}}$
$x=\frac{103}{72}$
\therefore required. number $x=\frac{103}{72}$
8. What number should be added to $\frac{-5}{11}$ So astoget $\frac{26}{33}$
suppose x is the rational number to be added to
$-\frac{5}{11}$ toget $\frac{26}{3^{3}}$. Then,

$$
\frac{-5}{11}+x=\frac{26}{33}
$$

$x=\frac{26}{33}+\frac{5}{11} \Rightarrow x=\frac{26}{33}+\frac{5 \times 3}{33}$
$x=\frac{26+15}{33}$
$x=\frac{41}{33}$.
9. What number should be added to $\frac{-5}{7}$ to get $\frac{-2}{3}$.

Suppose x is the rational number to be added to

$$
-\frac{5}{7} \text { toget }-\frac{2}{3} \text {. Then, }
$$

$$
-\frac{5}{7}+x=-\frac{2}{3}
$$

$$
x=\frac{5}{7}-\frac{2}{3}
$$

$$
x=\frac{5 \times 3}{7 \times 3}-\frac{2 \times 7}{7 \times 3}
$$

$$
x=\frac{15-14}{215}
$$

$$
x=\frac{1}{215} .
$$

10. What number should be subtracted from $-\frac{5}{3}$ to get Suppose the number x is to subtracted suppose the number x is to be added to $\frac{-5}{3}$ to get $\frac{5}{6}$.

$$
-\frac{5}{3}-x=\frac{5}{6} \Rightarrow-\frac{5}{3}-\frac{x \times 3}{3}=\frac{5}{6}
$$

$$
\frac{-5-3 x}{3}=\frac{5}{6}
$$

$$
\Rightarrow \quad-5-3 x=\frac{15}{6}
$$

$$
\Rightarrow-3 x=\frac{5}{2}+5
$$

$$
\Rightarrow+x=\frac{-15}{6}=\frac{-5}{2} .
$$

ii. What number should be subtracted from $\frac{3}{7}$ to get $\frac{5}{4}$.
suppose x is the rational number to be subtracted from $\frac{3}{7}$ roget $\frac{5}{4}$

$$
\begin{aligned}
& \frac{3}{7}-x=\frac{5}{4} \\
& \frac{3}{7} * \frac{x \times 7}{7 \times 1}=\frac{5}{4} \\
& \frac{3-7 x}{7}=\frac{5}{4} \\
& 3-7 x=\frac{35}{4} \\
& \Rightarrow-x=\frac{35-12}{7 \times 4} \\
& \Rightarrow x
\end{aligned}
$$

12. what should be added to $\left(\frac{2}{3}+\frac{3}{5}\right)$ to get $\frac{-2}{15}$?

Let the number be. It is given that.

$$
x+\left(\frac{2}{3}+\frac{3}{5}\right)=\frac{-2}{1}
$$

$x+\left(\frac{2 \times 5+3 \times 3}{15}\right)=\frac{-2}{15}$.
$\Rightarrow \quad \frac{15 x+10}{15}+9=\frac{-2}{15}$
$\Rightarrow \quad 15 x=-2-19$
$\Rightarrow x=\frac{-21}{15}$
$\Rightarrow x=\frac{-7}{5}$.
13. what should be added to $\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}\right)$ to get 3 ? Let the number be, It is given that.

$$
\begin{aligned}
& x+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}\right)=3 . \\
& \quad x+\left(\frac{1 \times 15}{2 \times 15}+\frac{1 \times 10}{3 \times 10} \times\right. \\
& {\left[\begin{array}{l}
\text { The LCM of } 2,345 \\
\frac{30 x+15+10+6}{30}=3 \\
\Rightarrow 30 x+31=90 \\
\Rightarrow \quad 30 x=90-31 \\
\Rightarrow x=\frac{59}{30 .}
\end{array} .\right.}
\end{aligned}
$$

$$
x+\left(\frac{1 \times 15}{2 \times 15}+\frac{1 \times 10}{3 \times 10} \times \frac{1 \times 6}{6 \times 1}\right)=3 .
$$

$$
[\because \text { The Lem of } 2,3 \& 5 \text { is } 30]
$$

14. What should be subtracted from $\left(\frac{3}{4}-\frac{2}{3}\right)$ to get $\frac{-1}{6}$?

Let the number be x. It is given that

$$
\begin{gathered}
\left(\frac{3}{4}-\frac{2}{3}\right)-x=\frac{-1}{6} \\
-x+\left[\frac{3 \times 3}{4 \times 3}-\frac{2 \times 4}{4 \times 3}\right]=\frac{-1}{6} \\
-x+\left[\frac{9}{12}-\frac{8}{12}\right]=\frac{-1}{6} \\
\Rightarrow \frac{-12 x+9-8}{12}=\frac{-1}{6} \\
\Rightarrow \quad-\frac{12 x+1}{}=-2 \\
\Rightarrow x=\frac{-3}{-12}=1 / 4
\end{gathered}
$$

15. Fill in the blanks:

$$
\text { (i) } \begin{aligned}
-\frac{4}{13}-\frac{-3}{26} & =\frac{-4}{13}+\frac{3}{26} \\
& =\frac{3}{26}-\frac{4 \times 2}{13 \times 2} \\
& =\frac{3-8}{26} \\
& =\frac{-5}{26} .
\end{aligned}
$$

(ii) $\frac{-9}{14}+\cdots=-1$

Let x be the rational number. Then
$\frac{-9}{14}+x=-1$
$-9+14 x=-14$

$$
\Rightarrow 14 x=9-14
$$

$$
\Rightarrow x=-\frac{5}{14} .
$$

(iii) $-\frac{7}{9}+\cdots=3$

$$
\begin{aligned}
\Rightarrow-\frac{7}{9}+x=3 & \Rightarrow-\frac{7}{9}+\frac{9 x}{9}=3 \\
& \Rightarrow 9 x-7=27 \Rightarrow 9 x=27+7 . \\
& \Rightarrow x=\frac{34}{9} .
\end{aligned}
$$

