Exercise - 14.1

1. Three angles of a quadrilateral are respectively equal to $110^{\circ}, 50^{\circ}$ and 40°. Find its fourth angles.

Sol:

Given
Three angles are $110^{\circ}, 50^{\circ}$ and 40°
Let fourth angle be x
We have,
Sum of all angles of a quadrilaterals $=360^{\circ}$
$110^{\circ}+50^{\circ}+40^{\circ}+x^{\circ}=360^{\circ}$
$\Rightarrow x=360^{\circ}-200^{\circ}$
$\Rightarrow x=160^{\circ}$
Required fourth angle $=160^{\circ}$.
2. In a quadrilateral ABCD , the angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are in the ratio $1: 2: 4: 5$. Find the measure of each angles of the quadrilateral.

Sol:

Let the angles of the quadrilateral be
$A=x, B=2 x, C=4 x$ and $D=5 x$ then,
$A+B+C+D=360^{\circ}$
$\Rightarrow x+2 x+4 x+5 x=360^{\circ}$
$\Rightarrow 12 x=360^{\circ}$
$\Rightarrow x=\frac{360^{\circ}}{12}$
$\Rightarrow x=30^{\circ}$
$\therefore A=x=30^{\circ}$
$B=2 x=60^{\circ}$
$C=4 x=30^{\circ}(4)=120^{\circ}$
$D=5 x=5\left(30^{\circ}\right)=150^{\circ}$
3. In a quadrilateral $\mathrm{ABCD}, \mathrm{CO}$ and DO are the bisectors of $\angle \mathrm{C}$ and $\angle \mathrm{D}$ respectively. Prove that $\angle \mathrm{COD}=\frac{1}{2}(\angle A+\angle B)$.

Sol:

In $\triangle D O C$
$\angle 1+\angle C O D+\angle 2=180^{\circ} \quad$ [Angle sum property of a triangle]
$\Rightarrow \angle C O D=180-\angle 1-\angle 2$
$\Rightarrow \angle C O D=180-\angle 1+\angle 2$
$\Rightarrow \angle C O D=180-\left[\frac{1}{2} \angle C+\frac{1}{2} \angle D\right]$
[$\because \mathrm{OC}$ and OD are bisectors of $\angle C$ and $\angle D$ represents]
$\left.\Rightarrow \angle C O D=180-\frac{1}{2}(\angle C+\angle D)\right]$
In quadrilateral $A B C D$
$\angle A+\angle B+\angle C+\angle D=360^{\circ}$
$\angle C+\angle D=360-\angle A+\angle B$
[Angle sum property of quadrilateral]
Substituting (ii) in (i)
$\Rightarrow \angle C O D=180-\frac{1}{2}(360-(\angle A+\angle B))$
$\Rightarrow \angle C O D=180-180+\frac{1}{2}(\angle A+\angle B)$
$\Rightarrow \angle C O D=\frac{1}{2}(\angle A+\angle B)$
4. The angles of a quadrilateral are in the ratio $3: 5: 9: 13$. Find all the angles of the quadrilateral.

Sol:
Let the common ratio between the angle is ' x ' so the angles will be $3 x, 5 x, 9 x$ and $13 x$ respectively
Since the sum of all interior angles of a quadrilateral is 360°
$\therefore 3 x+5 x+9 x+13 x=360^{\circ}$
$\Rightarrow 30 x=360^{\circ}$
$\Rightarrow x=12^{\circ}$
Hence, the angles are
$3 x=3 \times 12=36^{\circ}$
$5 x=5 \times 12=60^{\circ}$
$9 x=9 \times 12=108^{\circ}$
$13 x=13 \times 12=156^{\circ}$

Exercise - 14.2

1. Two opposite angles of a parallelogram are $(3 x-2)^{\circ}$ and $(50-x)^{\circ}$. Find the measure of each angle of the parallelogram.

Sol:

We know that
Opposite sides of a parallelogram are equal
$\therefore 3 x-2=50-x$
$\Rightarrow 3 x+x=50+2$
$\Rightarrow 4 x=52$
$\Rightarrow x=13^{\circ}$
$\therefore(3 x-2)^{\circ}=(3 \times 13-2)=37^{\circ}$
$(50-x)^{\circ}=\left(50-13^{\circ}\right)=37^{\circ}$
Adjacent angles of a parallelogram are supplementary
$\therefore x+37=180^{\circ}$
$\therefore x=180^{\circ}-37^{\circ}=143^{\circ}$
Hence, four angles are : $37^{\circ}, 143^{\circ}, 37^{\circ}, 143^{\circ}$
2. If an angle of a parallelogram is two-third of its adjacent angle, find the angles of the parallelogram.

