Exercise - 13.1

1. Express the following linear equations in the form $a x+b y+c=0$ and indicate the values of a, b and c in each case:
(i) $-2 x+3 y=12$
(v) $2 x+3=0$
(ii) $x-\frac{y}{2}-5=0$
(iii) $2 x+3 y=9 \cdot 3 \overline{5}$
(vi) $y-5=0$
(vii) $4=3 \mathrm{x}$
(iv) $3 x=-7 y$
(viii) $y=\frac{x}{2}$

Sol:
(i) We have

$$
\begin{array}{ll}
& -2 x+3 y=12 \\
\Rightarrow \quad & -2 x+3 y-12=0
\end{array}
$$

On comparing this equation with $a x+b y+c=0$ we obtain $a=-2, b=3$ and $c=-12$.
(ii) Given that
$x-\frac{y}{2}-5=0$
$1 x-\frac{y}{2}-5=0$
On comparing this equation with $a x+b y+c=0$ we obtain $a=1, b=\frac{-1}{2}$ and $c=-5$
(iii) Given that

$$
\begin{aligned}
& 2 x+3 y=9 \cdot 3 \overline{5} \\
\Rightarrow \quad & 2 x+3 y-9 \cdot 3 \overline{5}=0
\end{aligned}
$$

On comparing this equation with $a x+b y+c=0$ we get $a=2, b=3$ and $c=-9 \cdot 3 \overline{5}$
(iv) $3 x=-7 y \Rightarrow 3 x+7 y+0=0$

On comparing this equation with $a x+b y+c=0$ we get $a=3, b=7$ and $c=0$.
(v) We have

$$
\begin{aligned}
& 2 x+3=0 \\
& 2 x+0(y)+3=0
\end{aligned}
$$

On comparing this equation with $a x+b y+c=0$ we get $a=2, b=0$ and $c=3$
(vi) Given that

$$
\begin{array}{ll}
& y-5=0 \\
\Rightarrow \quad & 0 x+1 y-5=0
\end{array}
$$

On comparing this equation with $a x+b y+c=0$ we get $a=0, b=1$ and $c=-5$
(vii) We have

$$
\begin{aligned}
& 4=x \\
& -3 x+0 \cdot y+4=0
\end{aligned}
$$

On comparing the equation with $a x+b y+c=0$ we get $a=-3, b=0$ and $c=4$
(viii) Given that,

$$
\begin{aligned}
& y=\frac{x}{2} \\
& \Rightarrow 2 y=x \\
& \Rightarrow x-2 y+0=0
\end{aligned}
$$

On comparing this equation with $a x+b y+c=0$ we get $a=1, b=-2$ and $c=0$
2. Write each of the following as an equation in two variables:
(i) $2 x=-3$
(ii) $y=3$
(iii) $5 x=\frac{7}{2}$
(iv) $\mathrm{y}=\frac{3}{2} x$

Sol:
(i) We have
$2 x=-3$
$\Rightarrow 2 x+3=0$
$\Rightarrow 2 x+0 \cdot y+3=0$
(ii) We have,
$y=3$
$y-3=0$
$\Rightarrow 0 \cdot x+1 \cdot y-3=0$
(iii) Given
$5 x=\frac{7}{2}$
$10 x-7=0$
$10 x+0 \cdot y-7=0$
(iv) We have
$y=\frac{3}{2} x$
$3 x-2 y=0$
$3 x-2 y+0=0$
3. The cost of ball pen is Rs. 5 less than half of the cost of fountain pen. Write this statement as a linear equation in two variables.
Sol:
Let us assume the cost of the ball pen be Rs. x and that of a fountain pen to be y. then according to given statements
We have
$x=\frac{y}{2}-5$
$\Rightarrow 2 x=y-10$
$\Rightarrow 2 x-y+10=0$

Exercise - 13.2

1. Write two solutions for each of the following equations:
(i) $3 x+4 y=7$
(ii) $\mathrm{x}=6 \mathrm{y}$
(iii) $\mathrm{x}+\pi \mathrm{y}=4$
(iv) $\frac{2}{3} x-y=4$

Sol:
(i) Given that $3 x+4 y=7$

Substituting $x=0$ in this equation, we get
$3 \times 0+4 y=7$
$\Rightarrow y=\frac{7}{4}$
So, $\left(0, \frac{7}{4}\right)$ is a solution of the given equation substituting $x=1$, in given equation, we
get
$\Rightarrow 3 \times 1+4 y=7$
$\Rightarrow 4 y=7-3$
$\Rightarrow=4$
$\Rightarrow y=1$
So, $(1,1)$ is a solution of the given equation
$\therefore\left(0, \frac{7}{4}\right)$ and $(1,1)$ are the solutions for the given equation.
(ii) We have
$x=6 y$
Substituting $y=0$ in this equation, we get $x=6 \times 0=0$

