Exercise -10.1

1. In Fig. 10.22, the sides $B A$ and $C A$ have been produced such that: $B A=A D$ and $C A=A E$. Prove that segment DE \|BC.

Fg. 10.22

Sol:

Given that, the sides BA and CA have been produced such that $B A=A D$ and $C A=A E$ and given to prove $D E \| B C$
Consider triangle $B A C$ and $D A E$,
We have
$B A=A D$ and $C A=A E$
[\because given in the data]
And also $\angle B A C=\angle D A E$ $[\because$ vertically opposite angles]
So, by SAS congruence criterion, we have $\triangle B A C \cong \triangle D A E$
$\Rightarrow B C=D E$ and $\angle D E A=\angle B C A, \angle E D A=\angle C B A$

[Corresponding parts of congruent triangles are equal]
Now, DE and BC are two lines intersected by a transversal DB such that $\angle D E A=\angle B C A$, i.e., alternate angles are equal

Therefore, $D E \| B C$
2. In a $\triangle P Q R$, if $P Q=Q R$ and L, M and N are the mid-points of the sides $P Q, Q R$ and $R P$ respectively. Prove that: $\mathrm{LN}=\mathrm{MN}$.

Sol:

Given that, in $\triangle P Q R, P Q=Q R$ and $\mathrm{L}, \mathrm{M}, \mathrm{N}$ are midpoints of the sides PQ, QP and RP respectively and given to prove that $L N=M N$
Here we can observe that PQR is and isosceles triangle
$\Rightarrow P Q=Q R$ and $\angle Q P R=\angle Q R P$
And also, L and M are midpoints of PQ and QR respectively
$\Rightarrow P L=L Q=\frac{P Q}{2}, Q M=M R=\frac{Q R}{2}$
And also, $P Q=Q R$
$\Rightarrow P L=L Q=Q M=M R=\frac{P Q}{2}=\frac{Q R}{2}$
Now, consider $\triangle L P N$ and $\triangle M R N$,
$L P=M R$
$\angle L P N=\angle M R N$

$$
\begin{equation*}
[\text { From - (1)] } \tag{2}
\end{equation*}
$$

$\because \angle Q P R$ and $\angle L P N$ and $\angle Q R P$ and $\angle M R N$ are same $P N=N R \quad[\because N$ is midpoint of PR$]$
So, by SAS congruence criterion, we have $\triangle L P N \cong \triangle M R N$

$\Rightarrow L N=M N$
[\because Corresponding parts of congruent triangles are equal]
3. In Fig. 10.23, PQRS is a square and SRT is an equilateral triangle. Prove that
(i) $\mathrm{PT}=\mathrm{QT}$
(ii) $\angle \mathrm{TQR}=15^{\circ}$

Fh. 10.23

Sol:

Given that PQRS is a square and SRT is an equilateral triangle. And given to prove that
(i) $P T=Q T$ and (ii) $\angle T Q R=15^{\circ}$

Now, PQRS is a square
$\Rightarrow P Q=Q R=R S=S P$
And $\angle S P Q=\angle P Q R=\angle Q R S=\angle R S P=90^{\circ}=$ right angle
And also, SRT is an equilateral triangle.
$\Rightarrow S R=R T=T S$
And $\angle T S R=\angle S R T=\angle R T S=60^{\circ}$
From (1) and (2)

$$
P Q=Q R=S P=S R=R T=T S
$$

And also,

$$
\begin{align*}
& \angle T S R=\angle T S R+\angle R S P=60^{\circ}+90^{\circ}+150^{\circ} \\
& \angle T R Q=\angle T R S+\angle S R Q=60^{\circ}+90^{\circ}+150^{\circ} \\
& \Rightarrow \angle T S R=\angle T R Q=150^{\circ} \tag{4}
\end{align*}
$$

Now, in $\triangle T S R$ and $\triangle T R Q$
$T S=T R$
$\angle T S P=\angle T R Q$
[From (3)]
[From (4)]

$$
\begin{equation*}
S P=R Q \tag{3}
\end{equation*}
$$

So, by SAS congruence criterion we have

$$
\Delta T S P \cong \Delta T R Q
$$

$\Rightarrow P T=Q T \quad$ [Corresponding parts of congruent triangles are equal]
Consider $\triangle T Q R$,
$Q R=T R$
$\Rightarrow \triangle T Q R$ is a isosceles triangle
$\Rightarrow \angle Q T R=\angle T Q R$
[angles opposite to equal sides]
Now,
Sum of angles in a triangle is equal to 180°
$\Rightarrow \angle Q T R+\angle T Q R+\angle T R Q=180^{\circ}$
$\Rightarrow 2 \angle T Q R+150^{\circ}=180^{\circ} \quad$ [From (4)]
$\Rightarrow 2 \angle T Q R=180^{\circ}-150^{\circ}$
$\Rightarrow 2 \angle T Q R=30^{\circ} \Rightarrow \angle T Q R=15^{\circ}$
\therefore Hence proved
4. Prove that the medians of an equilateral triangle are equal.

Sol:

Given to prove that the medians of an equilateral triangle are equal Median: The line joining the vertex and midpoint of opposite side.
Now, consider an equilateral triangle ABC
Let $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are midpoints of $B C, C A$ and $A B$.
Then, $A D, B E$ and $C F$ are medians of $\triangle A B C$.
Now,
D is midpoint of $\mathrm{BC} \Rightarrow B D=D C=\frac{B C}{2}$
Similarly, $C E=E A=\frac{A C}{2}$

$$
\begin{equation*}
A F=F B=\frac{A B}{2} \tag{1}
\end{equation*}
$$

Since $\triangle A B C$ is an equilateral triangle $\Rightarrow A B=B C=C A$
$\Rightarrow B D=D C=C E=E A=A F=F B=\frac{B C}{2}=\frac{A C}{2}=\frac{A B}{2}$
And also, $\angle A B C=\angle B C A=\angle C A B=60^{\circ}$
Now, consider $\triangle A B D$ and $\triangle B C E$
$A B=B C$
[From (1)]
$B D=C E$
[From (2)]
$\angle A B D=\angle B C E \quad[$ From (3) $][\angle A B D$ and $\angle A B C$ and $\angle B C E$ and $\angle B C A$ are same]
So, from SAS congruence criterion, we have
$\triangle A B D \cong \triangle B C E$
$\Rightarrow A D=B E$
[Corresponding parts of congruent triangles are equal]
Now, consider $\triangle B C E$ and $\triangle C A F$,
$\mathrm{BC}=\mathrm{CA}$
[From (1)]
$\angle B C E=\angle C A F$
[From (3)]
[$\angle B C E$ and $\angle B C A$ and $\angle C A F$ and $\angle C A B$ are same]
$\mathrm{CE}=\mathrm{AF} \quad$ [From (2)]

So, from SAS congruence criterion, we have $\triangle B C E \cong \triangle C A F$
$\Rightarrow B E=C F$
[Corresponding parts of congruent triangles are equal]
From (4) and (5), we have
$A D=B E=C F$
\Rightarrow Median $A D=$ Median $B E=$ Median $C F$
\therefore The medians of an equilateral triangle are equal
\therefore Hence proved
5. In a $\triangle A B C$, if $\angle A=120^{\circ}$ and $A B=A C$. Find $\angle B$ and $\angle C$.