Sol:

Let the measure of the angle be x
\therefore The measure of the angle adjacent is $\frac{2 x}{3}$
We know that the adjacent angle of a parallelogram is supplementary
Hence $x+\frac{2 x}{3}=180^{\circ}$

$$
2 x+3 x=540^{\circ}
$$

$\Rightarrow 5 x=540^{\circ}$
$\Rightarrow x=108^{\circ}$
Adjacent angles are supplementary
$\Rightarrow x+108^{\circ}=180^{\circ}$
$\Rightarrow x=180^{\circ}-108^{\circ}=72^{\circ}$
$\Rightarrow x=72^{\circ}$
Hence, four angles are : $180^{\circ}, 72^{\circ}, 108^{\circ}, 72^{\circ}$
3. Find the measure of all the angles of a parallelogram, if one angle is 24° less than twice the smallest angle.
Sol:
Let the smallest angle be x
Then, the other angle is $(3 x-24)$
Now, $x+2 x-24=180^{\circ}$
$3 x-24=180^{\circ}$
$\Rightarrow 3 x=180+24$
$\Rightarrow 3 x=204^{\circ}$
$\Rightarrow x=\frac{204}{3}=68^{\circ}$
$\Rightarrow x=68^{\circ}$
$\Rightarrow 2 x-24^{\circ}=2 \times 68^{\circ}-24^{\circ}=136^{\circ}-24^{\circ}=112^{\circ}$
Hence four angles are $68^{\circ}, 112^{\circ}, 68^{\circ}, 112^{\circ}$.
4. The perimeter of a parallelogram is 22 cm . If the longer side measures 6.5 cm what is the measure of the shorter side?
Sol:
Let the shorter side be x
\therefore Perimeter $=x+6.5+6 \cdot 5+x \quad$ [sum of all sides]
$22=2(x+6 \cdot 5)$
$11=x+6 \cdot 5$
$\Rightarrow x=11-6 \cdot 5=4 \cdot 5 \mathrm{~cm}$
\therefore Shorter side $=4 \cdot 5 \mathrm{~cm}$
5. In a parallelogram $\mathrm{ABCD}, \angle \mathrm{D}=135^{\circ}$, determine the measures of $\angle \mathrm{A}$ and $\angle \mathrm{B}$.

Sol:
In a parallelogram $A B C D$
Adjacent angles are supplementary
So, $\angle D+\angle C=180^{\circ}$
$135^{\circ}+\angle C=180^{\circ} \Rightarrow \angle C=180^{\circ}-135^{\circ}$
$\angle C=45^{\circ}$
In a parallelogram opposite sides are equal
$\angle A=\angle C=45^{\circ}$
$\angle B=\angle D=135^{\circ}$
6. ABCD is a parallelogram in which $\angle \mathrm{A}=70^{\circ}$. Compute $\angle \mathrm{B}, \angle \mathrm{C}$ and $\angle \mathrm{D}$.

Sol:

In a parallelogram ABCD .
$\angle A=70^{\circ}$
$\angle A=\angle B=180^{\circ}$

$$
[\because \text { Adjacent angles supplementary }]
$$

$70^{\circ}+\angle B=180^{\circ}$

$$
\left[\because \angle A=70^{\circ}\right]
$$

$\angle B=180^{\circ}-70^{\circ}$
$=110^{\circ}$
In a parallelogram opposite sides are equal
$\angle A=\angle C=70^{\circ}$
$\angle B=\angle D=110^{\circ}$
7. In Fig., below, $A B C D$ is a parallelogram in which $\angle A=60^{\circ}$. If the bisectors of $\angle A$ and $\angle B$ meet at P , prove that $\mathrm{AD}=\mathrm{DP}, \mathrm{PC}=\mathrm{BC}$ and $\mathrm{DC}=2 \mathrm{AD}$.

Sol:

AP bisects $\angle A$
Then, $\angle A P=\angle P A B=30^{\circ}$
Adjacent angles are supplementary
Then, $\angle A+\angle B=180^{\circ}$
$\angle B+60^{\circ}=180^{\circ} \quad \angle A=60^{\circ}$
$\angle B=180^{\circ}-60^{\circ}$
$\angle B=120^{\circ}$
BP bisects $\angle B$
Then, $\angle P B A \quad \angle P B C=30^{\circ}$
$\angle P A B=\angle A P D=30^{\circ} \quad$ [Alternative interior angles]
$\therefore A D=D P \quad[\because$ Sides opposite to equal angles are in equal length $]$

Similarly
$\angle P B A=\angle B P C=60^{\circ} \quad$ [Alternative interior angle]
$\therefore P C=B C$
$D C=D P+P C$
$D C=A D+B C \quad[\because D P=A D, P C=B C]$
$D C=2 A D$
$[\because A D=B C$ Opposite sides of a parallelogram are equal $]$.
8. In Fig. below, ABCD is a parallelogram in which $\angle \mathrm{DAB}=75^{\circ}$ and $\angle \mathrm{DBC}=60^{\circ}$. Compute $\angle \mathrm{CDB}$ and $\angle \mathrm{ADB}$.