So, $(0,0)$ is a function of the given equation substituting $y=1$, in the given equation, we
set $x=6 \times 1=6$
So, $(6,1)$ is a solution of the given equation.
\therefore we obtain $(0,0)$ and $(6,1)$ as solutions of the given equation.
(iii) We have
$x+\pi y=4$
Substituting $y=0$ in this equation, we get
$x+\pi(0)=4$
$\Rightarrow x=4$
So, $(y, 0)$ is a solution of the give equation.
\therefore we obtain $(4,0)$ and $(4-x)$ as solutions of the given equation.
(iv) Given that
$\frac{2}{3} x-y=4$
Substituting $y=0$ in this equation we get

$$
\begin{aligned}
& \frac{2}{3} x-0=4 \\
& \Rightarrow x=4 \times \frac{3}{2} \\
& \Rightarrow x=6
\end{aligned}
$$

So, $(6,0)$ is a solution of the given equation
Substituting $y=1$ in the given equation, we get

$$
\frac{2}{3} \times-1=4
$$

$$
\frac{2}{3} x=5 \Rightarrow x=\frac{15}{2}
$$

So, $\left(\frac{15}{2}, 1\right)$ is a solution of the given equation.
\therefore We obtain $(6,0)$ and $\left(\frac{15}{2}, 1\right)$ as solutions of the given equation.
2. Write two solutions of the form $x=0, y=a$ and $x=b, y=0$ for each of the following equations:
(i) $5 x-2 y=10$
(ii) $-4 x+3 y=12$
(iii) $2 x+3 y=24$

Sol:
(i) Given that
$5 x-2 y=10$
Substituting $x=0$ in the equation $5 x-2 y=10$
We get $5 \times 0-2 y=10$
$\Rightarrow y=\frac{-10}{2}=-5$
Thus $x=0$ and $y=-5$ is a solution of $5 x-2 y=10$
Substituting $y=0$, we get
$\Rightarrow 5 x-2 \times 0=10$
$\Rightarrow 5 x=10$
$\Rightarrow x=2$
Thus, $x=2$ and $y=0$ is a solution of $5 x-2 y=10$
Thus $x=0, y=-5$ and $x=2, y=0$ are two solutions of $5 x-2 y=10$
(ii) Given that,
$-4 x+3 y=12$
Substituting $x=0$ in the equation
$-4 x+3 y=12$, we get
$\Rightarrow-4 \times 0+3 y=12$
$\Rightarrow 3 y=12$
$\Rightarrow y=4$
Thus $x=0$ and $y=4$ is a solution of $-4 x+3 y=12$
Substituting $y=0$ in the equation
$-4 x+3 y=12$, we get
$\Rightarrow-4 x+3 \times 0=12$
$\Rightarrow-4 x=12$
$\Rightarrow x=\frac{12}{-4}=-3$
Thus, $x=-3$ and $y=0$ is a solution of $-4 x+3 y=12$.
Thus $x=0, y=4$ and $x=-3, y=0$ are two solutions of $-4 x+3 y=12$
(iii) Given that
$2 x+3 y=24$
Substituting $x=0$ in the given equation
$2 x+3 y=24$, We get
$\Rightarrow 2 \times 0+3 y=24$
$\Rightarrow 3 y=24$
$\Rightarrow y=\frac{24}{3}=8$

Thus, $x=0$ and $y=8$ is a solution of $2 x+3 y=24$
Substituting $y=0$ in $2 x+3 y=24$, we get $2 x+3 \times 0=24$
$\Rightarrow 2 x=24$
$\Rightarrow x=\frac{24}{2}=12$
Thus $x=12$ and $y=0$ is a solution of $2 x+3 y=24$
Thus $x=0, y=-8$ and $x=12, y=0$ are two solutions of $2 x+3 y=24$
3. Check which of the following are solutions of the equation $2 x-y=6$ and which are not:
(i) $(3,0)$
(ii) $(0,6)$
(iii) $(2,-2)$
(iv) $(\sqrt{3}, 0)$
(v) $\left(\frac{1}{2},-5\right)$

Sol:

In the equation $2 x-y=6$ we get
LHS $=2 x-y$ and RHS $=6$
(i) Substituting $x=3$ and $y=0$ in $2 x-y=6$, we get

$$
L H S=2 \times 3-0=6-0=6=\text { RHS }
$$

So, $x=3, y=0$ or $(3,0)$ is a solution of $2 x-y=6$
(ii) Substituting $x=0$ and $y=6$ in $2 x-y=6$, we get

$$
L H S=2 \times 0-6=-6 \neq R H S
$$

So, $(0,6)$ is not a solution of the equation $2 x-y=6$
(iii) Substituting $x=2, y=-2$ in $2 x-y=6$, we get