(iv) $\cdots+\frac{15}{2^{3}}=4$.

$$
\begin{aligned}
x+\frac{15}{23}=4 & \Rightarrow 23 x+15=92 \\
& \Rightarrow 23 x=92-15
\end{aligned}
$$

Rational Numbers Exercise 1.4

Exercise -1.4

1. Simplify each of the following and write as a rational number of the form $\frac{P}{q}$:
(1) $\frac{3}{4}+\frac{5}{6}+\frac{-7}{8}$.
we have,

$$
\begin{aligned}
& \frac{3}{4}+\frac{5}{6}+\left(\frac{-7}{8}\right) \\
= & \frac{3}{4}+\frac{5}{6}-\frac{7}{8} \\
= & \frac{3 \times 96}{4 \times 6}+\frac{5 \times 4}{6 \times 4}+\frac{-7 \times 3}{8 \times 3} \quad[\because \text { The LCm of } 4,6 \text { and } 8 \text { is } \\
= & \frac{18+20-21}{24} \\
= & \frac{17}{24}
\end{aligned}
$$

(ii) $\frac{2}{3}+\frac{-5}{6}+\frac{-7}{9}$.

$$
\begin{aligned}
& \text { we have, } \\
& \frac{2}{3}+\left(-\frac{5}{6}\right)+\left(\frac{-7}{9}\right) \\
& =\frac{2}{3}-\frac{5}{6}-\frac{7}{9} \\
& =\frac{2 \times 6}{3 \times 6}-\frac{5 \times 3}{6 \times 3}-\frac{7 \times 2}{2 \times 9} \quad[\because \text { The Lcm of } 3,649 \text { is R] } \\
& =\frac{12}{18}-\frac{15}{18}-\frac{14}{18}=\frac{12-15-14}{18} \\
& \Rightarrow \frac{-17}{18}=\frac{2}{3}+\left(\frac{-5}{6}\right)+\left(\frac{-7}{9}\right) .
\end{aligned}
$$

(iii) $\frac{-11}{2}+\frac{7}{6}+\frac{-5}{8}$

$$
-\frac{11}{2}+\frac{7}{6}+\left(\frac{-5}{8}\right)=\frac{7}{6}-\frac{11}{2}-\frac{5}{8}
$$

$$
=\frac{7 \times 4}{6 \times 4}-\frac{11 \times 12}{2 \times 12}-\frac{5 \times 3}{8 \times 3}
$$

$$
=\frac{28-132-15}{24}[\because \text { The Lem of }
$$

$$
=\frac{-119}{24}
$$

$$
2,6 \text { and } 8 \text { is } 24
$$

(iv) $\frac{-4}{5}+\frac{-7}{10}+\frac{-8}{15}$

$$
\frac{-4}{5}+\left(\frac{-7}{10}\right)+\left(\frac{-8}{15}\right)=\frac{-4}{5}-\frac{7}{10}-\frac{8}{15}
$$

$$
=\frac{-4 \times 6}{5 \times 6}-\frac{7 \times 3}{10 \times 3}-\frac{8 \times 2}{15 \times 2}[\because \text { The LCM of }
$$

$$
=\frac{-24}{30}-\frac{21}{30}-\frac{16}{30}
$$

$$
=\frac{-24-21-16}{30}
$$

(v) $\frac{-9}{10}+\frac{22}{15}+\frac{13}{-20}$

$$
=\frac{-61}{30} .
$$

$$
\begin{aligned}
-\frac{9}{10}+\frac{22}{15}-\frac{13}{20} & =\frac{-9 \times 6}{10 \times 6}+\frac{22 \times 4}{15 \times 4}-\frac{13 \times 3}{20 \times 3} \\
& =\frac{-54+88-39}{60}[\because \text { Thelcmof } 10,15420 \\
& =\frac{-5}{60}=\frac{-1}{12} .
\end{aligned}
$$

(VI) $\frac{5}{-3}+\frac{3}{-2}+\frac{77}{3}+3$.

$$
\begin{aligned}
& \frac{5}{-3}+\frac{3}{-2}+\frac{-7}{3}+3=+\frac{5}{3}-\frac{3}{2}-\frac{7}{3}+3 \\
& =\frac{+5 \times 2-3 \times 3-7 \times 2+3 \times 6}{6}[\text { : The Lam of } \\
& \begin{array}{cc}
=\frac{+10-9-14+18}{6} & 2,3,3 \text { and } \\
\text { is } 6]
\end{array} \\
& =\frac{5}{6} \\
& \text { is 6] }
\end{aligned}
$$

2. Express each of the following as a rational number of the form $\frac{p}{q}$:
(i) $\frac{-8}{+3}+\frac{-1}{4}+\frac{-11}{6}+\frac{3}{8}-3$

$$
\begin{aligned}
\frac{-8}{3}+\left(\frac{-1}{4}\right)+\left(\frac{-11}{6}\right)+\frac{3}{8}+(-3) & =\frac{-8}{3}-\frac{1}{4}-\frac{11}{6}+\frac{3}{8}-3 \\
& =\frac{-8 \times 8}{3 \times 8}-\frac{1 \times 6}{4 \times 6}-\frac{11 \times 4}{6 \times 4}+\frac{3 \times 3}{8 \times 3}-\frac{2}{24} \\
& =\frac{-64-6-44+9-72}{24} \\
& =\frac{-59 \times 3}{8 \times 3}=\frac{-59}{8} .
\end{aligned}
$$