Sol:

To find $\angle C D B$ and $\angle A D B$
$\angle C B D=\angle A B D=60^{\circ} \quad$ [Alternative interior angle $A D \| B C$ and $B D$ is the transversal]
In a parallelogram $A B C D$
$\angle A=\angle C=75^{\circ} \quad[\because$ Opposite side angles of a parallelogram are equal $]$
In $\angle B D C$
$\angle C B D+\angle C+\angle C D B=180^{\circ}$
[Angle sum property]
$\Rightarrow 60^{\circ}+75^{\circ}+\angle C D B=180^{\circ}$
$\Rightarrow \angle C D B=180^{\circ}-\left(60^{\circ}+75^{\circ}\right)$
$\Rightarrow \angle C D B=45^{\circ}$
Hence $\angle C D B=45^{\circ}, \angle A D B=60^{\circ}$
9. In below fig. $A B C D$ is a parallelogram and E is the mid-point of side $B C$. If $D E$ and $A B$ when produced meet at F , prove that $\mathrm{AF}=2 \mathrm{AB}$.

Sol:

In $\triangle B E F$ and $\triangle C E D$
$\angle B E F=\angle C E D$
$B E=C E$
[Verified opposite angle]
$[\because \mathrm{E}$ is the mid-point of BC$]$

$\angle E B F=\angle E C D \quad[\therefore$ Alternate interior angles are equal]
$\because \nabla B E F \cong \triangle C E D \quad$ [Angle side angle congruence]
$\because B F=C D \quad$ [Corresponding Parts of Congruent Triangles]
$A F=A B+A F$
$A F=A B+A B$
$A F=2 A B$
10. Which of the following statements are true (T) and which are false (F)?
(i) In a parallelogram, the diagonals are equal.
(ii) In a parallelogram, the diagonals bisect each other.
(iii) In a parallelogram, the diagonals intersect each other at right angles.
(iv) In any quadrilateral, if a pair of opposite sides is equal, it is a parallelogram.
(v) If all the angles of a quadrilateral are equal, it is a parallelogram.
(vi) If three sides of a quadrilateral are equal, it is a parallelogram.
(vii) If three angles of a quadrilateral are equal, it is a parallelogram.
(viii) If all the sides of a quadrilateral are equal it is a parallelogram.

Sol:

(i) False
(ii) True
(iii) False
(iv) False
(v) True
(vi) False
(vii) False
(viii) True

Exercise - 14.3

1. In a parallelogram ABCD , determine the sum of angles $\angle \mathrm{C}$ and $\angle \mathrm{D}$.

Sol:

$\angle C$ and $\angle D$ are consecutive interior angles on the same side of the transversal CD
$\therefore \angle C+\angle D=180^{\circ}$
2. In a parallelogram $A B C D$, if $\angle B=135^{\circ}$, determine the measures of its other angles.

Sol:
Given $\angle B=135^{\circ}$
$A B C D$ is a parallelogram
$\therefore \angle A=\angle C, \angle B=\angle D$ and $\angle A+\angle B=180^{\circ}$
$\angle A+\angle B=180^{\circ}$
$\angle A=45^{\circ}$
$\Rightarrow \angle A=\angle C=45^{\circ}$ and $\angle B=\angle C=135^{\circ}$
3. ABCD is a square. AC and BD intersect at O . State the measure of $\angle \mathrm{AOB}$.

Sol:

Since, diagonals of square bisect each other at right angle
$\therefore \angle A D B=90^{\circ}$
4. ABCD is a rectangle with $\angle \mathrm{ABD}=40^{\circ}$. Determine $\angle \mathrm{DBC}$.

Sol:

We have,
$\angle A B C=90^{\circ}$
$\Rightarrow \angle A B D+\angle D B C=90^{\circ}$
$\left[\because \angle A B D=40^{\circ}\right]$
$\Rightarrow 40^{\circ}+\angle D B C=90^{\circ}$
$\therefore \angle D B C=50^{\circ}$
5. The sides $A B$ and $C D$ of a parallelogram $A B C D$ are bisected at E and F. Prove that EBFD is a parallelogram.
Sol:

Since ABCD is a parallelogram
$\therefore A B \| D C$ and $A B=D C$
$\Rightarrow E B \| D F$ and $\frac{1}{2} A B=\frac{1}{2} D C$
$\Rightarrow E B \| D F$ and $E B=D F$
$E B F D$ is a parallelogram
6. P and Q are the points of trisection of the diagonal $B D$ of a parallelogram $A B C D$. Prove that $C Q$ is parallel to AP. Prove also that AC bisects PQ.
Sol:

We know that, diagonals of a parallelogram bisect each other
$\therefore O A=O C$ and $O B=O D$
Since P and Q are point of intersection of $B D$
$\therefore B P=P Q=Q D$
Now, $O B=O D$ and $B P=Q D$
$\Rightarrow O B-B P=O D-Q D$
$\Rightarrow O P=O Q$
Thus in quadrilateral APCQ, we have
$O A=O C$ and $O P=O Q$
\Rightarrow diagonals of quadrilateral APCQ bisect each other
$\therefore A P C Q$ is a parallelogram
Hence $A P \| C Q$
7. ABCD is a square $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are points on $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively, such that $\mathrm{AE}=\mathrm{BF}=\mathrm{CG}=\mathrm{DH}$. Prove that EFGH is a square.
Sol:

We have
$A E=B F=C G=D H=x$ (say)
$\therefore B E=C F=D G=A H=y$ (say)
In $\Delta^{\prime} s A E H$ and $B E F$, we have
$A E=B F$
$\angle A=\angle B$
And $A H=B E$
So, by SAS configuration criterion, we have
$\triangle A E H \cong \triangle B F E$
$\Rightarrow \angle 1=\angle 2$ and $\angle 3=\angle 4$
But $\angle 1+\angle 3=90^{\circ}$ and $\angle 2+\angle 4=90^{\circ}$
$\Rightarrow \angle 1+\angle 3+\angle 2+\angle 4=90^{\circ}+90^{\circ}$
$\Rightarrow \angle 1+\angle 4+\angle 1+\angle 4=180^{\circ}$
$\Rightarrow 2(\angle 1+\angle 4)=180^{\circ}$
$\Rightarrow \angle 1+\angle 4=90^{\circ}$
$H E F=90^{\circ}$
Similarly we have $\angle F=\angle G=\angle H=90^{\circ}$
Hence, $E F G H$ is a square
8. $A B C D$ is a rhombus, $E A B F$ is a straight line such that $E A=A B=B F$. Prove that $E D$ and FC when produced meet at right angles.
Sol:

We know that the diagonals of a rhombus are perpendicular bisector of each other
$\therefore O A=O C, O B=O D, \angle A O D=\angle C O D=90^{\circ}$
And $\angle A O B=\angle C O B=90^{\circ}$
In $\triangle B D E, A$ and O are mid points of $B E$ and $B D$ respectively
$O A \| D E$
$O C \| D G$
In $\triangle C F A, B$ and O are mid points of $A F$ and $A C$ respectively
$\therefore O B \| C F$
$O D \| G C$
Thus, in quadrilateral $D O C G$, we have
$O C \| D G$ and $O D \| G C$
$\Rightarrow D O C G$ is a parallelogram
$\angle D G C=\angle D O C$
$\angle D G C=90^{\circ}$
9. ABCD is a parallelogram, AD is produced to E so that $\mathrm{DE}=\mathrm{DC}$ and EC produced meets AB produced in F . Prove that $\mathrm{BF}=\mathrm{BC}$.

Sol:

Draw a parallelogram $A B C D$ with $A C$ and $B D$ intersecting at O
Produce AD to E such that $D E=D C$
Join $E C$ and produce it to meet AB produced at F .
In $\triangle D C E$,
$\therefore \angle D C E=\angle D E C \quad \ldots \ldots . . . C D \quad$ [In a triangle, equal sides have equal angles opposite]
$A B \| C D$
(Opposite sides of the parallelogram are parallel)
$\therefore A E \| C D \quad(A B$ Lies on $A F)$
$A F \| C D$ and $E F$ is the transversal.
$\therefore \angle D C E=\angle B F C \quad$.....(2) \quad [Pair of corresponding angles]
From (1) and (2), we get

$$
\angle D E C=\angle B F C
$$

In $\triangle A F E$,

$$
\begin{aligned}
& \angle A F E=\angle A E F \quad(\angle D E C=\angle B F C) \\
& \therefore A E=A F \quad(\text { In a triangle, equal angles have equal sides opposite to them) } \\
& \Rightarrow A D+D E=A B+B F \\
& \Rightarrow B C+A B=A B+B F \quad \\
& \Rightarrow B C=B F .
\end{aligned} \quad[\because A D=B C, D E=C D \text { and } C D=A B, A B=D E]
$$

Exercise - 14.4

1. In a $\triangle A B C, D, E$ and F are, respectively, the mid-points of $B C, C A$ and $A B$. If the lengths of side AB, BC and CA are $7 \mathrm{~cm}, 8 \mathrm{~cm}$ and 9 cm , respectively, find the perimeter of $\triangle \mathrm{DEF}$. Sol:

Given that
$A B=7 \mathrm{~cm}, B C=8 \mathrm{~cm}, A C=9 \mathrm{~cm}$.
In $\triangle A B C$
$\therefore F$ and E are the midpoint of AB and AC
$\therefore E F=\frac{1}{2} B C \quad$ [Mid-points theorem]
Similarly
$D F=\frac{1}{2} A C, D E=\frac{1}{2} A B$
Perimeter of $\triangle D E F=D E+E F+D F$
$=\frac{1}{2} A B+\frac{1}{2} B C \frac{1}{2} A C$
$=\frac{1}{2} \times 7+\frac{1}{2} \times 8+\frac{1}{2} \times 9$
$=3 \cdot 5+4+4 \cdot 5=12 \mathrm{~cm}$
\therefore Perimeter of $\triangle D E F=12 \mathrm{~cm}$
2. In a triangle $\angle \mathrm{ABC}, \angle \mathrm{A}=50^{\circ}, \angle \mathrm{B}=60^{\circ}$ and $\angle \mathrm{C}=70^{\circ}$. Find the measures of the angles of the triangle formed by joining the mid-points of the sides of this triangle.
Sol:

In $\triangle A B C$
D and E are midpoints of $A B$ and $B C$
By midpoint theorem
$\therefore D E \| A C, D E=\frac{1}{2} A C$.
F is the midpoint of AC
Then, $D E=\frac{1}{2} A C=C F$
In a quadrilateral DECF
$D E \| A C, D E=C F$
Hence $D E C F$ is a parallelogram
$\therefore \angle C=\angle D=70^{\circ} \quad$ [Opposite sides of parallelogram]
Similarly
$B E F D$ is a parallelogram, $\angle B=\angle F=60^{\circ}$
$A D E F$ is a parallelogram, $\angle A=\angle E=50^{\circ}$
\therefore Angles of $\triangle D E F$
$\angle D=70^{\circ}, \angle E=50^{\circ}, \angle F=60^{\circ}$
3. In a triangle, P, Q and R are the mid-points of sides BC, CA and AB respectively. If $\mathrm{AC}=$ $21 \mathrm{~cm}, \mathrm{BC}=29 \mathrm{~cm}$ and $\mathrm{AB}=30 \mathrm{~cm}$, find the perimeter of the quadrilateral ARPQ.
Sol:

In $\triangle A B C$
R and P are the midpoint of AB and BC
$\therefore R P \| A C, R P=\frac{1}{2} A C \quad$ [By midpoint theorem]
In a quadrilateral
[A pair of side is parallel and equal]
$R P \| A Q, R P=A Q$
$\therefore R P Q A$ is a parallelogram
$A R=\frac{1}{2} A B=\frac{1}{2} \times 30=15 \mathrm{~cm}$
$A R=Q P=15 \quad[\because$ Opposite sides are equal $]$
$\Rightarrow R P=\frac{1}{2} A C=\frac{1}{2} \times 21=10 \cdot 5 \mathrm{~cm} \quad[\because$ Opposite sides are equal $]$
Now,
Perimeter of $A R P Q=A R+Q P+R P+A Q$
$=15+15+10 \cdot 5+10 \cdot 5$
$=51 \mathrm{~cm}$
4. In a $\triangle A B C$ median $A D$ is produced to X such that $A D=D X$. Prove that $A B X C$ is a parallelogram.

Sol:

In a quadrilateral $A B X C$, we have
$A D=D X$
[Given]
$B D=D C$
[Given]

So, diagonals AX and BC bisect each other
$\therefore A B X C$ is a parallelogram
5. In a $\triangle A B C, E$ and F are the mid-points of $A C$ and $A B$ respectively. The altitude $A P$ to $B C$ intersects $F E$ at Q . Prove that $\mathrm{AQ}=\mathrm{QP}$.
Sol:

In $\triangle A B C$
E and F are midpoints of $A B$ and $A C$
$\therefore E F \| F E, \frac{1}{2} B C=F E \quad[\because$ By mid-point theorem]
In $\triangle A B P$
F is the midpoint of AB and $F Q \| B P \quad[\because E F \| B C]$
$\therefore Q$ is the midpoint of AP [By converse of midpoint theorem]
Hence, $A Q=Q P$
6. In a $\triangle \mathrm{ABC}, \mathrm{BM}$ and CN are perpendiculars from B and C respectively on any line passing through A. If L is the mid-point of $B C$, prove that $M L=N L$.
Sol:

In B
Given that
In $\triangle B L M$ and $\triangle C L N$
$\angle B M L=\angle C N L=90^{\circ}$
$B L=C L$
$\angle M L B=\angle N L C$
$\therefore \triangle B L M=\triangle C L N$
$\therefore L M=L N$
[L is the midpoint of BC]
[vertically opposite angle]
($A \cdot L \cdot A \cdot S$)
[Corresponding plats parts of congruent triangles]
7. In Fig. below, triangle $A B C$ is right-angled at B. Given that $A B=9 \mathrm{~cm}, A C=15 \mathrm{~cm}$ and D, E are the mid-points of the sides AB and AC respectively, calculate
(i) The length of BC (ii) The area of $\triangle \mathrm{ADE}$.