Sol:

Consider a $\triangle A B C$
Given that $\angle A=120^{\circ}$ and $A B=A C$ and given to find $\angle B$ and $\angle C$
We can observe that $\triangle A B C$ is an isosceles triangle since $A B=A C$
$\Rightarrow \angle B=\angle C \quad \ldots \ldots .$. (1) [Angles opposite to equal sides are equal]
We know that sum of angles in a triangle is equal to 180°
$\Rightarrow \angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \angle A+\angle B+\angle B=180^{\circ}$
[From (1)]
$\Rightarrow 120^{\circ}+2 \angle B=180^{\circ}$
$\Rightarrow 2 \angle B=180^{\circ}-120^{\circ}$
$\Rightarrow 2 \angle B=60^{\circ} \Rightarrow \angle B=30^{\circ}$
$\Rightarrow \angle C=\angle B=30^{\circ}$
6. In a $\triangle \mathrm{ABC}$, if $\mathrm{AB}=\mathrm{AC}$ and $\angle \mathrm{B}=70^{\circ}$, find $\angle \mathrm{A}$.

Sol:

Consider $\triangle A B C$, we have $\angle B=70^{\circ}$ and $A B=A C$
Since, $A B=A C \triangle A B C$ is an isosceles triangle
$\Rightarrow \angle B=\angle C \quad$ [Angles opposite to equal sides are equal]
$\Rightarrow \angle B=\angle C=70^{\circ}$
And also,
Sum of angles in a triangle $=180^{\circ}$

$\Rightarrow \angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \angle A+70^{\circ}+70^{\circ}=180^{\circ}$
$\Rightarrow \angle A+140^{\circ}=180^{\circ}$
$\Rightarrow \angle A=180^{\circ}-140^{\circ} \Rightarrow \angle A=40^{\circ}$
7. The vertical angle of an isosceles triangle is 100°. Find its base angles.

Sol:
Consider an isosceles $\triangle A B C$ such that $A B=A C$
Given that vertical angle A is 100°. Given to find the base angles
Since $\triangle A B C$ is isosceles
$\angle B=\angle C \quad$ [Angles opposite to equal angles are equal]
And also,
Sum of the interior angles of a triangle $=180^{\circ}$
$\Rightarrow \angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow 100^{\circ}+\angle B+\angle B=180^{\circ}$
$\Rightarrow 2 \angle B=180^{\circ}-100^{\circ} \Rightarrow 2 \angle B=80^{\circ}$
$\Rightarrow \angle B=40^{\circ}$
$\therefore \angle B=\angle C=40^{\circ}$
8. In Fig. 10.24, $\mathrm{AB}=\mathrm{AC}$ and $\angle \mathrm{ACD}=105^{\circ}$, find $\angle \mathrm{BAC}$.

Sol:

Consider the given figure
We have,
$A B=A C$ and $\angle A C D=105^{\circ}$

Since,
$\angle B C D=180^{\circ}=$ Straight angle
$\Rightarrow \angle B C A+\angle A C D=180^{\circ}$
$\Rightarrow \angle B C A+105^{\circ}=180^{\circ}$
$\Rightarrow \angle B C A=180^{\circ}-105^{\circ} \Rightarrow \angle B C A=75^{\circ}$
And also,
$\triangle A B C$ is an isosceles triangle

$$
[\because A B=A C]
$$

$\Rightarrow \angle A B C=\angle A C B$
[Angles opposite to equal sides are equal]
From (1), we have
$\angle A C B=75^{\circ} \Rightarrow \angle A B C=\angle A C B=75^{\circ}$
And also,
Sum of interior angles of a triangle $=180^{\circ}$
$\Rightarrow \angle A B C=\angle B C A+\angle C A B=180^{\circ}$
$\Rightarrow 75^{\circ}+75^{\circ}+\angle C A B=180^{\circ}$
$\Rightarrow 150^{\circ}+\angle B A C=180^{\circ} \Rightarrow \angle B A C=180^{\circ}-150^{\circ}=30^{\circ}$
$\therefore \angle B A C=30^{\circ}$
9. Find the measure of each exterior angle of an equilateral triangle.

Sol:
Given to find the measure of each exterior angle of an equilateral triangle consider an equilateral triangle ABC .
We know that for an equilateral triangle

$$
\begin{equation*}
A B=B C=C A \text { and } \angle A B C=\angle B C A=\angle C A B=\frac{180^{\circ}}{3}=60^{\circ} \tag{1}
\end{equation*}
$$

Now,
Extend side BC to D, CA to E and AB to F .
Here
$B C D$ is a straight line segment
$\Rightarrow \angle B C D=$ Straight angle $=180^{\circ}$
$\angle B C A+\angle A C D=180^{\circ}$
$\Rightarrow 60^{\circ}+\angle A C D=180^{\circ} \quad[$ From (1) $]$
$\Rightarrow \angle A C D=120^{\circ}$
Similarly, we can find $\angle F A B$ and $\angle F B C$ also as 120° because ABC is an equilateral triangle
$\therefore \angle A C D=\angle E A B=\angle F B C=120^{\circ}$
Hence, the median of each exterior angle of an equilateral triangle is 120°
10. If the base of an isosceles triangle is produced on both sides, prove that the exterior angles so formed are equal to each other.
Sol:
$E D$ is a straight line segment and B and C are points on it.
$\Rightarrow \angle E B C=\angle B C D=$ straight angle $=180^{\circ}$
$\Rightarrow \angle E B A+\angle A B C=\angle A C B+\angle A C D$
$\Rightarrow \angle E B A=\angle A C D+\angle A C B-\angle A B C$
$\Rightarrow \angle E B A=\angle A C D \quad[$ From (1) $\angle A B C=\angle A C D]$
$\Rightarrow \angle A B E=\angle A C D$
\therefore Hence proved
11. In Fig. $10.25, \mathrm{AB}=\mathrm{AC}$ and $\mathrm{DB}=\mathrm{DC}$, find the ratio $\angle \mathrm{ABD}: \angle \mathrm{ACD}$.

Fig. 10.25

Sol:

Consider the figure
Given
$A B=A C, D B=D C$ and given to find the ratio
$\angle A B D=\angle A C D$
Now, $\triangle A B C$ and $\triangle D B C$ are isosceles triangles since $A B=A C$ and
$D B=D C$ respectively

$\Rightarrow \angle A B C=\angle A C B$ and $\angle D B C=\angle D C B$
$[\because$ angles opposite to equal sides are equal $]$
Now consider,
$\angle A B D: \angle A C D$
$\Rightarrow(\angle A B C-\angle D B C):(\angle A C B-\angle D C B)$
$\Rightarrow(\angle A B C-\angle D B C):(\angle A B C-\angle D B C) \quad[\because \angle A B C-\angle A C B$ and $\angle D B C=\angle D C B]$
$\Rightarrow 1: 1$
$\therefore \angle A B D: \angle A C D=1: 1$
12. Determine the measure of each of the equal angles of a right-angled isosceles triangle.

OR
$A B C$ is a right-angled triangle in which $\angle A=90^{\circ}$ and $A B=A C$. Find $\angle B$ and $\angle C$.