LHS $=2 \times 2(-2)=4+2=6=R H S$
So, $(2,-2)$ is a solution of $2 x-y=6$
(iv) Substituting $x=\sqrt{3}$ and $y=0$ in $2 x-y=6$, we get

LHS $=2 \times \sqrt{3}-0=2 \sqrt{3} \neq R H S$
So, $(\sqrt{3}, 0)$ is not a solution of the equation $2 x-y=6$
(v) Substituting $x=\frac{1}{2}$ and $y=-5$ in $2 x-y=6$, we get
$L H S=2 \times \frac{1}{2}-(-5)=1+5=6=R H S$
So, $\left(\frac{1}{2},-5\right)$ is a solution of the $2 x-y=6$
4. If $x=-1, y=2$ is a solution of the equation $3 x+4 y=k$, find the value of k.

Sol:
Given that
$3 x+4 y=k$
It is given that $x=-1$ and $y=2$ is a solution of the equation $3 x+4 y=k$
$\therefore 3 \times(-1) \times 4 \times 2=k$
$\Rightarrow-3+8=k$
$\Rightarrow k=5$
$\Rightarrow k=5$
5. Find the value of λ, if $x=-\lambda$ and $y=\frac{5}{2}$ is a solution of the equation $x+4 y-7=0$.

Sol:

Given that
$x+4 y-7=0$
It is given that $x=-\lambda$ and $y=\frac{5}{2}$ is a solution of the equation $x+4 y-7=0$
$\therefore-1+4 \times \frac{5}{2}-7=0$
$\Rightarrow-\lambda+10-7=0$
$\Rightarrow-\lambda=-3$
$\Rightarrow \lambda=3$
6. If $\mathrm{x}=2 \alpha+1$ and $\mathrm{y}=\alpha-1$ is a solution of the equation $2 \mathrm{x}-3 \mathrm{y}+5=0$, find the value of α.

Sol:
We have
$2 x-3 y+5=0$
It is given that $x=2 \alpha+1$ and $=\alpha-1$ is a solution of the equation $2 x-3 y+5=0$
$\therefore 2(2 \alpha+1)-3(\alpha+1) 5=0$
$\Rightarrow 4 \alpha+2-3 \alpha+3+5=0$
$\Rightarrow \alpha+10=0$
$\Rightarrow \alpha=-10$
7. If $x=1$ and $y=6$ is a solution of the equation $8 x-a y+a^{2}=0$, find the value of a.

Sol:
Given that
$8 x-a y+a^{2}=0$
It is given that $x=1$ and $y=6$ is a solution on the equation $8 x-a y+a^{2}=0$
$\therefore 8 \times 1-a \times 6+a^{2}=0$
$\Rightarrow 8-6 a+a^{2}=0$
$\Rightarrow a^{2}-6 a+8=0$
$\Rightarrow a^{2}-4 a-2 a+8=0$
$\Rightarrow a(a-4)(a-2)=0$
$\Rightarrow a-4=0$ or $a-2=0$
$a-4=0$ or $a=2$
Hence $a=4$ or $a=2$

Exercise - 13.3

1. Draw the graph of each of the following linear equations in two variables:
(i) $x+y=4$
(ii) $x-y=2$
(iii) $-x+y=6$
(iv) $y=2 x$
(v) $3 x+5 y=15$
(vi) $\frac{x}{2}-\frac{y}{3}=3$
(vii) $\frac{x-2}{3}=y-3$
(viii) $2 y=-x+1$

Sol:
(i) We have $x+y=4$ $x=4-y$
Putting $y=0$, we get $x=4-0=4$
Putting $y=3$, we get $x=4-3=1$
Thus, we get the following table giving the two points on the line represented by the equation $x+y=4$
Graph for the equation $x+y=4$

(ii) We have
$x-y=2$
$x=2+y$
Putting $y=0$, we get $x=2+0=2$
Putting $y=-2$, we get $x=2-2=0$
Thus, we get the following table giving the two points on the line represented by the equation $x-y-2$
Graph for the equation $x-y=2$

(iii) We have
$-x+y=6$
$\Rightarrow x=6+x$
Putting $y=-4$, we get $y=6-4=2$
Putting $x=-3$ we get $y=6-3=3$
Thus, we get the following table giving the two points on the line represented by the equation $-x+y=6$
Graph for the equation $-x+y=6$.