Sol:

In right $\triangle A B C, \angle B=90^{\circ}$
By using Pythagoras theorem

$$
\begin{aligned}
& \\
& A C^{2}=A B^{2}+B C^{2} \\
\Rightarrow & 15^{2}=9^{2}+B C^{2} \\
\Rightarrow & B C=\sqrt{15^{2}-9^{2}} \\
\Rightarrow & B C=\sqrt{225-81} \\
\Rightarrow \quad & B C=\sqrt{144} \\
& =12 \mathrm{~cm}
\end{aligned}
$$

In $\triangle A B C$
D and E are midpoints of $A B$ and $A C$
$\therefore D E \| B C, D E=\frac{1}{2} B C \quad$ [By midpoint theorem]
$A D=O B=\frac{A B}{2}=\frac{9}{2}=4 \cdot 5 \mathrm{~cm} \quad[\because D$ is the midpoint of AB$]$
$D E=\frac{B C}{2}=\frac{12}{2}=6 \mathrm{~cm}$

Area of $\triangle A D E=\frac{1}{2} \times A D \times D E$
$=\frac{1}{2} \times 4 \cdot 5 \times 6=13 \cdot 5 \mathrm{~cm}^{2}$
8. In Fig. below, M, N and P are the mid-points of AB, AC and BC respectively. If $\mathrm{MN}=3 \mathrm{~cm}$, $\mathrm{NP}=3.5 \mathrm{~cm}$ and $\mathrm{MP}=2.5 \mathrm{~cm}$, calculate BC, AB and AC .

Sol:

Given $M N=3 \mathrm{~cm}, N P=3 \cdot 5 \mathrm{~cm}$ and $M P=2 \cdot 5 \mathrm{~cm}$
To find $B C, A B$ and $A C$
In $\triangle A B C$
M and N are midpoints of AB and AC
$\therefore M N=\frac{1}{2} B C, M N \| B C \quad$ [By midpoint theorem]
$\Rightarrow 3=\frac{1}{2} B C$
$\Rightarrow 3 \times 2=B C$
$\Rightarrow B C=6 \mathrm{~cm}$
Similarly
$A C=2 M P=2(2 \cdot 5)=5 \mathrm{~cm}$
$A B=2 N P=2(3 \cdot 5)=7 \mathrm{~cm}$
9. $A B C$ is a triangle and through A, B, C lines are drawn parallel to $B C, C A$ and $A B$ respectively intersecting at P, Q and R. Prove that the perimeter of $\triangle P Q R$ is double the perimeter of $\triangle \mathrm{ABC}$.

Sol:

Clearly ABCQ and ARBC are parallelograms.
$\therefore B C=A Q$ and $B C=A R$
$\Rightarrow A Q=A R$
$\Rightarrow A$ is the midpoint of $Q R$.
Similarly B and C are the midpoints of PR and PQ respectively
$\therefore A B=\frac{1}{2} P Q, B C=\frac{1}{2} Q R, C A=\frac{1}{2} P R$
$\Rightarrow P Q=2 A B, Q R=2 B C$ and $P R=2 C A$
$\Rightarrow P Q+Q R+R P=2(A B+B C+C A)$
\Rightarrow Perimeter of $\triangle P Q R=2 \quad[$ Perimeter of $\triangle A B C]$
10. In Fig. below, $B E \perp A C$. $A D$ is any line from A to $B C$ intersecting $B E$ in $H . P, Q$ and R are respectively the mid-points of AH, AB and BC . Prove that $\angle \mathrm{PQR}=90^{\circ}$.

Sol:

Given
$B E \perp A C$ and P, Q and R are respectively midpoint of $A H, A B$ and $B C$
To prove:
$\angle P Q R D=90^{\circ}$
Proof: In $\triangle A B C, Q$ and R are midpoints of AB and BC respectively
$\therefore Q R \| A C$
In $\triangle A B H, Q$ and P are the midpoints of AB and AH respectively
$\therefore Q P \| B H$
$\Rightarrow Q P \| B E$
But, $A C \perp B E \therefore$ from equation (i) and equation (ii) we have $Q P \perp Q R$
$\Rightarrow \angle P Q R=90^{\circ}$, hence proved.
11. In Fig. below, $\mathrm{AB}=\mathrm{AC}$ and $\mathrm{CP} \| \mathrm{BA}$ and AP is the bisector of exterior $\angle \mathrm{CAD}$ of $\triangle \mathrm{ABC}$. Prove that (i) $\angle \mathrm{PAC}=\angle \mathrm{BCA}$ (ii) ABCP is a parallelogram.