Sol:

Given to determine the measure of each of the equal angles of right - angled isosceles triangle

Consider on a right - angled isosceles triangle ABC such that $\angle A=90^{\circ}$ and $A B=A C$
Since, $A B=A C \Rightarrow \angle C=\angle B$
[Angles opposite to equal sides are equal]
Now,

Sum of angles in a triangle $=180^{\circ}$
$\Rightarrow \angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow 90^{\circ}+\angle B+\angle B=180^{\circ} \quad\left[\because \angle A=90^{\circ}\right.$ and $\left.\angle B=\angle C\right]$
$\Rightarrow 2 \angle B=90^{\circ}$
$\Rightarrow \angle B=45^{\circ} \Rightarrow \angle C=45^{\circ}$
$\therefore \angle B=\angle C=45^{\circ}$
Hence, the measure of each of the equal angles of a right-angled isosceles triangle is 45°.
13. $A B$ is a line segment. P and Q are points on opposite sides of $A B$ such that each of them is equidistant from the points A and B (See Fig. 10.26). Show that the line PQ is perpendicular bisector of AB .

Fig. 10.25

Sol:

Consider the figure,
We have
$A B$ is a line segment and P, Q are points on opposite sides of $A B$ such that

$$
\begin{equation*}
A P=B P \tag{1}
\end{equation*}
$$

$A Q=B Q$
We have to prove that $P Q$ is perpendicular bisector of $A B$.
Now consider $\triangle P A Q$ and $\triangle P B Q$,
We have $A P=B P \quad[\because$ From (1) $]$
$A Q=B Q$
$[\because$ From (2)]
And $P Q=P Q$
[Common site]
$\Rightarrow \triangle P A Q \cong \triangle P B Q$
[From SSS congruence]

Now, we can observe that $\triangle A P B$ and $\triangle A B Q$ are isosceles triangles.(From 1 and 2)
$\Rightarrow \angle P A B=\angle P B A$ and $\angle Q A B=\angle Q B A$
Now consider $\triangle P A C$ and $\triangle P B C$,
C is the point of intersection of AB and PQ .
$P A=P B$
[From (1)]
$\angle A P C=\angle B P C$
[From (3)]
$P C=P C$
[Common side]
So, from SAS congruency of triangle $\triangle P A C \cong \triangle P B C$
$\Rightarrow A C=C B$ and $\angle P C A=\angle P C B$
[\because Corresponding parts of congruent triangles are equal]
And also, ACB is line segment

$\Rightarrow \angle A C P+\angle B C P=180^{\circ}$
But $\angle A C P=\angle P C B$
$\Rightarrow \angle A C P=\angle P C B=90^{\circ}$
We have $A C=C B \Rightarrow C$ is the midpoint of AB
From (4) and (5)
We can conclude that $P C$ is the perpendicular bisector of $A B$
Since C is a point on the line PQ , we can say that PQ is the perpendicular bisector of AB .

Exercise -10.2

1. In Fig. 10.40, it is given that $\mathrm{RT}=\mathrm{TS}, \angle 1=2 \angle 2$ and $\angle 4=2 \angle 3$. Prove that $\triangle \mathrm{RBT} \cong \triangle$ SAT.

Fig. 10.40

Sol:

In the figure given that
$R T=T S$
$\angle 1=2 \angle 2$
And $\angle 4=2 \sqrt{3}$
And given to prove $\triangle R B T \cong \triangle S A T$
Let the point of intersection of RB and SA be denoted by O
 Since RB and SA intersect at O.
$\therefore \angle A O R=\angle B O S$
[Vertically opposite angles]
$\Rightarrow \angle 1=\angle 4$
$\Rightarrow 2 \angle 2=2 \angle 3$
[From (2) and (3)]

$$
\begin{equation*}
\Rightarrow \angle 2=\angle 3 \tag{4}
\end{equation*}
$$

Now we have $R T=T S$ in $\triangle T R S$
$\Rightarrow \triangle T R S$ is an isosceles triangle
$\therefore \angle T R S=\angle T S R$
[Angles opposite to equal sides are equal]
But we have
$\angle T R S=\angle T R B+\angle 2$
And $\angle T S R=\angle T S A+\angle 3$
Putting (6) and (7) in (5) we get
$\angle T R B+\angle 2=\angle T S A+\angle B$
$\Rightarrow \angle T R B=\angle T S A \quad[\because$ From (4) $]$
Now consider $\triangle R B T$ and $\triangle S A T$
$R T=S T$
[From (1)]
$\angle T R B=\angle T S A$
$\angle R T B=\angle S T A$
[From (4)]
From ASA criterion of congruence, we have $\triangle R B T \cong \triangle S A T$
2. Two lines $A B$ and $C D$ intersect at O such that $B C$ is equal and parallel to $A D$. Prove that the lines AB and CD bisect at O .

Sol:

Given that lines AB and CD intersect at O
Such that $B C \| A D$ and $B C=A D$
We have to prove that AB and CD bisect at O .
To prove this first we have to prove that $\triangle A O D \cong \triangle B O C$

3. BD and CE are bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ of an isosceles $\triangle \mathrm{ABC}$ with $\mathrm{AB}=\mathrm{AC}$. Prove that $B D=C E$.

Sol:

Given that $\triangle A B C$ is isosceles with $A B=A C$ and $B D$ and $C E$ are bisectors of $\angle B$ and $\angle C$
We have to prove $B D=C E$
Since $A B=A C \Rightarrow \angle A B C=\angle A C B$
[\because Angles opposite to equal sides are equal]
Since $B D$ and $C E$ are bisectors of $\angle B$ and $\angle C$
$\Rightarrow \angle A B D=\angle D B C=\angle B C E=E C A=\frac{\angle B}{2}=\frac{\angle C}{2}$
Now,
Consider $\triangle E B C$ and $\triangle D C B$
$\angle E B C=\angle D C B$
$[\because \angle B=\angle C]$ from (1)
$B C=B C$
[Common side]

$$
\angle B C E=\angle C B D \quad[\because \text { From }(2)]
$$

So, by ASA congruence criterion, we have $\triangle E B C \cong \triangle D C B$
Now,
$C E=B D \quad[\because$ Corresponding parts of congruent triangles are equal $]$
or $B D=C E$
\therefore Hence proved
Since $A D \| B C$ and transversal AB cuts at A and B respectively
$\therefore \angle D A O=\angle O B C$
(2) [alternate angle]

And similarly $A D \| B C$ and transversal DC cuts at D ad C respectively
$\therefore \angle A D O=\angle O C B$
.........(3) [alternate angle]

Since AB and CD intersect at O .
$\therefore \angle A O D=\angle B O C \quad$ [Vertically opposite angles]
Now consider $\triangle A O D$ and $\triangle B O D$
$\angle D A O=\angle O B C$
$[\because$ From (2) $]$
$A D=B C$
$[\because$ From (1)]
And $\angle A D O=\angle O C B$
[From (3)]

So, by ASA congruence criterion, we have
$\triangle A O D \cong \triangle B O C$
Now,
$A O=O B$ and $D O=O C \quad[\because$ Corresponding parts of congruent triangles are equal $]$
\Rightarrow Lines AB and $C D$ bisect at O .
\therefore Hence proved

Exercise -10.3

1. In two right triangles one side an acute angle of one are equal to the corresponding side and angle of the other. Prove that the triangles are congruent.