(iv) We have

$$
\begin{equation*}
y=2 x \tag{i}
\end{equation*}
$$

Putting $x=0$, we get $y=2 \times 0=0$
Putting $x=1$ we get $y=2 \times 1=2$
Thus, we get the following table giving the two points on the line represented by the equation $y=2 x$
Graph for the equation $y=2 x$

(v) We have

$$
3 x+5 y=15
$$

$$
3 x=15-5 y
$$

$$
x=\frac{15-5 y}{3}
$$

Putting $y=0$, we get $x=\frac{15-5 \times 0}{3}=5$
Putting $y=3$ we get $x=\frac{15-5 \times 3}{3}=0$
Thus, we get the following table giving the two points on the line represented by the equation $3 x+5 y-15$
Graph for the equation $3 x+5 y-15$

(vi) We have

$$
\frac{x}{2}-\frac{y}{3}=2
$$

$$
\Rightarrow \frac{3 x-2 y}{6}=2
$$

$$
\Rightarrow 3 x-2 y=12
$$

$$
\Rightarrow 3 x=12+2 y
$$

$\Rightarrow x+\frac{12+2 y}{3}$
Putting $y=-6$, we get $x=\frac{12+2(-6)}{3}=0$

Putting $y=-3$, we get $x=\frac{12+2(-3)}{3}=2$
Putting $y=0$ we get $x=\frac{12+0}{3}=4$
Thus, we get the following table giving the two points on the line represented by the equation $\frac{x}{2}-\frac{y}{3}=2$

Graph for the equation $\frac{x}{2}-\frac{y}{3}=2$

(vii) We have,

$$
\begin{aligned}
& \frac{x-2}{3}=y-3 \\
& \Rightarrow x-2=3(y-3) \\
& \Rightarrow x-2=3 y-9 \\
& \Rightarrow x=3 y-9+2 \\
& \Rightarrow x=3 y-7
\end{aligned}
$$

Putting $y=0$, we get $x-0=-7 \Rightarrow x=-7$
Putting $y=2$, we get $x-3(2)=-7 \Rightarrow x=-1$
Putting $y=3$, we get $x=3(3)-7 \Rightarrow x=2$
Thus, we get the following table giving the two points on the line represented by the equation $\frac{x-2}{y}=y-3$
Graph for the equation $\frac{x-2}{y}=y-3$

(viii) We have
$2 y=-x+1$
$\Rightarrow x-1=2 y$
Putting $y=0$, we get $x=1-2 \times 0=1$
Putting $y=-1$, we get $x=1-2(-1)=3$
Thus, we have the following table giving the two points on the line represented by the equation
$2 y=x+3$
$2 y=-x+1$
Graph for the equation $2 y=-x+1$

2. Give the equations of two lines passing through $(3,12)$. How many more such lines are there, and why?

Sol:

The equation of two lines passing through
$(3,12)$ are
$4 x-y=0$
$3 x-y+3=0$
There are infinitely many lines passing through $(3,12)$
3. A three-wheeler scooter charges Rs 15 for first kilometer and Rs 8 each for every subsequent kilometer. For a distance of $x \mathrm{~km}$, an amount of Rs y is paid. Write the linear equation representing the above information.

Sol:

Total fare of Rs y for covering distance of x kilometers is given by

$$
\begin{aligned}
& y=15+8(x-1) \\
& \Rightarrow \quad y=15+8 x-8 \\
& \Rightarrow \quad y=8 x+7
\end{aligned}
$$

This is the required linear equation for the given information
4. A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Aarushi paid Rs 27 for a book kept for seven days. If fixed charges are Rs x and per day charges are Rs y. Write the linear equation representing the above information.
Sol:
Total charges paid by Aarushi is given by

$$
\begin{aligned}
& 27=x+4 y \\
\Rightarrow \quad & x+4 y=27
\end{aligned}
$$

This is the required linear equation for the given information.
5. A number is 27 more than the number obtained by reversing its digits. If its unit's and ten's digit are x and y respectively, write the linear equation representing the above statement.

Sol:

Total original number is $10 y+x$
The new number is obtained after reversing the order of digits is $10 x+y$
According to question
$\Rightarrow \quad 10 y+x=10 x+y+27$
$\Rightarrow \quad 9 y-9 x=27$
$\Rightarrow \quad y-x=3$
$\Rightarrow \quad x-y+3=0$
This is the required linear equation for the given information.
6. The sum of a two digit number and the number obtained by reversing the order of its digits is 121 . If units and ten's digit of the number are x and y respectively then write the linear equation representing the above statement.