Sol:

Given
$A B=A C$ and $C D \| B A$ and $A P$ is the bisector of exterior
$\angle C A D$ of $\triangle A B C$
To prove:
(i) $\angle P A C=\angle B C A$
(ii) $A B C D$ is a parallelogram

Proof:
(i) We have,
$\mathrm{AB}=\mathrm{AC}$
$\Rightarrow \angle \mathrm{ACB}=\angle \mathrm{ABC} \quad$ [Opposite angles of equal sides of triangle are equal]
Now, $\angle C A D=\angle A B C+\angle A C B$
$\Rightarrow \angle P A C+\angle P A D=2 \angle A C B(\because \angle P A C=\angle P A D)$
$\Rightarrow 2 \angle P A C=2 \angle A C B$
$\Rightarrow \angle P A C=\angle A C B$
(ii) Now,
$\angle P A C=\angle B C A$
$\Rightarrow A P \| B C$
And, $C P \| B A$
[Given]
$\therefore A B C D$ is a parallelogram
12. $A B C D$ is a kite having $A B=A D$ and $B C=C D$. Prove that the figure formed by joining the mid-points of the sides, in order, is a rectangle.
Sol:

Given,
A kite $A B C D$ having $A B=A D$ and $B C=C D \cdot P, Q, R, S$ are the midpoint of sides $A B, B C, C D$ and $D A$ respectively $P Q, Q R, R S$ and spare joined
To prove:
$P Q R S$ is a rectangle

Proof:
In $\triangle A B C, P$ and Q are the midpoints of AB and BC respectively.
$\therefore P Q \| A C$ and $P Q=\frac{1}{2} A C$
In $\triangle A D C, R$ and S are the midpoint of CD and AD respectively.
$\therefore R S \| A C$ and $R S=\frac{1}{2} A C$
From (i) and (ii), we have
$P Q \| R S$ and $P Q=R S$
Thus, in quadrilateral PQRS, a pair of opposite sides are equal and parallel. So PQRS is a parallelogram. Now, we shall prove that one angle of parallelogram PQRS it is a right angle Since $A B=A D$
$\Rightarrow \frac{1}{2} A B=A D\left(\frac{1}{2}\right)$
$\Rightarrow A P=A S \quad \ldots$ (iii) $\quad[\because P$ and S are the midpoints of B and AD respectively $]$
$\Rightarrow \angle 1=\angle 2$
Now, in $\triangle P B Q$ and $\triangle S D R$, we have
$P B=S D \quad\left[\because A D=A B \Rightarrow \frac{1}{2} A D=\frac{1}{2} A B\right]$
$B Q=D R \quad \therefore P B=S D$
And $P Q=S R \quad[\because P Q R S$ is a parallelogram $]$
So by SSS criterion of congruence, we have
$\triangle P B Q \cong \triangle S O R$
$\Rightarrow \angle 3=\angle 4 \quad[C P C T]$
Now, $\angle 3+\angle S P Q+\angle 2=180^{\circ}$
And $\angle 1+\angle P S R+\angle 4=180^{\circ}$
$\therefore \angle 3+\angle S P Q+\angle 2=\angle 1+\angle P S R+\angle 4$
$\Rightarrow \angle S P Q=\angle P S R \quad(\angle 1=\angle 2$ and $\angle 3=\angle 4)$
Now, transversal $P S$ cuts parallel lines $S R$ and $P Q$ at S and P respectively.
$\therefore \angle S P Q+\angle P S R=180^{\circ}$
$\Rightarrow 2 \angle S P Q=180^{\circ}=\angle S P Q=90^{\circ} \quad[\because \angle P S R=\angle S P Q]$
Thus, PQRS is a parallelogram such that $\angle S P Q=90^{\circ}$
Hence, PQRS is a parallelogram.
13. Let ABC be an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$. If $\mathrm{D}, \mathrm{E}, \mathrm{F}$ be the mid-points of the sides BC, CA and A B respectively, show that the segment AD and EF bisect each other at right angles.

Sol:

Since D, E and F are the midpoints of sides
$B C, C A$ and $A B$ respectively
$\therefore A B \| D F$ and $A C \| F D$
$A B \| D F$ and $A C \| F D$
$A B D F$ is a parallelogram
$A F=D E$ and $A E=D F$
$\frac{1}{2} A B=D E$ and $\frac{1}{2} A C=D F$
$D E=D F \quad(\because A B=A C)$
$A E=A F=D E=D F$
$A B D F$ is a rhombus
$\Rightarrow A D$ and $F E$ bisect each other at right angle.
14. ABC is a triangle. D is a point on AB such that $\mathrm{AD}=\frac{1}{4} \mathrm{AB}$ and E is a point on AC such that $\mathrm{AE}=\frac{1}{4} \mathrm{AC}$. Prove that $\mathrm{DE}=\frac{1}{4} \mathrm{BC}$.

Sol:

Let P and Q be the midpoints of AB and AC respectively.
Then $P Q \| B C$ such that
$P Q=\frac{1}{2} B C$
In $\triangle A P Q, \mathrm{D}$ and E are the midpoint of $A P$ and $A Q$ are respectively
$\therefore D E \| P Q$ and $D E=\frac{1}{2} P Q$
From (1) and (2) $D E=\frac{1}{2} P Q=\frac{1}{2} P Q=\frac{1}{2}\left(\frac{1}{2} B C\right)$
$D E=\frac{1}{4} B C$
Hence proved.
15. In below Fig, $A B C D$ is a parallelogram in which P is the mid-point of $D C$ and Q is a point on $A C$ such that $C Q=\frac{1}{4} A C$. If $P Q$ produced meets $B C$ at R, prove that R is a mid-point of BC.