Sol:

Given that, in two right triangles one side and acute angle of one are equal to the corresponding side and angles of the other.
We have to prove that the triangles are congruent.
Let us consider two right triangles such that

$$
\begin{align*}
& \angle B=\angle C=90^{\circ} \tag{1}\\
& A B=D E \tag{2}\\
& \angle C=\angle F \tag{3}
\end{align*}
$$

Now observe the two triangles ABC and DEF

$$
\angle C=\angle F
$$

[From (3)]

$$
\angle B=\angle E
$$

[From (1)]
and $A B=D E$
[From (2)]
So, by AAS congruence criterion, we have $\triangle A B C \cong \triangle D E F$
\therefore The two triangles are congruent
Hence proved
2. If the bisector of the exterior vertical angle of a triangle be parallel to the base. Show that the triangle is isosceles.

Sol:

Given that the bisector of the exterior vertical angle of a triangle is parallel to the base and we have to prove that the triangle is isosceles
Let ABC be a triangle such that AD is the angular bisector of exterior vertical angle EAC and $A D \| B C$
Let $\angle E A D=(1), \angle D A C=(2), \angle A B C=(3)$ and $\angle A C B=(4)$
We have,

$$
\begin{array}{ll}
(1)=(2) & {[\because A D \text { is bisector of } \angle E A C]} \\
(1)=(3) & {[\text { Corresponding angles }]} \\
\text { and }(2)=(4) & {[\text { alternative angle }]} \\
\Rightarrow(3)=(4) \Rightarrow A B=A C
\end{array}
$$

Since, in $\triangle A B C$, two sides AB and AC are equal we can say that $\triangle A B C$ is isosceles

3. In an isosceles triangle, if the vertex angle is twice the sum of the base angles, calculate the angles of the triangle.

Sol:

Let $\triangle A B C$ be isosceles such that $A B=A C$.
$\Rightarrow \angle B=\angle C$
Given that vertex angle A is twice the sum of the base angles B and C .
i.e., $\angle A=2(\angle B+\angle C)$
$\Rightarrow \angle A=2(\angle B+\angle B)$
$[\because \angle B=\angle C]$
$\Rightarrow \angle A=2(2 \angle B)$
$\Rightarrow \angle A=4 \angle B$
Now,

We know that sum of angles in a triangle $=180^{\circ}$
$\Rightarrow \angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow 4 \angle B+\angle B+\angle B=180^{\circ} \quad[\because \angle A=4 \angle B$ and $\angle B=\angle C]$
$\Rightarrow 6 \angle B=180^{\circ}$
$\Rightarrow \angle B=\frac{180^{\circ}}{6}=30^{\circ} \quad \therefore \angle B=30^{\circ}$
Since, $\angle B=\angle C \Rightarrow \angle B=\angle C=30^{\circ}$
And $\angle A=4 \angle B \Rightarrow \angle A=4 \times 30^{\circ}=120^{\circ}$
\therefore Angles of the given triangle are $120^{\circ}, 30^{\circ}, 30^{\circ}$.
4. $P Q R$ is a triangle in which $P Q=P R$ and S is any point on the side $P Q$. Through S, a line is drawn parallel to QR and intersecting PR at T . Prove that $\mathrm{PS}=\mathrm{PT}$.
Sol:
Given that $P Q R$ is a triangle such that $P Q=P R$ and S is any point on the side PQ and $S T \| Q R$.
We have to prove $P S=P T$
Since, $P Q=P R \Rightarrow \triangle P Q R$ is isosceles
$\Rightarrow \angle Q=\angle R$ (or) $\angle P Q R=\angle P R Q$
Now,
$\angle P S T=\angle P Q R$ and $\angle P T S=\angle P R Q \quad$ [Corresponding angles as
$S T \| Q R]$

Since, $\angle P Q R=\angle P R Q \Rightarrow \angle P S T=\angle P T S$
Now, In $\triangle P S T, \angle P S T=\angle P T S$
$\Rightarrow \triangle P S T$ is an isosceles triangle
$\Rightarrow P S=P T$
5. In a $\triangle A B C$, it is given that $A B=A C$ and the bisectors of $\angle B$ and $\angle C$ intersect at O. If M is a point on $B O$ produced, prove that $\angle \mathrm{MOC}=\angle \mathrm{ABC}$.

Sol:

Given that in $\triangle A B C$,
$A B=A C$ and the bisector of $\angle B$ and $\angle C$ intersect at O and M is a point on BO produced
We have to prove $\angle M O C=\angle A B C$
Since,
$A B=A C \Rightarrow \triangle A B C$ is isosceles $\Rightarrow \angle B=\angle C$ (or) $\angle A B C=\angle A C B$
Now,
BO and CO are bisectors of $\angle A B C$ and $\angle A C B$ respectively
$\Rightarrow A B O=\angle O B C=\angle A C O=\angle O C B=\frac{1}{2} \angle A B C=\frac{1}{2} \angle A C B$

We have, in $\triangle O B C$
$\angle O B C+\angle O C B+\angle B O C=180^{\circ}$
And also
$\angle B O C+\angle C O M=180^{\circ}$
..........(3) [Straight angle]
Equating (2) and (3)
$\Rightarrow \angle O B C+\angle O C B+\angle B O C=\angle B O C+\angle M O C$
$\Rightarrow \angle O B C+\angle O B C=\angle M O C \quad[\because$ From (1) $]$
$\Rightarrow 2 \angle O B C=\angle M O C$
$\Rightarrow 2\left(\frac{1}{2} \angle A B C\right)=\angle M O C \quad[\because \operatorname{From}(1)]$
$\Rightarrow \angle A B C=\angle M O C$
$\therefore \angle M O C=\angle A B C$
6. P is a point on the bisector of an angle $\angle \mathrm{ABC}$. If the line through P parallel to AB meets BC at Q , prove that triangle BPQ is isosceles.

Sol:

Given that P is a point on the bisector of an angle $\angle A B C$, and $P Q \| A B$.
We have to prove that $\triangle B P Q$ is isosceles
Since,
BP is bisector of $\angle A B C \Rightarrow \angle A B P=\angle P B C$
Now,
$P Q \| A B$
$\Rightarrow \angle B P Q=\angle A B P$
[alternative angles]

From (1) and (2), we get
$\angle B P Q=\angle P B C$ (or) $\angle B P Q=\angle P B Q$
Now,
In $\triangle B P Q$,
$\angle B P Q=\angle P B Q$
$\Rightarrow \triangle B P Q$ is an isosceles triangle.
\therefore Hence proved
7. Prove that each angle of an equilateral triangle is 60°.

Sol:

Given to prove that each angle of an equilateral triangle is 60°
Let us consider an equilateral triangle $A B C$
Such that $A B=B C=C A$
Now,
$A B=B C \Rightarrow \angle A=\angle C$
........(1) [Opposite angles to equal sides are equal]
and $B C=A C \Rightarrow \angle B=\angle A$

From (1) and (2), we get

$$
\begin{equation*}
\angle A=\angle B=\angle C \tag{3}
\end{equation*}
$$

We know that
Sum of angles in a triangle $=180^{\circ}$
$\Rightarrow \angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \angle A+\angle A+\angle A=180^{\circ} \quad[\because \operatorname{From}(3)]$
$\Rightarrow 3 \angle A=180^{\circ}$
$\Rightarrow \angle A=\frac{180^{\circ}}{3}=60^{\circ}$
$\therefore \angle A=\angle B=\angle C=60^{\circ}$
Hence, each angle of an equilateral triangle is 60°.
8. Angles A, B, C of a triangle $A B C$ are equal to each other. Prove that $\triangle A B C$ is equilateral.