(ii) $\frac{6}{7}+1+\frac{-7}{9}+\frac{19}{21}+\frac{-12}{7}$

$$
\begin{aligned}
& \frac{6 \times 9}{7 \times 9}+\frac{63}{63}-\frac{7 \times 7}{9 \times 7}+\frac{3 \times 19}{21 \times 3}-\frac{12 \times 9}{7 \times 9} \\
= & \frac{54+63-49+57-108}{63} \quad\left[\because \text { The Lcm of } 7,1,9,2187 \text { is } 63^{\prime}\right] \\
= & \frac{17}{63} .
\end{aligned}
$$

(iii) $\frac{15}{2}+\frac{9}{8}+\frac{-11}{3}+6+\frac{-7}{6}$. we have, $\begin{aligned} \frac{15}{2}+\frac{9}{8}+\frac{-11}{3}+6+\frac{-7}{6} & =\frac{12 \frac{15}{2}+\frac{9}{8}-\frac{11}{3}+\frac{6}{1}-\frac{7}{6}}{} \\ & =\frac{15 \times 12}{2 \times 12}+\frac{9 \times 3}{8 \times 3}-\frac{11 \times 8}{3 \times 8}+\frac{6 \times 24}{24}-\frac{7 \times 4}{6 \times 4} \\ & =\frac{180+27-88+144-28}{24} \\ & =\frac{235}{24} . \end{aligned}$ (iv) $\frac{-7}{4}+0+\frac{-9}{5}+\frac{19}{10}+\frac{11}{14}$. we have, $\begin{aligned} -\frac{7}{4}+0+\frac{-9}{5}+\frac{19}{10}+\frac{11}{14} & =\frac{-7}{4}-\frac{9}{5}+\frac{19}{10}+\frac{11}{14} \\ & =\frac{-7 \times 35}{4 \times 35}-\frac{9 \times 28}{5 \times 28}+\frac{19 \times 14}{10 \times 14}+\frac{11 \times 10}{14 \times 10} \\ & =\frac{-245-252+266+110}{140} \\ & =\frac{-0 \times \times 06}{-121} \end{aligned}$ (v) $\frac{-7}{4}+\frac{5}{3}+\frac{-1}{2}+\frac{-5}{6}+2$. $\begin{aligned} \left(\frac{-7}{4}\right)+\left(\frac{5}{3}\right)+\left(\frac{-1}{2}\right)-\frac{5}{6}+2 & =\frac{-7}{4}+\frac{5}{3}-\frac{1}{2}-\frac{5}{6}+2 \\ & =\frac{-7 \times 6}{4 \times 6}+\frac{5 \times 8}{3 \times 8}-\frac{1 \times 12}{2 \times 12}-\frac{5 \times 6}{6 \times 4}+\frac{2 \times 1 \times 1 \times 2}{24} \\ & =\frac{-42+40-12-30+48}{24} \\ & =\frac{14}{24}=\frac{7}{1} \end{aligned}$

3. Simplify
(i) $-\frac{3}{2}+\frac{5}{4}-\frac{7}{4}$.
we have,

$$
\begin{align*}
-\frac{3}{2}+\frac{5}{4}-\frac{7}{4} & =\frac{-3 \times 2+5 \times 1-7 \times 1}{4} \\
& =\frac{-6+5-7}{4} \quad[\text { The Lcm of } 2,4 \& 4 \\
& \left.=\frac{-8}{4}=-2 \quad \text { is } 4\right]
\end{align*}
$$

(ii) $\frac{5}{3}-\frac{7}{6}+\frac{-2}{3}$.
we have,

$$
\begin{aligned}
& \frac{5}{3}-\frac{7}{6}-\frac{2}{3}=\frac{5 \times 2-7 \times 1-2 \times 2}{6}=\frac{10-7-4}{6} \\
&=\frac{-1}{6}[\because \text { The Lcm of } \\
&3,6 \text { and } 3 \text { is ' } 6]] .
\end{aligned}
$$

(iii) $\frac{5}{4}-\frac{7}{6}-\frac{2}{3}$.
we have,

$$
\begin{aligned}
\frac{5}{4}-\frac{7}{6}+\frac{2}{3} & =\frac{5 \times 6}{4 \times 6}-\frac{7 \times 4}{6 \times 4}+\frac{2 \times 8}{3 \times 8} \\
& =\frac{30-28+16}{24} \\
& =\frac{18}{24} \\
& =\frac{3}{4}
\end{aligned}
$$

(iv) $\frac{-2}{5}-\frac{-3}{10}-\frac{-4}{7}$
we have,

$$
\begin{aligned}
-\frac{2}{5}-\frac{-3}{10}-\frac{-4}{7} & =\frac{-2}{5}+\frac{3}{10}+\frac{4}{7} \\
& =\frac{-2 \times 7 \times 2}{5 \times 7 \times 2}+\frac{3 \times 7}{10 \times 7}+\frac{4 \times 10}{7 \times 10} \\
& =\frac{-28}{70}+\frac{21}{70}+\frac{40}{70} \\
& =\frac{21+40-28}{70} \\
& =\frac{33}{70}
\end{aligned}
$$

(v) $\frac{5}{6}+\frac{-2}{5}-\frac{-2}{15}$
we have,

$$
\begin{aligned}
\frac{5}{6}+\frac{-2}{5}+\frac{2}{15}=\frac{5}{6}-\frac{2}{5}+\frac{2}{15} & =\frac{5 \times 5}{6 \times 5}-\frac{2 \times 6}{5 \times 6}+\frac{2 \times 2}{15 \times 2} \\
& =\frac{25-12+4}{30} \\
& =\frac{29-12}{30} \\
& =\frac{17}{30}
\end{aligned}
$$

(vi) $\frac{3}{8}-\frac{-2}{96}+\frac{-5}{36}$.