Sol:

Total original number is $10 y+x$
The new number is obtained after reversing the order of digits is $(10 x+y)$
According to problem

$$
\begin{array}{ll}
& (10 y+x)+(10 x+y)=121 \\
\Rightarrow \quad & 11 x+11 y=121 \\
\Rightarrow \quad & 11(x+y)=121 \\
\Rightarrow \quad & x+y=11
\end{array}
$$

Thus is the required linear equation for the given information
7. Plot the points $(3,5)$ and $(-1,3)$ on a graph paper and verify that the straight line passing through these points also passes through the point (1,4).
Sol:
The points given in the graph:

It is clear from the graph the straight lines passes through these points also pass a through $(1,4)$.
8. From the choices given below, choose the equation whose graph is given in Fig. below.
(i) $y=x$
(ii) $x+y=0$
(iii) $y=2 x$
(iv) $2+3 y=7 x$

[Hint: Clearly, $(-1,1)$ and $(1,-1)$ satisfy the equation $x+y=0$]

Sol:

Clearly $(-1,1)$ and $(1,-1)$ satisfy the equation $x+y=0$
\therefore The equation whose graph is given by $x+y=0$
9. From the choices given below, choose the equation whose graph is given in fig. below.
(i) $y=x+2$
(ii) $y=x-2$
(iii) $y=-x+2$
(iv) $x+2 y=6$

[Hint: Clearly, $(2,0)$ and $(-1,3)$ satisfy the equation $y=-x+2$]

Sol:
Clearly $(2,0)$ and $(-1,3)$ satisfy the equation $y=-x+2$
\therefore The equation whose graph is given by $y=-x+2$
10. If the point $(2,-2)$ lies on the graph of the linear equation $5 x+k y=4$, find the value of k.

Sol:

It is given that $(2,-2)$ is a solution of the equation $5 x+k y=4$
$\therefore \quad 5 \times 2+k \times(-2)=4$
$\Rightarrow \quad 10-2 k=4$
$\Rightarrow \quad-2 k=4-10$
$\Rightarrow \quad-2 k=-6$
$\Rightarrow \quad k=3$.
11. Draw the graph of the equation $2 x+3 y=12$. From the graph, find the coordinates of the point: (i) whose y-coordinates is 3 . (ii) whose x -coordinate is -3 .

Sol:

Graph of the equation $2 x+3 y=12$:
We have,

$$
\begin{array}{ll}
& 2 x+3 y=12 \\
\Rightarrow \quad & 2 x=12-3 y \\
\Rightarrow \quad & x=\frac{12-3 y}{2}
\end{array}
$$

Putting $y=2$, we get $x=\frac{12-3 \times 2}{2}=3$
Putting $y=-4$, we get $x=\frac{12-3 \times 4}{2}=0$
Thus, $(3,0)$ and $(0,4)$ are two points on the line $2 x+3 y=12$
The graph of line represents by the equation $2 x+3 y=12$

x	0	3
y	4	2

Graph of the equation $2 x+3 y=12$

(i) To find coordinates of the points when $y=3$, we draw a line parallel to x-axis and passing through $(0,3)$ this lines meets the graph of $2 x+3 y=12$ at a point p from which we draw a line parallel to y-axis which process x-axis at $x=\frac{3}{2}$, so the coordinates of the required points are $\left(\frac{3}{2}, 3\right)$.
(ii) To find the coordinates of the points when $x=-3$ we draw a line parallel to y-axis and passing through $(-3,0)$. This lines meets the graph of $2 x+3 y=12$ at a point p from which we draw a line parallel to x-axis crosses y-axis at $y=6$, so, the coordinates of the required point are $(-3,6)$.
12. Draw the graph of each of the equations given below. Also, find the coordinates of the points where the graph cuts the coordinate axes:
(i) $6 x-3 y=12$
(ii) $-x+4 y=8$
(iii) $2 x+y=6$
(iv) $3 x+2 y+6=0$

Sol:

(i) We have

$$
\begin{array}{ll}
& 6 x-3 y=12 \\
\Rightarrow & 3(2 x-y)=12 \\
\Rightarrow & 2 x-y=4 \\
\Rightarrow & 2 x-4=y \\
\Rightarrow & y=2 x-4 \tag{i}
\end{array}
$$

Putting $x=0$ in (i), we get $y=-4$
Putting $x=2$ in (i), we get $y=0$
Thus, we obtain the following table giving coordinates of two points on the line represented by the equation $6 x-3 y=12$.
The graph of the line $6 x-3 y=12$

(ii) We have

$$
\begin{array}{ll}
& -x+4 y=8 \\
\Rightarrow & 4 y-8=x \\
\Rightarrow & x=4 y=8
\end{array}
$$

Putting $y=1$ in (i), we get $x=4 \times 1-8=-4$
Putting $y=2$ in (i), we get $x=4 \times 2-8=0$
Thus, we obtain the following table giving coordinates of two points on the line represented by the equation $-x+4 y=-8$
Graph of the equation $-x+4 y=8$