Sol:

Given that angles A, B, C of a triangle ABC equal to each other.
We have to prove that $\triangle A B C$ is equilateral
We have, $\angle A=\angle B=\angle C$
Now,
$\angle A=\angle B \Rightarrow B C=A C$
[Opposite sides to equal angles are equal] and $\angle B=\angle C \Rightarrow A C=A B$

From the above we get
$A B=B C=A C$
$\Rightarrow \triangle A B C$ is equilateral
9. ABC is a triangle in which $\angle \mathrm{B}=2 \angle \mathrm{C}$. D is a point on BC such that AD bisects $\angle \mathrm{BAC}$ and $\mathrm{AB}=\mathrm{CD}$. Prove that $\angle \mathrm{BAC}=72^{\circ}$.

Sol:

Given that in $\triangle A B C, \angle B=2 \angle C$ and D is a point on BC such that AD bisectors $\angle B A C$ and $A B=C D$.
We have to prove that $\angle B A C=72^{\circ}$
Now, draw the angular bisector of $\angle A B C$, which meets AC in P . join PD
Let $C=\angle A C B=y \Rightarrow \angle B=\angle A B C=2 \angle C=2 y$ and also
Let $\angle B A D=\angle D A C \Rightarrow \angle B A C=2 x \quad[\because A D$ is the bisector of $\angle B A C]$
Now, in $\triangle B P C$,
$\angle C B P=y \quad[\because B P$ is the bisector of $\angle A B C]$
$\angle P C B=y$
$\Rightarrow \angle C B P=\angle P C B=y \quad \therefore P C=B P$
Consider, $\triangle A B P$ and $\triangle D C P$, we have
$\angle A B P=\angle D C P=y$
$A B=D C$
[Given]
And $P C=B P \quad$ [From above]
So, by SAS congruence criterion, we have $\triangle A B P \cong \triangle D C P$
Now,
$\angle B A P=\angle C D F$ and $A P=D P$ [Corresponding parts of congruent triangles are equal]
$\Rightarrow \angle B A P=\angle C D P=2 x$
Consider, $\triangle A P D$,
We have $A P=D P \Rightarrow \angle A D P=\angle D A P$
But $\angle D A P=x \Rightarrow \angle A D P=\angle D A P=x$
Now
In $\triangle A B D$,
$\angle A B D+\angle B A D+\angle A D B=180^{\circ}$
And also $\angle A D B+\angle A D C=180^{\circ} \quad$ [Straight angle]
From the above two equations, we get
$\angle A B D+\angle B A D+\angle A \nsupseteq B=\angle A \nsupseteq B+\angle A D C$
$\Rightarrow 2 y+x=\angle A D P+\angle P D C$
$\Rightarrow 2 y+x=x+2 x$
$\Rightarrow 2 y=2 x$
$\Rightarrow y=x($ or $) x=y$
We know,
Sum of angles in a triangle $=180^{\circ}$
So, in $\triangle A B C$,
$\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow 2 x+2 y+y=180^{\circ} \quad[\because \angle A=2 x, \angle B=2 y, \angle C=y]$
$\Rightarrow 2(y)+3 y=180^{\circ} \quad[\because x=y]$
$\Rightarrow 5 y=180^{\circ}$
$\Rightarrow y=\frac{180^{\circ}}{5}=36^{\circ} \quad \therefore x=y=36^{\circ}$
Now,
$\angle A=\angle B A C=2 x=2 \times 36^{\circ}=72^{\circ}$
$\therefore \angle B A C=72^{\circ}$
10. $A B C$ is a right angled triangle in which $\angle A=90^{\circ}$ and $A B=A C$. Find $\angle B$ and $\angle C$.

Sol:

Given that ABC is a right angled triangle such that $\angle A=90^{\circ}$ and $A B=A C$
Since,
$A B=A C \Rightarrow \triangle A B C$ is also isosceles
\therefore We can say that $\triangle A B C$ is right angled isosceles triangle
$\Rightarrow \angle C=\angle B$ and $\angle A=90^{\circ}$
Now, we have
Sum of angled in a triangle $=180^{\circ}$
$\Rightarrow \angle A+\angle B+\angle C=180^{\circ}$

$\Rightarrow 90^{\circ}+\angle B+\angle B=180^{\circ} \quad[\because \operatorname{From}(1)]$
$\Rightarrow 2 \angle B=180^{\circ}-90^{\circ}$
$\Rightarrow \angle B=\frac{90^{\circ}}{2}=45^{\circ}$
$\therefore \angle B=\angle C=45^{\circ}$

Exercise -10.4

1. In Fig. 10.92, it is given that $\mathrm{AB}=\mathrm{CD}$ and $\mathrm{AD}=\mathrm{BC}$. Prove that $\triangle \mathrm{ADC} \cong \triangle \mathrm{CBA}$.

Fig. 10.92

Sol:
Given that in the figure $A B=C D$ and $A D=B C$.
We have to prove
$\triangle A D C \cong \triangle C B A$
Now,
Consider $\triangle A D C$ and $\triangle C B A$,
We have

$$
\begin{aligned}
& A B=C D \\
& B C=A D
\end{aligned}
$$

And $A C=A C \quad$ [Common side]

So, by SSS congruence criterion, we have

$\triangle A D C \cong \triangle C B A$

\therefore Hence proved
2. In a $\triangle P Q R$, if $P Q=Q R$ and L, M and N are the mid-points of the sides $P Q, Q R$ and $R P$ respectively. Prove that $\mathrm{LN}=\mathrm{MN}$.
Sol:
Given that in $\triangle P Q R, P Q=Q R$ and L, M and N are mid-points of PQ, QR and RP respectively
We have to prove $L N=M N$.
Join L and M, M and N, N and L
We have
$P L=L Q, Q M=M R$ and $R N=N P$
[$\because L, M$ and N are mid-points of $P Q, Q R$ and $R P$ respectively] And also

$$
P Q=Q R \Rightarrow P L=L Q=Q M=M R=\frac{P Q}{2}=\frac{Q R}{2}
$$

theorem, we have
$M N \| P Q$ and $M N=\frac{1}{2} P Q \Rightarrow M N=P L=L Q$

Similarly, we have
$L N \| Q R$ and $L N=\frac{1}{2} Q R \Rightarrow L N=Q M=M R$
From equation (1), (2) and (3), we have
$P L=L Q=Q M=M R=M N=L N$
$\therefore L N=M N$

Exercise -10.5

1. $A B C$ is a triangle and D is the mid-point of $B C$. The perpendiculars from D to $A B$ and $A C$ are equal. Prove that the triangle is isosceles.

Sol:

Given that, in two right triangles one side and acute angle of one are equal to the corresponding side and angle of the other We have to prove that the triangles are congruent Let us consider two right triangles such that

$$
\begin{align*}
& \angle B=\angle E=90^{\circ} \tag{1}\\
& A B=D E \tag{2}\\
& \angle C=\angle F \tag{3}
\end{align*}
$$

Now observe the two triangles ABC and DEF

$$
\begin{array}{ll}
\angle C=\angle F & {[\operatorname{From}(3)]} \\
\angle B=\angle E & {[\operatorname{From}(1)]} \\
\text { and } A B=D E & {[\operatorname{From}(2)]}
\end{array}
$$

So, by AAS congruence criterion, we have

$\triangle A B C \cong \triangle D E F$

\therefore The two triangles are congruent
Hence proved
2. ABC is a triangle in which BE and CF are, respectively, the perpendiculars to the sides AC and $A B$. If $B E=C F$, prove that $\triangle A B C$ is isosceles.