$$
\frac{3}{8}+\frac{2}{97}-\frac{5}{36}=\frac{3 \times 9+2 \times 8-5 \times 2}{36 \times 2}=\frac{27+18-10}{72}
$$

$$
=\frac{33}{72}=\frac{11}{24}
$$

2. Multiply:
(i) $\frac{-5}{17}$ by $\frac{51}{-60}$
(ii) $\frac{-6}{11}$ bs $\frac{-55}{36}$ (iii) $\frac{-8}{25}$ by $\frac{-5}{16}$
(v) $\frac{8}{-9}$ by $\frac{-7}{-16}$ (vi) $\frac{-8}{9}$ by $\frac{3}{64}$.
$\operatorname{scon}^{\circ}-$
(i) $\frac{-5}{17} \times \frac{51}{-60}=\frac{-\$ x 51^{3}}{\sqrt{1 \times-6012}}=\frac{-3}{-12}=\frac{1}{4}$
(ii) $\frac{-6}{11} \times \frac{-55}{36}=\frac{-6 \times-55}{11 \times 36}=\frac{-1 \times-5}{1 \times 6}=\frac{5}{6}$
(iii) $\frac{-8}{25} \times \frac{-5}{16}=\frac{-8 \times-5}{25 \times 16}=\frac{-1 \times-1}{5 \times 2}=\frac{1}{10}$.
(iv) $\frac{6}{7} \times \frac{-49}{36}=\frac{6 \times-49}{7 \times 36}=\frac{-7 \times 1}{6 \times 1}=\frac{-7}{6}$.
(v) $\frac{8}{-9} \times \frac{-7}{-16}=\frac{8 \times-7}{9 \times 16}=\frac{1 \times-7}{9 \times 2}=\frac{-7}{18}$.
(vi) $\frac{-8}{9} \times \frac{3}{64}=\frac{-8 \times 3}{9 \times 64}=\frac{-1 \times 3}{9 \times 8}=\frac{-3}{72}=\frac{-1}{24}$.
3. Simplify each of the following and express the result as a rational number in standard form.
(i) $\frac{-16}{21} \times \frac{14}{5}$ (ii) $\frac{7}{6} \times \frac{-3}{28}$ (iii) $\frac{-19}{36} \times 16$ (iv) $\frac{-13}{9} \times \frac{27}{-26}$.
(v) $\frac{-9}{16} \times \frac{-64}{-27}$ (vi) $\frac{-50}{7} \times \frac{14}{3}$ (vil) $\frac{-11}{9} \times \frac{-81}{-88}$ (viii) $\frac{-5}{9} \times \frac{72}{-25}$

Solution al
(i) $\frac{-16}{21} \times \frac{14}{5}=\frac{-16 \times 2}{3 \times 5}=\frac{-32}{15}$.
(ii) $\frac{7}{6} \times \frac{-3}{28}=\frac{7 \times-3}{6 \times 28}=\frac{-21}{168}=\frac{-7}{56}=\frac{-1}{8}$

5. Simplify:
(i) $\left(\frac{3}{2} \times \frac{1}{6}\right)+\left(\frac{5}{3} \times \frac{7}{2}\right)-\left(\frac{13}{8} \times \frac{4}{3}\right)$
$\left(\frac{3}{12}\right)+\left(\frac{35}{6}\right)-\left(\frac{52}{24}\right)=\frac{3 \times 2+35 \times 4-52}{24}=\frac{94}{24}=\frac{47}{12}$
(ii) $\left(\frac{1}{4} \times \frac{2}{7}\right)-\left(\frac{5}{14} \times \frac{-2}{3}\right)+\left(\frac{3}{7} \times \frac{9}{2}\right)$
$\left(\frac{2}{28}\right)+\left(\frac{10}{42}\right)+\left(\frac{27}{14}\right)=\frac{3 \times 2+10 \times 2+27 \times 6}{84}$

$$
=\frac{188}{84}=\frac{47}{21}
$$

(iii) $\left(\frac{13}{9} \times-\frac{15}{2}\right)+\left(\frac{7}{3} \times \frac{8}{5}\right)+\left(\frac{3}{5} \times \frac{1}{2}\right)$.

$$
\frac{13 \times-15}{9 \times 2}+\frac{7 \times 8}{3 \times 5}+\frac{3 \times 1}{5 \times 2}=\frac{-65}{6}+\frac{56}{15}+\frac{3}{10}
$$

$$
=\frac{-65 \times 5+56 \times 2+3 \times 3}{30}
$$

$$
=\frac{-204}{30}
$$

$$
\text { (iv) }\left(\frac{3}{11} \times \frac{5}{6}\right)-\left(\frac{9}{12} \times \frac{4}{3}\right)+\left(\frac{5}{13} \times \frac{6}{15}\right)
$$

$$
\begin{aligned}
\left(\frac{3 \times 5}{11 \times 6}\right)-\left(\frac{36}{36}\right)+\left(\frac{30}{\sqrt{3 \times 15}}\right) & =\frac{15}{66}-1+\frac{2}{26} \\
& =\frac{15 \times 26-286+2 \times 66}{286} \\
& =\frac{-177}{286} .
\end{aligned}
$$

Rational Numbers Exercise 1.6

Exer cise-1.6

1. verity the property : ' $x \times y=y \times x$ by taking:
(i) $x=\frac{-1}{3}, y=\frac{2}{7}$ (ii) $x=\frac{-3}{5}, y=\frac{-11}{13},(111) x=2, y=\frac{-7}{8}$ (iv) $x=0, y=\frac{-15}{8}$.
(i) wehave,

$$
\begin{aligned}
& x \times y=\frac{-1}{3} \times\left(\frac{2}{7}\right)=\frac{-2}{21} \\
& y \times x=\frac{2}{7} \times\left(\frac{-1}{3}\right)=\frac{-2}{21}
\end{aligned}
$$