(iii) We have

$$
\begin{align*}
& 2 x+y=6 \\
\Rightarrow \quad & y=6-2 x \tag{i}
\end{align*}
$$

Putting $x=3$ in (i), we get $y=6=2 \times 3=0$
Putting $x=4$ in (i), we get $y=6-2 \times 4=-2$
Thus, we obtain the following table giving coordinates of two points on the line represented by the equation $2 x+y=6$
Graph of the equation $2 x+y=6$

(iv) We have

$$
\begin{aligned}
& 3 x+2 y+6=0 \\
\Rightarrow & 2 y=-6-3 x \\
\Rightarrow & y=\frac{-6-3 x}{2}
\end{aligned}
$$

Putting $x=-2$ in (i), we get $x=\frac{6-3(-2)}{2}=0$
Putting $x=-4$ in (i), we get $y=\frac{6-3(-4)}{2}=3$

Thus, we obtain the following table giving coordinates of two points on the line represented by the equation $3 x+2 y+6=0$
Graph of the equation $3 x-2 y+6=0$

13. Draw the graph of the equation $2 x+y=6$. Shade the region bounded by the graph and the coordinate axes. Also, find the area of the shaded region.

Sol:

We have

$$
\begin{align*}
& 2 x+y=6 \\
& y=6-2 x \tag{i}
\end{align*}
$$

Putting $x=3$ in (i), we get $y=6-2 \times 3=0$
Putting $x=0$ in (i), we get $y=6-2 \times 0=6$
Thus, we obtained the following table giving coordinates of two points on the line represented by the equation $2 x+y=6$

x	3	0
y	0	6

The graph of line $2 x+y=6$

14. Draw the graph of the equation $\frac{x}{3}+\frac{y}{4}=1$. Also, find the area of the triangle formed by the line and the co-ordinates axes.

Sol:

We have

$$
\begin{array}{ll}
& \frac{x}{3}+\frac{y}{4}=1 \\
\Rightarrow & 4 x+3 y=12 \\
\Rightarrow & 4 x=12-3 y \\
\Rightarrow & x=\frac{12-3 y}{4}
\end{array}
$$

Putting $y=0$ in (i), we get $x=\frac{12-3 \times 0}{4}=3$

Putting $y=-4$ in (ii), we get $x=\frac{12-3 \times 4}{4}=0$
Thus, we obtained the following table giving coordinates of two points on the line represents by the equation $\frac{x}{3}+\frac{y}{4}=1$.

x	0	3
y	4	0

The graph of line $\frac{x}{3}+\frac{y}{4}=1$.

15. Draw the graph of $y=|x|$.

Sol:
We have

$$
\begin{equation*}
y=|x| \tag{i}
\end{equation*}
$$

Putting $x=0$, we get $y=0$

Putting $x=2$, we get $y=2$
Putting $x=2$, we get $y=-12$
Thus, we have the following table for the two points on graph of $|x|$

x	0	2	-2
y	0	2	2

Graph of line equation $y=|x|$

16. Draw the graph of $y=|x|+2$.

Sol:

We have

$$
\begin{equation*}
y=|x|+2 \tag{i}
\end{equation*}
$$

Putting $x=0$, we get $y=2$
Putting $x=1$, we get $y=3$
Putting $x=-1$, we get $y=3$
Thus, the we have the following table for the points on graph of $|x|+2$

x	0	1	1
y	2	3	3

Graph of line equation $y=|x|+2$

17. Draw the graphs of the following linear equations on the same graph paper: $2 x+3 y=12, x$ $-\mathrm{y}=1$.
Find the coordinates of the vertices of the triangle formed by the two straight lines and the y -axis. Also, find the area of the triangle.

Sol:

Graph of the equation $2 x+3 y-12=0$
We have

$$
\begin{array}{ll}
& 2 x+3 y=12 \\
\Rightarrow \quad & 2 x=12-3 y \\
\Rightarrow \quad & x=\frac{12-3 y}{2}
\end{array}
$$

Putting $y=4$, we get $x=\frac{12-3 \times 4}{2}=0$
Putting $y=2$, we get $x=\frac{12-3 \times 2}{2}=3$
Thus, we have the following table for the p table for the points on the line $2 x+3 y=12$

x	0	3
y	4	2

Plotting points $A(0,4), B(3,2)$ on the graph paper and drawing a line passing through them we obtain graph of the equation.
Graph of the equation
Graph of the equation $x-y-1$:
We have $x-y=1 \Rightarrow x=1+y$
Thus, we have the following table for the points the line $x-y=1$

x	1	0
y	0	-1

Plotting points $C(1,0)$ and $D(0,-1)$ on the same graph paper drawing a line passing through the m , we obtain the graph of the line represents by the equation $x-y=1$.