Sol:

Join B and D, suppose AC and BD out at O.
Then $O C=\frac{1}{2} A C$
Now,
$C Q=\frac{1}{4} A C$
$\Rightarrow C Q=\frac{1}{2}\left[\frac{1}{2} A C\right]$
$=\frac{1}{2} \times O C$
In $\triangle D C O, P$ and Q are midpoints of DC and OC respectively
$\therefore P Q \| P O$
Also in $\triangle C O B, Q$ is the midpoint of $O C$ and $Q R \| O B$
$\therefore R$ is the midpoint of $B C$
16. In the below Fig, ABCD and PQRC are rectangles and Q is the mid-point of AC . Prove that
(i) $\mathrm{DP}=\mathrm{PC}$
(ii) $\mathrm{PR}=\frac{1}{2} \mathrm{AC}$

Sol:

(i) In $\triangle A D C, Q$ is the midpoint of $A C$ such that $P Q \| A D$
$\therefore P$ is the midpoint of DC
$\Rightarrow D P=D C$
[Using converse of midpoint theorem]
(ii) Similarly, R is the midpoint of BC
$\therefore P R=\frac{1}{2} B D$
[Diagonal of rectangle are equal $\therefore B D=A C$]
$P R=\frac{1}{2} A C$
17. ABCD is a parallelogram, E and F are the mid-points of AB and CD respectively. GH is any line intersecting AD, EF and BC at G, P and H respectively. Prove that $\mathrm{GP}=\mathrm{PH}$.
Sol:

Since E and F are midpoints of AB and CD respectively
$\therefore A E=B E=\frac{1}{2} A B$
And $C F=D F=\frac{1}{2} C D$
But, $A B=C D$
$\therefore \frac{1}{2} A B=\frac{1}{2} C D$
$\Rightarrow B E=C F$
Also, $B E \| C F \quad[\because A B \| C D]$
$\therefore B E F C$ is a parallelogram
$\Rightarrow B C \| E F$ and $B F=P H$
Now, $B C \| E F$
$\Rightarrow A D \| E F \quad[\because B C \| A D$ as $A B C D$ is a parallel $]$
$\Rightarrow A E F D$ is parallelogram
$\Rightarrow A E=G P$
But is the midpoint of $A B$
$\therefore A E=B E$
$\Rightarrow G P=P H$
18. BM and CN are perpendiculars to a line passing through the vertex A of a triangle ABC . If L is the mid-point of BC , prove that $\mathrm{LM}=\mathrm{LN}$.
Sol:
To prove $L M=L N$
Draw LS perpendicular to line MN

\therefore The lines BM, LS and CN being the same perpendiculars, on line MN are parallel to each other.
According to intercept theorem,
If there are three or more parallel lines and the intercepts made by them on a transversal or equal. Then the corresponding intercepts on any other transversal are also equal.
In the drawn figure, MB and LS and NC are three parallel lines and the two transversal line are MN and BC
We have, $B L=L C$ (As L is the given midpoint of BC)
\therefore using intercept theorem, we get
$M S=S N$
Now in $\triangle M L S$ and $L S N$
$M S=S N$ using
$\angle L S M=\angle L S N=90^{\circ} L S \perp M N$ and $S L=L S$ common
$\therefore \triangle M L S \cong \triangle L S N$ (SAS congruency theorem)
$\therefore L M=L N \quad(C P C T)$
19. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.
Sol:

Let ABCD is a quadrilateral in which P, Q, R and S are midpoints of sides $A B, B C, C D$ and $D A$ respectively join $P Q, Q R, R S, S P$ and $B D$
In $\triangle A B D, \mathrm{~S}$ and P are the midpoints of AD and AB respectively.
So, by using midpoint theorem we can say that
$S P \| B D$ and $S P=\frac{1}{2} B D$
Similarly in $\triangle B C D$
$Q R \| B D$ and $Q R=\frac{1}{2} B D$
From equation (1) and (2) we have
$S P \| Q R$ and $S P=Q R$
As in quadrilateral $S P Q R$ one pair of opposite side are equal and parallel to each other.
So, SPQR is parallelogram
Since, diagonals of a parallelogram bisect each other.
Hence PR and QS bisect each other.
20. Fill in the blanks to make the following statements correct:
(i) The triangle formed by joining the mid-points of the sides of an isosceles triangle is \qquad
(ii) The triangle formed by joining the mid-points of the sides of a right triangle is \qquad
(iii) The figure formed by joining the mid-points of consecutive sides of a quadrilateral is \qquad
Sol:
(i) Isosceles
(ii) Right triangle
(iii) Parallelogram