Sol:

Given that ABC is a triangle in which BE and CF are perpendicular to the sides AC and AB respectively such that $B E=C F$.

We have to prove that $\triangle A B C$ is isosceles
Now, consider $\triangle B C F$ and $\triangle C B E$,
We have
$\angle B F C=C E B=90^{\circ}$
[Given]
$B C=C B$
[Common side]
And $C F=B E$
[Given]
So, by RHS congruence criterion, we have $\triangle B F C \cong C E B$

Now,
$\angle F B C=\angle E B C \quad[\because$ Incongruent triangles corresponding parts are equal]
$\Rightarrow \angle A B C=\angle A C B$
$\Rightarrow A C=A B \quad[\because$ Opposite sides to equal angles are equal in a triangle $]$
$\therefore \triangle A B C$ is isosceles
3. If perpendiculars from any point within an angle on its arms are congruent, prove that it lies on the bisector of that angle.
Sol:
Given that, if perpendicular from any point within, an angle on its arms is congruent, prove that it lies on the bisector of that angle
Now,
Let us consider an angle ABC and let BP be one of the arm within the angle
Draw perpendicular PN and PM on the arms BC and BA such that they meet BC and BA in N and M respectively.
Now, in $\triangle B P M$ and $\triangle B P N$
We have $\angle B M P=B N P=90^{\circ}$
[given]
$B P=B P$
[Common side]
And $M P=N P$
[given]
So, by RHS congruence criterion, we have

$$
\triangle B P M \cong \triangle B P N
$$

Now,

$\angle M B P=\angle N B P$
[\because Corresponding parts of congruent triangles are equal]
$\Rightarrow B P$ is the angular bisector of $\angle A B C$.
\therefore Hence proved
4. In Fig. 10.99, $\mathrm{AD} \perp \mathrm{CD}$ and $\mathrm{CB} \perp$. CD . If $\mathrm{AQ}=\mathrm{BP}$ and $\mathrm{DP}=\mathrm{CQ}$, prove that $\angle \mathrm{DAQ}=$ $\angle \mathrm{CBP}$.

Fig. 10.99

Sol:

Given that, in the figure $A D \perp C D$ and $C B \perp C D$ and $A Q=B P, D P=C Q$
We have to prove that $\angle D A Q=\angle C B P$
Given that $D P=Q C$
Add $P Q$ on both sides
Given that $D P=Q C$
Add $P Q$ on both sides
$\Rightarrow D P+P Q=P Q+Q C$
$\Rightarrow D Q=P C$
Now, consider triangle DAQ and CBP,
We have
$\angle A D Q=\angle B C P=90^{\circ} \quad$ [given]
$A Q=B P$
And $D Q=P C$
[given]
[From (1)]

So, by RHS congruence criterion, we have $\triangle D A Q \cong \triangle C B P$
Now,
$\angle D A Q=\angle C B P \quad[\because$ Corresponding parts of congruent triangles are equal $]$
\therefore Hence proved
5. $A B C D$ is a square, X and Yare points on sides $A D$ and $B C$ respectively such that $A Y=$ $B X$. Prove that $B Y=A X$ and $\angle B A Y=\angle 4 B X$.

Sol:

Given that ABCD is a square, X and Y are points on sides $A D$ and $B C$ respectively such that $A Y=B X$.
We have to prove $B Y=A X$ and $\angle B A Y=\angle A B X$
Join B and X, A and Y.
Since, ABCD is a square $\Rightarrow \angle D A B=\angle C B A=90^{\circ}$

$$
\begin{equation*}
\Rightarrow \angle X A B=\angle Y B A=90^{\circ} \tag{1}
\end{equation*}
$$

Now, consider triangle $X A B$ and $Y B A$
We have
$\angle X A B=\angle Y B A=90^{\circ}$
$B X=A Y$
And $A B=B A$
[From (1)]

So, by RHS congruence criterion, we have $\triangle X A B \cong \triangle Y B A$

Now, we know that corresponding parts of congruent triangles are equal.
$\therefore B Y=A X$ and $\angle B A Y=\angle A B X$
\therefore Hence proved
6. Which of the following statements are true (T) and which are false (F):
(i) Sides opposite to equal angles of a triangle may be unequal.
(ii) Angles opposite to equal sides of a triangle are equal
(iii) The measure of each angle of an equilateral triangle is 60°
(iv) If the altitude from one vertex of a triangle bisects the opposite side, then the triangle may be isosceles.
(v) The bisectors of two equal angles of a triangle are equal.
(vi) If the bisector of the vertical angle of a triangle bisects the base, then the triangle may be isosceles.
(vii) The two altitudes corresponding to two equal sides of a triangle need not be equal.
(viii) If any two sides of a right triangle are respectively equal to two sides of other right triangle, then the two triangles are congruent.
(ix) Two right triangles are congruent if hypotenuse and a side of one triangle are respectively equal to the hypotenuse and a side of the other triangle.

Sol:

(i) False (F)

Reason: Sides opposite to equal angles of a triangle are equal
(ii) \quad True (F)

Reason: Since the sides are equal, the corresponding opposite angles must be equal
(iii) True (T)

Reason: Since all the three angles of an equilateral triangles are equal and sum of the three angles is 180°, each angle will be equal to $\frac{180^{\circ}}{3} \Rightarrow 60^{\circ}$
(iv) False (F)

Reason: Here the altitude from thee vertex is also the perpendicular bisector of the opposite side.
\Rightarrow The triangle must be isosceles and may be an equilateral triangle.
(v) True (T)

Reason: Since it an isosceles triangle, the lengths of bisectors of the two equal angles are equal
(vi) False (F)

Reason: The angular bisector of the vertex angle is also a median
\Rightarrow The triangle must be an isosceles and also may be an equilateral triangle.
(vii) False (F)

Reason: Since two sides are equal, the triangle is an isosceles triangle.
\Rightarrow The two altitudes corresponding to two equal sides must be equal.
(viii) False (F)

Reason: The two right triangles may or may not be congruent
(ix) \quad True (T)

Reason: According to RHS congruence criterion the given statement is true.
7. Fill the blanks in the following so that each of the following statements is true.
(i) Sides opposite to equal angles of a triangle are \qquad
(ii) Angle opposite to equal sides of a triangle are \qquad
(iii) In an equilateral triangle all angles are
(iv) In a $\triangle \mathrm{ABC}$ if $\angle \mathrm{A}=\angle \mathrm{C}$, then $\mathrm{AB}=\ldots \ldots$.
(v) If altitudes CE and BF of a triangle ABC are equal, then $\mathrm{AB}=\ldots$.
(vi) In an isosceles triangle ABC with $\mathrm{AB}=\mathrm{AC}$, if BD and CE are its altitudes, then BD is \qquad CE.
(vii) In right triangles ABC and DEF , if hypotenuse $\mathrm{AB}=\mathrm{EF}$ and side $\mathrm{AC}=\mathrm{DE}$, then $\Delta \mathrm{ABC} \cong \Delta \ldots .$.