(ii) we have,
$x=\frac{-3}{5}, y=\frac{-11}{13}$.
$x \times y=-\frac{3}{5} \times-\frac{11}{13}=\frac{33}{65}$
$y \times x=\frac{-11}{13} \times \frac{-3}{5}=\frac{33}{65}$
(iii) we have,

$$
\begin{aligned}
& x=2, y=\frac{-7}{8} \\
& x \times y=2 \times \frac{-7}{8}=\frac{-14}{8}=\frac{-7}{4} \\
& y \times x=\frac{-7}{8} \times 2=-\frac{14}{5}=\frac{-7}{4}
\end{aligned}
$$

(iv) we have,
$x=0, y=\frac{-15}{8}$.
$x \times y=0 \times \frac{-15}{8}=0$.
$\therefore \quad y \times x=\varnothing \times \frac{-15}{8} \times 0=0$.
2. verify the property, $x \times(y \times z)=(x \times y) \times z$ by taking (i) $x=\frac{-7}{3}, y=\frac{12}{5}, z=\frac{4}{9}$, (ii) $x=0, y=\frac{-3}{5}, z=\frac{-9}{4}$.
(III) $x=\frac{1}{2}, y=\frac{5}{-4}, z=\frac{-7}{5} \quad$ (iv) $x=\frac{5}{7}, y=\frac{-12}{13}, z=\frac{-7}{18}$.
sot:- (i) we have.

$$
x=\frac{-7}{3}, y=\frac{12}{5} \text { and } z=\frac{4}{9} .
$$

$x \times(y \times z)=-\frac{7}{3} \times\left(\frac{12}{5} \times \frac{4}{9}\right)=-\frac{7}{3}\left(\frac{48}{45}\right)=\frac{-112}{45}$
$(x \times y) \times z=\left(-\frac{7}{3} \times \frac{12}{5}\right) \times \frac{4}{9}=-\frac{7}{3}\left(\frac{48}{45}\right)=\frac{-112}{45}$
(ii) we have,

$$
\begin{aligned}
& x=0, y=\frac{-3}{5}, z=\frac{-9}{4} \\
& x \times(y \times z)=0 \times\left(\frac{-3}{5} \times \frac{-9}{4}\right)=0 \\
& (x \times y) \times z=\left(0 \times \frac{-3}{5}\right) \times\left(\frac{-9}{4}\right)=0
\end{aligned}
$$

(III) we have,

$$
\begin{aligned}
& x=\frac{1}{2}, y=\frac{5}{4}, z=\frac{-7}{5} \\
& x \times(y \times z)=\frac{1}{2} \times\left(\frac{5}{-4} \times \frac{-7}{5}\right)=\frac{1}{2} \times \frac{7}{4}=\frac{7}{8} . \\
& (x \times y) \times z=\left(\frac{1}{2} \times \frac{5}{-4}\right) \times\left(\frac{-7}{5}\right)=\left(\frac{-5}{8}\right)\left(\frac{-7}{5}\right)=\frac{7}{8} .
\end{aligned}
$$

(iv) $x=\frac{5}{7}, y=\frac{-12}{13}, z=\frac{-7}{18}$
$(x \times y) \times z=\left(\frac{5}{7} \times \frac{-12}{13}\right) \times\left(\frac{-7}{18}\right)=\frac{-60}{9 / 13} \times \frac{-7}{18}=\frac{+10}{39}$
$x \times(y \times z)=\frac{5}{7} \times\left(\frac{1-12}{12} \times \frac{7}{18}\right)=\frac{10}{39}$
3. Verify the property: $x \times(y+z)=x \times y+x \times z$ by taking.
(i) $x=\frac{-3}{7}, y=\frac{12}{13}, z=\frac{-5}{6}, \quad$ (11) $x=\frac{-12}{5}, y=\frac{-15}{4}, z=\frac{8}{3}$.
(iii) $x=\frac{-8}{3}, y=\frac{5}{6}, z=\frac{-13}{12}$. (iv) $x=\frac{-3}{4}, y=\frac{-5}{2}, z=\frac{7}{6}$.
(i) we have,

$$
\begin{aligned}
& x=\frac{-3}{7}, y=\frac{12}{13}, z=\frac{-5}{6} \\
& \begin{aligned}
\left(\frac{-3}{7}\right) \times\left(\frac{12}{13}+\frac{-5}{6}\right) & =\frac{-3}{7} \times \frac{12}{13}+\frac{-3}{7} \times \frac{-5}{6} \\
& =\frac{-36}{91}+\frac{15}{42} \\
& =\frac{-36 \times 6+15 \times 13}{546}=\frac{195-216}{546}=\frac{-21}{546} \\
x \times y+x \times 2 & =\frac{-2}{26} \\
\left(\frac{-3}{7}\right) \times\left(\frac{12 \times 6-5 \times 13}{78}\right) & =\left(\frac{-3}{7}\right) \times\left(\frac{7}{78}\right) \\
& =\frac{-1}{26} \\
& \\
\left(\frac{-3}{7}\right) \times\left(\frac{12}{13}+\frac{-5}{6}\right) & =\left(\frac{-3}{7}\right) \times\left(\frac{12}{13}\right)+\left(\frac{-3}{7}\right) \times\left(\frac{-5}{6}\right)
\end{aligned}
\end{aligned}
$$

(ii) we have,

$$
\begin{aligned}
& \left(-\frac{12}{5}\right) \times\left(-\frac{15}{4}+\frac{8}{3}\right)=\left(-\frac{12}{5}\right) \times\left(-\frac{15}{4}\right)+\left(-\frac{12}{5}\right) \times\left(\frac{8}{3}\right) \\
\Rightarrow & \left(-\frac{12}{5}\right) \times\left(-\frac{45+32}{12}\right)=\left(-\frac{13}{8}\right) \times\left(\frac{3}{4} \frac{15}{4}\right)+\left(-\frac{12}{5}\right) \times\left(\frac{8}{3}\right) \\
\Rightarrow & \frac{13}{5}=45 \frac{-32}{5} \\
\Rightarrow & \frac{13}{3}-3
\end{aligned}
$$