Clearly two lines intersect at $A(3,2)$.
The graph of time $2 x+3 y=12$ intersect with y-axis at $B(0,4)$ and the graph of the line $x-y=1$ intersect with y-axis at $C(0,-1)$.
So, the vertices of the triangle formed by thee two straight lines and y-axis are $A(3,2)$ and $B(0,4)$ and $C(0,-1)$
Now,
Area of $\triangle A B C=\frac{1}{2}[$ Base \times Height $]$
$=\frac{1}{2}(B C \times A B)$
$=\frac{1}{2}(5+3)$
$=\frac{15}{2}$ sq.units
18. Draw the graphs of the linear equations $4 x-3 y+4=0$ and $4 x+3 y-20=0$. Find the area bounded by these lines and x-axis.
Sol:
We have

$$
\begin{array}{ll}
& 4 x-3 y+4=0 \\
\Rightarrow & 4 x-3 y=4 \\
\Rightarrow & x=\frac{3 y-4}{4}
\end{array}
$$

Putting $y=0$, we get $x=\frac{3 \times 0-4}{4}=-1$
Putting $y=4$, we get $x=\frac{3 \times 4-4}{4}=2$
Thus, we have the following table for the p table for the points on the line $4 x-3 y+4=0$

x	-1	2
y	0	4

We have

$$
\begin{array}{ll}
& 4 x+3 y-20=0 \\
\Rightarrow \quad & 4 x=20-3 y \\
\Rightarrow & x=\frac{20-3 y}{4}
\end{array}
$$

Putting $y=0$, we get $x=\frac{20-3 \times 0}{4}=5$
Putting $y=4$, we get $x=\frac{20-3 \times 4}{4}=2$.
Thus, we have the following table for the p table for the points on the line $4 x-3 y-20=0$

x	0	2
y	0	4

Clearly, two lines intersect at $A(2,4)$.
The graph of the lines $4 x-3 y+4=0$ and $4 x+3 y-20=0$ intersect with y-axis at $a+B(-1,0)$ and $c(5,0)$ respectively
\therefore Area of $\triangle A B C=\frac{1}{2}[$ Base \times height $]$
$=\frac{1}{2}(B C \times A B)$
$=\frac{1}{2}(6 \times 4)$
$=3 \times 4$
$=12$ sq.units
\therefore Area of $\triangle A B C=12$ sq. units
19. The path of a train A is given by the equation $3 x+4 y-12=0$ and the path of another train B is given by the equation $6 x+8 y-48=0$. Represent this situation graphically.
Sol:
We have,

$$
\begin{array}{ll}
& 3 x+4 y-12=0 \\
\Rightarrow \quad & 3 x=12-4 y \\
\Rightarrow \quad & 3 x=\frac{12-4 y}{3}
\end{array}
$$

Putting $y=0$, we get $x=\frac{12-4 \times 0}{3}=4$
Putting $y=3$, we get $x=\frac{12-4 \times 3}{3}=0$
Thus, we have the following table for the points on the line $3 x+4 y-12=0$:

x	4	0
y	0	3

We have
$6 x+8 y-48=0$
$6 x+8 y=48$
$6 x=48-8 y$
$x=48-\frac{8 y}{6}$
Putting $y=6$, we get $x=\frac{48-8 \times 6}{6}=0$
Putting $y=4$, we get $x=\frac{48-8 \times 3}{6}=4$
Thus, we have the following table for the points on the line $6 x+8 y-48=0$

x	0	4
y	6	3

20. Ravish tells his daughter Aarushi, "Seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be". If present ages of Aarushi and Ravish are x and y years respectively, represent this situation algebraically as well as graphically.

Sol:

It is given that seven year ago Harish was seven times a sold as his daughter
$\therefore 7(x-y)=y-7$
$\Rightarrow 7 x-49=y-7$
$\Rightarrow 7 x-42=y$
It is also given that after three years from now Ravish shall be three times a sold as her daughter

$$
\begin{equation*}
\therefore 3(x+3)=y+3 \Rightarrow 3 x+9=y+3 \Rightarrow 3 x+6=y \tag{ii}
\end{equation*}
$$

Now, $y=7 x-42 \quad$ [using (i)]
Putting $x=6$, we get $y=7 \times 6-42=0$
Putting $x=5$, we get $y=7 \times 5-42=-7$