Sol:

(i) Sides opposite to equal angles of a triangle are equal
(ii) Angles opposite to equal sides of a triangle are equal

(iii) In an equilateral triangle all angles are equal

Reason: Since all sides are equal in a equilateral triangle, the angles opposite to equal sides will be equal

(iv) In a $\triangle A B C$ if $\angle A=\angle C$, then $A B=B C$

Reason: Since, the sides opposite to equal angles are equal, the side opposite to $\angle A$ i.e., $B C$ and $\angle C$ i.e., $A B$ are equal

(v) If altitudes CE and BF of a triangle ABC are equal, then $A B=A C$
Reason: From RHS congruence criterion $\triangle B E C \cong \triangle C F B$
$\Rightarrow \angle E B C=\angle F C B \Rightarrow \angle A B C=\angle A C B \Rightarrow A C=A B$
[\because Sides opposite to equal angels are equal]

(vi) In an isosceles triangle ABC with $A B=A C$, if BD and CE are its altitudes, then $B D$ is equal to $C E$
Reason: Since angles opposite to equal sides are equal, so
$\angle A B C=\angle A C B$
$\Rightarrow \angle E B C=\angle D C B$
So, by ASA congruence criterion
$\triangle E B C \cong \triangle D C B$
$\Rightarrow C E=B D$
[Corresponding parts of congruent

triangles are equal]
(vii) In right triangles ABC and DEF , if hypotenuse $A B=E F$ and side $A C=D E$, then.

$$
\triangle A B C \cong \triangle E F D
$$

Reason: From RHS congruence criterion we have $\triangle A B C \cong \triangle E F D$

Exercise -10.6

1. In $\triangle \mathrm{ABC}$, if $\angle \mathrm{A}=40^{\circ}$ and $\angle \mathrm{B}=60^{\circ}$. Determine the longest and shortest sides of the triangle.

Sol:

Given that in $\triangle A B C, \angle A=40^{\circ}$ and $\angle B=60^{\circ}$
We have to find longest and shortest side
We know that,
Sum of angles in a triangle 180°
$\Rightarrow \angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow 40^{\circ}+60^{\circ}+\angle C=180^{\circ}$
$\Rightarrow \angle C=180^{\circ}-\left(40^{\circ}+60^{\circ}\right)$
$=180^{\circ}-100^{\circ}=80^{\circ}$
$\therefore \angle C=80^{\circ}$

Now,
$\Rightarrow 40^{\circ}<60^{\circ}<80^{\circ} \Rightarrow \angle A<\angle B<\angle C$
$\Rightarrow \angle C$ is greater angle and $\angle A$ is smaller angle
Now, $\angle A<\angle B<\angle C$
$\Rightarrow B C<A A C<A B$
[\because Side opposite to greater angle is larger and side opposite to smaller angle is smaller]
$\therefore A B$ is longest and BC is smallest or shortest side.
2. In a $\triangle \mathrm{ABC}$, if $\angle \mathrm{B}=\angle \mathrm{C}=45^{\circ}$, which is the longest side?

Sol:
Given that in $\triangle A B C$,
$\angle B=\angle C=45^{\circ}$
We have to find longest side
We know that,
Sum of angles in a triangle $=180^{\circ}$
$\Rightarrow \angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \angle A+45^{\circ}+45^{\circ}=180^{\circ}$
$\Rightarrow \angle A=180^{\circ}-\left(45^{\circ}+45^{\circ}\right)=180^{\circ}-90^{\circ}=90^{\circ}$

$\therefore \angle A=90^{\circ}$
3. In $\triangle A B C$, side $A B$ is produced to D so that $B D=B C$. If $\angle B=60^{\circ}$ and $\angle A=70^{\circ}$, prove that: (i) $\mathrm{AD}>\mathrm{CD}$ (ii) $\mathrm{AD}>\mathrm{AC}$
Sol:
Given that in $\triangle A B C$, side AB is produced to D So that $B D=B C$ and $\angle B=60^{\circ}, \angle A=70^{\circ}$

We have to prove that
(i) $A D>C D$ (ii) $A D>A C$

First join C and D
Now, in $\triangle A B C$
$\angle A+\angle B+\angle C=180^{\circ} \quad\left[\because\right.$ Sum of angles in a triangle $\left.=180^{\circ}\right]$
$\Rightarrow \angle C=180^{\circ}-70^{\circ}-60^{\circ}$
$=180^{\circ}-130^{\circ}=50^{\circ}$
$\therefore \angle C=50^{\circ} \Rightarrow \angle A C B=50^{\circ}$
And also in $\triangle B D C$,
$\angle D B C=180^{\circ}-\angle A B C \quad[\because A B D$ is a straight angle $]$
$=180^{\circ}-60^{\circ}=120^{\circ}$
and also $B D=B C$
$\Rightarrow \angle B C D=\angle B D C$
[given]
[\because Angles opposite to equal sides are equal]

Now,
$\angle D B C+\angle B C D+\angle B D C=180^{\circ} \quad\left[\because\right.$ Sum of angles in a triangle $\left.=180^{\circ}\right]$
$\Rightarrow 120^{\circ}+\angle B C D+\angle B C D=180^{\circ}$
$\Rightarrow 2 \angle B C D=180^{\circ}-120^{\circ} \Rightarrow \angle B C D=\frac{60^{\circ}}{2}=30^{\circ}$
$\therefore \angle B C D=\angle B D C=30^{\circ}$

Now, consider $\triangle A D C$,
$\angle B A C \Rightarrow \angle D A C=70^{\circ} \quad$ [given]
$\angle B D C \Rightarrow \angle A D C=30^{\circ} \quad[\because$ From (2) $]$
$\angle A C D=\angle A C B+\angle B C D$
$=50^{\circ}+30^{\circ}$
$=80^{\circ}$
$[\because$ From (1) and (2)]

Now, $\angle A D C<\angle D A C<\angle A C D$
$\Rightarrow A C<D C<A D$
[\because Side opposite to greater angle is longer and smaller angle is smaller]
$\Rightarrow A D>C D$ and $A D>A C$
\therefore Hence proved
Or
We have, $\angle A C D>\angle D A C$ and $\angle A C D>\angle A D C$
$\Rightarrow A D>D C$ and $A D>A C$
[\because Side opposite to greater angle is longer and smaller angle is smaller]
4. Is it possible to draw a triangle with sides of length $2 \mathrm{~cm}, 3 \mathrm{~cm}$ and 7 cm ?