(115)

$$
\begin{aligned}
& x=\frac{-8}{3}, y=\frac{5}{6}, z=\frac{-13}{12} \\
& -\frac{8}{3} \times\left(\frac{5}{6}+\frac{-13}{12}\right)=\left(\frac{-8}{3}\right) \times\left(\frac{5}{6}\right)+\left(\frac{-8}{3}\right) \times\left(\frac{-13}{12}\right) \\
& -\frac{8}{3} \times\left(\frac{10-13}{12}\right)=\frac{-40}{18}+\frac{104}{36} \\
& \frac{24}{36}=\frac{-80+104}{36} \\
& \frac{2}{3}=\frac{2}{3} \\
& \text { LHS }=\text { RHS. }
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& x=\frac{-3}{4}, y=\frac{-5}{2}, z=\frac{7}{6} \\
& \frac{-3}{4}\left(\frac{-5}{2}+\frac{7}{6}\right)=\left(\frac{-3}{4}\right) \times\left(\frac{-5}{2}\right)+\left(\frac{-3}{4}\right) \times\left(\frac{7}{6}\right) \\
& \frac{-3}{4} \times \frac{-5}{2}+\frac{-3}{4} \times \frac{7}{6}=\frac{-3}{4}\left(\frac{-5 \times 6}{2 \times 6}+\frac{7 \times 6}{6 \times 6}\right) \\
& \frac{15}{8}+\frac{-21}{24}=\frac{-3}{4}\left(\frac{7}{6}-\frac{5}{2}\right) \\
& \frac{45-21}{24}=\frac{-3}{4}\left(\frac{7}{6}-\frac{5 \times 3}{2 \times 3}\right) \\
& \frac{24}{24}=\frac{-3}{4}\left(\frac{7-15}{6}\right) \\
& 24=\frac{24}{24} \\
& \Rightarrow 1=1
\end{aligned}
$$

5. Find the multiplicative inverse (reciprocal) of each of the following rational numbers:
(i) 9 (ii) -7 (iii) $\frac{12}{5}$ (iv) $\frac{-7}{9}$ (v) $\frac{-3}{-5}$ (vi) $\frac{2}{3} \times \frac{9}{4}$.
(vil) $-\frac{5}{8} \times \frac{16}{15}$ (viIi) $-2 \times \frac{-3}{5}$. (ix) -1 (x) $\frac{0}{3}$ (xi) 1 .
(i) reciprocal of 9 is $\frac{1}{9}$
(ii) $\frac{-1}{7}$
(iii) $\frac{5}{12}$
(iv) $\frac{9}{-7}$
(v) $\frac{5}{3}$
(Vi) $\frac{2}{3}$
(vii) $\frac{-3}{2}$
(viii) $\frac{5}{6}$
(Ix) ~ 1

Ereciprocal of $\frac{a}{b}$ is $\frac{b}{a}$]
6. Name the property of multiplication of rational numbers illustrated by the followingstatemenre
(7) $\frac{-5}{16} \times \frac{8}{15}=\frac{8}{15} \times \frac{-5}{16}$ (11) $\frac{-17}{5} \times 9=9 \times \frac{-17}{5}$
(III) $\frac{7}{4} \times\left(\frac{-8}{3}+\frac{-13}{12}\right)=\frac{7}{4} \times \frac{-8}{3}+\frac{7}{4} \times \frac{-13}{12}$.
(iv) $-\frac{5}{9} \times\left(\frac{14}{15} \times \frac{-9}{8}\right)=\left(\frac{-5}{9} \times \frac{4}{15}\right) \times\left(\frac{-9}{8}\right)$
(v) $\frac{13}{-17} \times 1=\frac{13}{-17}=\frac{1 \times \frac{13}{-17} \quad \text { (vi) } \quad \frac{-11}{16} \times \frac{16}{-11}=1}{1}$
(vii) $\frac{2}{13} \times 0=0=0 \times \frac{2}{13}$ (viii) $\frac{-3}{2} \times \frac{5}{4}+\frac{-3}{2} \times \frac{-7}{6}=\frac{-3}{2}\left(\frac{5}{4}+\frac{-7}{6}\right.$

Solution:-
(i) commutativity
(ii) Commutativity
(III) Distributivity of multiplication over addition
(iv) Associativity of multiplication
(v) Existence of Identity for multiplication
(vi) Existence of multiplication inverse
(Vii) multiplication by zero.
(VIII) Distributivity Law.

Rational Numbers Exercise 1.7

2. Find the value and express as a rational number in 5 standard form:
(i) $\frac{2}{5} \div \frac{26}{15}$ (ii) $\frac{10}{3} \div \frac{-35}{12}$ (iii) $-6 \div \frac{-8}{17}$ (iv) $\frac{-40}{99} \div(-20$).
(v) $\frac{-22}{27} \div \frac{-110}{18}$ (vi) $\frac{-36}{125} \div \frac{-3}{75}$.