Thus, we have following table for the points on the
Line $7 x-42=y$:

x	6	5
y	0	-7

We have,

$$
y=3 x+6 \quad[\text { using (ii) }]
$$

Putting $x=-2$, we get $y=3 \times(-2)+6=0$
Putting $x=-1$, we get $y=3 \times(-1)+6=3$
Thus, we have following table for the points on the Line $y=3 x+6$:

x	-1	-2
y	3	0

21. Aarushi was driving a car with uniform speed of $60 \mathrm{~km} / \mathrm{h}$. Draw distance-time graph. From the graph, find the distance travelled by Aarushi in
(i) $2 \frac{1}{2}$ Hours
(ii) $\frac{1}{2}$ Hour

Sol:

Let x be the time and y be the distance travelled by Aarushi
It is given that speed of car is $60 \mathrm{~km} / \mathrm{h}$
We know that speed $=\frac{\text { distance }}{\text { speed }}$
$\Rightarrow 60=\frac{y}{x}$
$\Rightarrow y=60 x$
Putting $x=1$, we get $y=60$
Putting $x=2$, we get $y=120$
Thus, we have the following table for the points on the line $y=60 x$

x	1	2
y	60	120

Exercise - 13.4

1. Give the geometric representations of the following equations
(a) on the number line
(b) on the Cartesian plane:
(i) $\mathrm{x}=2$
(ii) $y+3=0$
(iii) $\mathrm{y}=3$
(iv) $2 \mathrm{x}+9=0$ (v) $3 \mathrm{x}-5=0$

Sol:
(i)

$x=2$
Point A represents $x=2$ number line
On Cartesian plane, equation represents all points on y-axis for which $x=2$
(ii)

$y+3=0$
$y=-3$
Point A represents -3 on number line
On Cartesian plane equation represents all the points on x-axis for which $y=-3$.
(iii)

$y=3$.
Point A represents 3 on number line
On Cartesian plane, equation represents all points on x-axis for which $y=3$
(iv)

$2 x+9=0$
$2 x=-9$
$x=\frac{-9}{2}=-4 \cdot 5$
Point A represents $-4 \cdot 5$ on number line
On Cartesian plane, equation represents all points on y-axis for which $x=-4 \cdot 5$
(v)

$3 x-5=0$
$3 x=5$
$x=\frac{5}{3}=1 \cdot 6($ Approx $)$
Point A represents $1 \frac{1}{2}$ (or $) \frac{5}{3}$ on number line
On Cartesian plane, equation represents all points on y-axis for which $x=16$
2. Give the geometrical representation of $2 x+13=0$ as an equation in
(i) one variable (ii) two variables

Sol:

(i)

One variable representation of $2 x+13=0$
$2 x=-13$
$x=\frac{-13}{2}=-6 \frac{1}{2}$

Points A represents $\frac{-13}{2}$
(ii)

Two variable representation of $2 x+13=0$
$2 x+0 y+13=0$
$2 x+13=0$
$2 x=-13$
$x=\frac{-13}{2}$
$x=-6 \cdot 5$
On Cartesian plane, equation represents all points y-axis for which $x=-6 \cdot 5$.
3. Solve the equation $3 x+2=x-8$, and represent the solution on (i) the number line (ii) the Cartesian plane.

Sol:

(i)

$3 x+2=x-8$
$\Rightarrow 3 x-x=8-2$
$\Rightarrow 2 x=-10$
$\Rightarrow x=-5$
Points A represents -5 on number line
(ii)

On Cartesian plane, equation represents all points on y-axis for which $x=5$
4. Write the equation of the line that is parallel to x-axis and passing through the point
(i) $(0,3)$
(ii) $(0,-4)$
(iii) $(2,-5)$
(iv) $(3,4)$

Sol:

(i) The equation of the line that is parallel to x-axis and passing through the point $(0,3)$ is $y=3$.
(ii) The equation of the line that is parallel to x-axis and passing through the point $(0,-4)$ is $y=4$.
(iii) The equation of the line that is parallel to x-axis and passing through the point $(2,-5)$ is $y=-5$
(iv) The equation of the line that is parallel to x-axis and passing through the point $(-4,-3)$ is $y=-3$
5. Write the equation of the line that is parallel to y-axis and passing through the point
(i) $(4,0)$
(ii) $(-2,0)$
(iii) $(3,5)$
(iv) $(-4,-3)$

Sol:

(i) The equation of the line that is parallel to y-axis and passing through $(4,0)$ will be $x=4$
(ii) The equation of the line that is parallel to y-axis and passing through $(-2,0)$ will be $x=-2$
(iii) The equation of the line that is parallel to y-axis and passing through $(3,5)$ will be $x=3$
(iv) The equation of the line that is parallel to y-axis and passing through $(-4,-3)$ will be $x=-4$.