Sol:

Given lengths of sides are $2 \mathrm{~cm}, 3 \mathrm{~cm}$ and 7 cm we have to check whether it is possible to draw a triangle with ten the given lengths of sides
We know that,
A triangle can be drawn only when the sum of any two sides is greater than the third side.
So, let's check the rule.
$2+3>7$ or $2+3<7$
$2+7>3$
and $3+7>2$
Here, $2+3 \ngtr 7$ So, the triangle does not exit.
5. O is any point in the interior of $\triangle A B C$. Prove that
(i) $\mathrm{AB}+\mathrm{AC}>\mathrm{OB}+\mathrm{OC}$
(ii) $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>\mathrm{OA}+\mathrm{QB}+\mathrm{OC}$
(iii) $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}>\frac{1}{2}(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$

Sol:
Given that O is any point in the interior of $\triangle A B C$ We have to prove
(i) $\mathrm{AB}+\mathrm{AC}>\mathrm{OB}+\mathrm{OC}$

(ii) $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>\mathrm{OA}+\mathrm{QB}+\mathrm{OC}$
(iii) $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}>\frac{1}{2}(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$

We know that, in a triangle the sum of any two sides is greater than the third side
So, we have
In $\triangle A B C$
$A B+B C>A C$
$B C+A C>A B$
$A C+A B>B C$
In $\triangle O B C$

$$
\begin{equation*}
O B+O C>B C \tag{1}
\end{equation*}
$$

In $\triangle O A C$

$$
\begin{equation*}
O A+O C>A C \tag{2}
\end{equation*}
$$

In $\triangle O A B$

$$
\begin{equation*}
O A+O B>A B \tag{3}
\end{equation*}
$$

Now, extend (or) produce $B O$ to meet $A C$ in D .
Now, in $\triangle A B D$, we have

$$
\begin{aligned}
& A B+A D>B D \\
& \Rightarrow A B+A D>B O+O D
\end{aligned}
$$

$$
.(4)[\because B D=B O+O D]
$$

Similarly in $\triangle O D C$, we have

$$
O D+D C>O C
$$

(i) Adding (4) and (5), we get

$$
\begin{align*}
& A B+A D+O D+D C>B O+O D+O C \\
& \Rightarrow A B+(A D+D C)>O B+O C \\
& \Rightarrow A B+A C>O B+O C \tag{6}
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
B C+B A>O A+O C \tag{7}
\end{equation*}
$$

and $C A+C B>O A+O B$
(ii) Adding equation (6), (7) and (8), we get

$$
\begin{aligned}
& A B+A C+B C+B A+C A+C B>O B+O C+O A+O C+O A+O B \\
& \Rightarrow 2 A B+2 B C+2 C A>2 O A+2 O B+2 O C \\
& \Rightarrow 2(A B+B C+C A)>2(O A+O B+O C) \\
& \Rightarrow A B+B C+C A>O A+O B+O C
\end{aligned}
$$

(iii) Adding equations (1), (2) and (3)

$$
\begin{aligned}
& O B+O C+O A+O C+O A+O B>B C+A C+A B \\
& \Rightarrow 2 O A+2 O B+2 O C>A B+B C+C A
\end{aligned}
$$

We get $\Rightarrow 2(O A+O B+O C)>A B+B C+C A$

$$
\therefore(O A+O B+O C)>\frac{1}{2}(A B+B C+C A)
$$

6. Prove that the perimeter of a triangle is greater than the sum of its altitudes.

Sol:

Given: A $\triangle A B C$ in which $A D \perp B C, B E \perp A C$ and $C F \perp A B$.
To prove:

$$
A D+B E+C F<A B+B C+A C
$$

Figure:

Proof:

We know that of all the segments that can be drawn to a given line, from a point not lying on it, the perpendicular distance i.e., the perpendicular line segment is the shortest.
Therefore,
$A D \perp B C$
$\Rightarrow A B>A D$ and $A C>A D$
$\Rightarrow A B+A C>2 A D$
Similarly $B E \perp A C$
$\Rightarrow B A>B E$ and $B C>B E$
$\Rightarrow B A+B C>2 B E$
And also $C F \perp A B$
$\Rightarrow C A>C F$ and $C B>C F$
$\Rightarrow C A+C B>2 C F$
Adding (1), (2) and (3), we get
$A B+A C+B A+B C+C A+C B>2 A D+2 B E+2 C F$
$\Rightarrow 2 A B+2 B C+2 C A>2(A D+B E+C F)$
$\Rightarrow 2(A B+B C+C A)>2(A D+B E+C F)$
$\Rightarrow A B+B C+C A>A D+B E+C F$
\Rightarrow The perimeter of the triangle is greater than the sum of its altitudes
\therefore Hence proved
7. In Fig. 10.131, prove that: (i) $\mathrm{CD}+\mathrm{DA}+\mathrm{AB}+\mathrm{BC}>2 \mathrm{AC}$ (ii) $\mathrm{CD}+\mathrm{DA}+\mathrm{AB}>\mathrm{BC}$

Fig. 10.131

Sol:

Given to prove
(i) $C D+D A+A B+B C>2 A C$
(ii) $C D+D A+A B>B C$

From the given figure,
We know that, in a triangle sum of any two sides is greater than the third side
(i) So ,

In $\triangle A B C$, we have

$$
\begin{equation*}
A B+B C>A C \tag{1}
\end{equation*}
$$

In $\triangle A D C$, we have

$$
\begin{equation*}
C D+D A>A C \tag{2}
\end{equation*}
$$

Adding (1) and (2) we get
$A B+B C+C D+D A>A C+A C$
$\Rightarrow C D+D A+A B+B C>2 A C$
(ii) Now, in $\triangle A B C$, we have

$$
\begin{equation*}
A B+A C>B C \tag{3}
\end{equation*}
$$

and in $\triangle A D C$, we have
$C D+D A>A C$
Add AB on both sides

$$
\begin{equation*}
\Rightarrow C D+D A+A B>A C+A B \tag{4}
\end{equation*}
$$

From equation (3) and (4), we get
$C D+D A+A B>A C+A B>B C$
$\Rightarrow C D+D A+A B>B C$
\therefore Hence proved
8. Which of the following statements are true (T) and which are false (F)?
(i) Sum of the three sides of a triangle is less than the sum of its three altitudes.
(ii) Sum of any two sides of a triangle is greater than twice the median drawn to the third side.
(iii) Sum of any two sides of a triangle is greater than the third side.
(iv) Difference of any two sides of a triangle is equal to the third side.
(v) If two angles of a triangle are unequal, then the greater angle has the larger side opposite to it.
(vi) Of all the line segments that can be drawn from a point to a line not containing it, the perpendicular line segment is the shortest one.

Sol:

(i) False (F)

Reason: Sum of these sides of a triangle is greater than sum of its three altitudes
(ii) True (F)
(iii) True (T)
(iv) False (F)

Reason: The difference of any two sides of a triangle is less than third side.
(v) True (T)

Reason: The side opposite to greater angle is longer and smaller angle is shorter in a triangle
(vi) True (T)

Reason: The perpendicular distance is the shortest distance from a point to a line not containing it.
9. Fill in the blanks to make the following statements true.
(i) In a right triangle the hypotenuse is the side.
(ii) The sum of three altitudes of a triangle is than its perimeter.
(iii) The sum of any two sides of a triangle is than the third side.
(iv) If two angles of a triangle are unequal, then the smaller angle has the side opposite to it.
(v) Difference of any two sides of a triangle is than the third side.
(vi) If two sides of a triangle are unequal, then the larger side has angle opposite to it.

Sol:
(i) In a right triangle the hypotenuse is the largest side

Reason: Since a triangle can have only one right angle, other two angles must be less than 90°
\Rightarrow The right angle is the largest angle
\Rightarrow Hypotenuse is the largest side.
(ii) The sum of three altitudes of a triangle is less than its perimeter
(iii) The sum of any two sides of a triangle is greater than the third side.
(iv) If two angles of a triangle are unequal, then the smaller angle has the smaller side opposite to it.
(v) Difference of any two sides of a triangle is less than the third side.
(vi) If two sides of a triangle are unequal, then the larger side has greater angle opposite to it.