Solution:-
(i) $\frac{2}{5} \div \frac{26}{15}=\frac{\frac{2}{5}}{\frac{26}{15}}=\frac{\frac{2}{1}}{\frac{26}{3}}=\frac{2}{26} \times \frac{3}{1}=\frac{3}{13}$.
(ii) $\frac{10}{3} \div \frac{-35}{12}=\frac{\frac{10}{3}}{\frac{-35}{12}}=\frac{10}{3} \div \frac{-35}{12} \approx \frac{5}{3} \times 10$

$$
=\frac{10}{3} \times \frac{12}{-35}=\frac{2}{3} \times \frac{12}{-7}=-\frac{8}{7}
$$

(iii) $-6 \div \frac{-8}{17}=\frac{-6 \times 17}{-8}=\frac{51}{4}$

$$
\text { (iv) } \frac{-40}{99} \div-20=\frac{+40}{+29 \times 99}=\frac{2}{99}
$$

$$
\text { (v) }-\frac{22}{27} \div \frac{-110}{18}=\frac{-28}{27} \times \frac{1 / 0^{2}}{\frac{110}{5}}=\frac{8}{28} \frac{2}{15}
$$

(vi) $\frac{-36}{125} \div \frac{-3}{75}=\frac{-32 \times 15^{3}}{-3 \times 125} \frac{136}{5}=\frac{36}{5}$

3. The product of two rational numbers is 15. If one of the numbers is -10 if ind the other. It is given that the product of tho'd rational numbers is 15. If one of the numbers is -10 . so. the other number is obtained by dividing the product by the given number. $\therefore \text { other number }=\frac{15}{-10}=\frac{-34+\frac{2}{2}}{\therefore}=\frac{-3}{2}$ 4. The product of two rational numbers is $\frac{-8}{9}$ If one of the numbers is $\frac{-4}{15}$, find the other It is given that the product of two rational number is $\frac{-8}{9}$. If one of the numbers is $\frac{-4}{15}$. So the other number is obtained by dividing the product by line given number. $\therefore \text { Other number }=\frac{\frac{-8}{9}}{\frac{-4}{15}}=\frac{2 \times 5}{3}=\frac{10}{3}$ 5. By what number should be multiply $\frac{-1}{6}$, so the product may be $-\frac{23}{9}$ Let the number be x. $x \times \frac{-1}{6}=\frac{-23}{9} \Rightarrow x=\frac{23 x^{2}}{3}=\frac{46}{3}$

6. By what number should be multiply $\frac{-15}{28}$. so the product may be $\frac{-5}{7}$.

Sol:- Let ' x ' be the required number
$x \times \frac{-15}{28}=\frac{-5}{7}$
$x=\frac{\frac{-5}{7}}{\frac{-15}{28}}$
$x=\frac{-5}{7} \times \frac{28}{-15}$
$x=\frac{1}{1} \times \frac{4}{3}=\frac{4}{3}$
7. By what number should we multiply $\frac{-8}{13}$ so that
the product may be 24 ?.
Sol:- Let ' x ' be the number
$x \times \frac{-8}{13}=24$
$x \times \frac{-1}{13}=3$
$x=-39$.
\therefore required number is -39 .
8. By what number should $\frac{-3}{4}$ be multiplied in order to produce $\frac{2}{3}$?.

Let the required number be ' x '

$$
x \times \frac{-3}{4}=\frac{2}{3}
$$

$$
x=\frac{\frac{2}{3}}{\frac{-3}{4}}
$$

$$
x=\frac{2 \times 4}{-3 \times 3}
$$

$$
x=-\frac{8}{9} .
$$

9. Find $(x+y) \div(x-y)$, if
(i) $x=\frac{2}{3}, y=\frac{3}{2} \quad$ (ii) $x=\frac{2}{5}, y=\frac{1}{2} \quad$ (iii) $x=\frac{5}{4}, y=\frac{-1}{3}$
(iv) $x=\frac{2}{7}, y=\frac{4}{3} \quad$ (v) $x=\frac{1}{4}, y=\frac{3}{2}$
(i) $(x+y) \div(x-y)=\frac{\frac{2}{3}+\frac{3}{2}}{\frac{2}{3}-\frac{3}{2}}=\frac{\frac{4+9}{6}}{\frac{4-9}{6}}=\frac{-13}{85}$
(ii) $(x+y) \div(x-y)=\frac{\frac{2}{5}+\frac{1}{2}}{\frac{2}{5}-\frac{1}{2}}=\frac{4+5}{\frac{10}{\frac{4-5}{10}}}=\frac{\frac{9}{10}}{\frac{-1}{10}}=-9$.

$$
\begin{aligned}
& \text { (iii) } x=\frac{5}{4}, y=\frac{-1}{3} \\
& \frac{x+y}{x-y}=\frac{\frac{5}{4}+\left(\frac{-1}{3}\right)}{\frac{5}{4}-\left(\frac{-1}{3}\right)}=\frac{5 \times 3-1 \times 4}{12}=\frac{\frac{11}{12}}{\frac{5 \times 3+1 \times 4}{12}}=\frac{11}{19} \\
& \text { (iv) } \frac{x+y}{x-y}=\frac{\frac{2}{7}+\frac{4}{3}}{\frac{2}{7}-\frac{4}{3}}=\frac{2 \times 3+4 \times 7}{21}=\frac{\frac{6+28}{21}}{\frac{-22}{21}} \\
& =\frac{-17}{11} \\
& \text { (v) } \frac{x+y}{x-y}=\frac{\frac{1}{4}+\frac{3}{2}}{\frac{1}{4}-\frac{3}{2}}=\frac{\frac{1 \times 2+3 \times 2}{4}}{\frac{1-3 \times 2}{4}} \\
& =\frac{\frac{1+6}{4}}{\frac{1-6}{4}}=\frac{-7}{5} \\
& \text { 10. The cost of } 7 \frac{2}{3} \text { metres of rope is Rs } 12 \frac{3}{4} \text {. } \\
& \text { Find cost per meter } \\
& \text { It is given that. } \\
& \frac{7 \times 3+2}{3} \text { meters of rope is } \frac{12 x y+3}{4} \\
& 1 \text { meter } \longrightarrow \longrightarrow 2 \text {. } \\
& \text { Let Cost per meter be } x \\
& x \times \frac{23}{3}=\frac{51}{4} \Rightarrow x=\frac{151}{9^{2}}=01 \frac{61}{92} .
\end{aligned}
$$

11. The cost of $2 \frac{1}{3}$ metres of cloth is RS $75 \frac{1}{4}$. Find
the cost of the cloth per meter It is given that,
cost of $\frac{6+1}{3}$ metres of cloth is $\mathrm{Rs}_{5} \frac{3}{} \frac{01}{4}$
Let the cost of the cloth per meter be ' x '
meter \longrightarrow ?
$x \times \frac{7}{3}=\frac{301}{4}$
$x=\frac{3 \times 301}{7 \times 4}$
$x=0 \times 32.55$
12. By what number showed $\frac{-33}{16}$ be divided to get $\frac{11}{4}$? It is given that,

Let ' x ' be the required number

$$
\begin{aligned}
\frac{-\frac{33}{16}}{x} & =\frac{-11}{4} \\
\frac{-33}{16} & =x \times \frac{-11}{4} \\
\frac{3}{4} & =x
\end{aligned}
$$

\therefore Let the required number be $x=\frac{3}{4}$

Rational Numbers Exercise 1.8

Exercise - 1.8
1 Find a rational number between -3 and 1.
we know that between tworational numbers x and y such that $x<y$ there is a rational number $\frac{x+y}{2}$
i.e. $x<\frac{x+y}{2}<y$

So, rational number b/w -3 and I is $\frac{-3+1}{2}=-1$.
Thus, we have $-3<-1<1$.
2. Find any five rational numbers less than 2 . five rational numbers less than 2 are.

$$
0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}
$$

3. Find two rational numbers between $\frac{-2}{9}$ and $\frac{5}{9}$ Arational number lying between $\frac{-2}{9}$ and $\frac{5}{9}$

$$
\frac{-\frac{2}{9}+\frac{5}{9}}{2}=\frac{3}{18}=\frac{1}{6}
$$

Now
a rational number b/w $-\frac{2}{9}$ and $\frac{1}{6}$ $\frac{-\frac{2}{9}+\frac{1}{6}}{2}=\frac{-2 \times 2+3}{36}=\frac{-1}{6}$.

$$
\therefore \quad-\frac{2}{9}, \frac{1}{6}, \frac{-1}{6}, \frac{5}{9}
$$

4. Find two rational, numbers between $\frac{1}{5}$ and $\frac{1}{2}$ A rational number between $\frac{1}{5}$ and $\frac{1}{2}$

$$
\frac{\frac{1}{5}+\frac{1}{2}}{2}=\frac{2+5}{\frac{10}{2}}=\frac{7}{20}
$$

Now, a rational number lying between $\frac{1}{5}$ and
$\frac{7}{20}$ is

$$
\frac{\frac{1}{5}+\frac{7}{20}}{2}=\frac{\frac{4+7}{20}}{2}=\frac{11}{40}
$$

Find two rational numbers $\frac{1}{5}$ and $\frac{1}{2}$ is $\frac{7}{20}$ and $\frac{11}{4}$
5. Find ten rational numbers between $\frac{1}{4}$ and $\frac{1}{2}$

The Lcm of denominators 4 and 2 is 4 .converting the given rational numbers to equivalent rational numbers having common denominator q weget

$$
\begin{aligned}
& \frac{1}{4}=\frac{1}{4} \text { and } \frac{1}{2}=\frac{2}{4} \\
& \frac{1 \times 20}{4 \times 20} \text { and } \frac{2 \times 20}{4 \times 20} \Rightarrow \frac{20}{80} \text { and } \frac{40}{80}
\end{aligned}
$$

clarly

$$
21,22,23, \text { gqareintegers bl } w
$$

numerators 20 and 40 These equivalent rational numbers, Thus we have

$$
\frac{21}{20}, \frac{22}{0 n}, \cdots, \frac{39}{2 n}
$$

6. Find Ten Rational numbers between $\frac{-2}{5}$ and $\frac{1}{2}$.

The $L \mathrm{~cm}$ of denominators -5 and 2 is -10 . converting given rational numbers to equivalent rational number having common denominator

$$
\begin{aligned}
& \frac{-2}{5} \times \frac{2}{2}=\frac{-4}{10}=\frac{-4 \times 2}{10 \times 2}=\frac{-8}{20} \\
& \frac{1}{2} \times \frac{5}{5}=\frac{5}{10}=\frac{5 \times 2}{10 \times 2}=\frac{10}{20}
\end{aligned}
$$

clearly $-7,-6,-5,-4, \ldots, 8,9,10$ are integers between numerators -8 and 10 of the se equivid. rational numbers. Thus, we have

$$
-\frac{7}{20} \cdot-\frac{6}{20} \cdots, \frac{8}{20} \cdot \frac{9}{20} \cdot \frac{10}{20}
$$

as rational numbers between $\frac{-8}{20}=\left(\frac{2}{5}\right)$ and

$$
\frac{10}{20}=\left(\frac{1}{2}\right)
$$

we can take any 10 of these as required rational numbers.

$$
-\frac{1}{20}, \frac{-6}{20}, \cdots, \frac{9}{20}
$$

7. Find the ten rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$. The LCM of denominators 5 and 4 is 20 . converting given rational numbers to equivalent rational numbers having common denominator

$$
\begin{aligned}
& \frac{3}{5} \times \frac{20}{20}=\frac{60}{100} \\
& \frac{3}{4} \times \frac{25}{25}=\frac{75}{100}
\end{aligned}
$$

$$
\text { clearly } 61,62,63, \ldots, 74 \text { are integers }
$$ between numerators 60 and 75 of inese equivalent rational numbers thus we have.

$$
\frac{61}{100}, \frac{62}{100}, \frac{63}{100}, \cdots, \frac{74}{100}
$$

as rational numbers between $\frac{3}{5}=\frac{60}{100}$ and

$$
\frac{75}{100}=\left(\frac{3}{4}\right)
$$

we can take only 10 of these as required rational numbers

$$
\frac{61}{100}, \frac{62}{100}, \frac{63}{100}, \ldots, \frac{73}{100}, \frac{74}{100} .
$$

