Exercise - 16.1

1. Fill in the blanks:
(i) All points lying inside/outside a circle are called points/ points.
(ii) Circles having the same centre and different radii are called . circles.
(iii) A point whose distance from the centre of a circle is greater than its radius lies in of the circle.
(iv) A continuous piece of a circle is of the circle.
(v) The longest chord of a circle is a \ldots. of the circle.
(vi) An arc is a when its ends are the ends of a diameter.
(vii) Segment of a circle is the region between an arc and of the circle.
(viii) A circle divides the plane, on which it lies, in . .. parts.

Sol:
(i) Interior/exterior
(ii) Concentric
(iii) The exterior
(iv) Arc
(v) Diameter
(vi) Semi-circle
(vii) Centre
(viii) Three
2. Write the truth value (T / F) of the following with suitable reasons:
(i) A circle is a plane figure.
(ii) Line segment joining the centre to any point on the circle is a radius of the circle,
(iii) If a circle is divided into three equal arcs each is a major arc.
(iv) A circle has only finite number of equal chords.
(v) A chord of a circle, which is twice as long is its radius is a diameter of the circle.
(vi) Sector is the region between the chord and its corresponding arc.
(vii)The degree measure of an arc is the complement of the central angle containing the arc. (viii) The degree measure of a semi-circle is 180°.

Sol:

(i) True
(ii) True
(iii) True
(iv) False
(v) True
(vi) True
(vii) False
(viii) True

Exercise - 16.2

1. The radius of a circle is 8 cm and the length of one of its chords is 12 cm . Find the distance of the chord from the centre.
Sol:
Given that
Radius of $\operatorname{circles}(O A)=8 \mathrm{~cm}$
$\operatorname{Chord}(A B)=12 \mathrm{~cm}$
Draw $O C \perp A B$.
WKT,
The perpendicular from center to chord bisects the chord
$\therefore A C=B C=\frac{12}{2}=6 \mathrm{~cm}$
Now in $\triangle O C A$, by Pythagoras theorem

$$
\begin{aligned}
& A C^{2}+O C^{2}=O A^{2} \\
& \Rightarrow 6^{2}+O C^{2}=8^{2} \\
& \Rightarrow 36+O C^{2}=64 \\
& \Rightarrow O C^{2}=64-36 \\
& \Rightarrow O C^{2}=28 \\
& \Rightarrow O C=\sqrt{28} \\
& \Rightarrow O C=5 \cdot 291 \mathrm{~cm}
\end{aligned}
$$

2. Find the length of a chord which is at a distance of 5 cm from the centre of a circle ofradius 10 cm .
Sol:

Given that
Distance $(O C)=5 \mathrm{~cm}$
Radius of circle $(O A)=10 \mathrm{~cm}$
In $\triangle O C A$ by Pythagoras theorem
$A C^{2}+O C^{2}=O A^{2}$
$\Rightarrow A C^{2}+5^{2}=10^{2}$
$\Rightarrow A C^{2}=100-25$
$\Rightarrow A C=\sqrt{75}=8.66 \mathrm{~cm}$
WRK, the perpendicular from center to chord bisects the chord
$\therefore A C=B C=8.66 \mathrm{~cm}$
Then chord $A B=8 \cdot 66+8 \cdot 66$
$=17 \cdot 32 \mathrm{~cm}$
3. Find the length of a chord which is at a distance of 4 cm from the centre of the circle of radius 6 cm .
Sol:

Radius of circle $(O A)=6 \mathrm{~cm}$
Distant $(O C)=4 \mathrm{~cm}$
In $\triangle O C A$ by Pythagoras theorem

$$
A C^{2}+O C^{2}=O A^{2}
$$

$\Rightarrow A C^{2}+4^{2}=6^{2}$
$\Rightarrow A C^{2}=36-16$
$\Rightarrow A C=\sqrt{20}=4.47 \mathrm{~cm}$.
WKT, the perpendicular distance from center to chord bisects the chord.
$A C=B C=4.47 \mathrm{~cm}$
Then, $A B=4.47+4.47$
$=8.94 \mathrm{~cm}$.
4. Two chords AB, CD of lengths $5 \mathrm{~cm}, 11 \mathrm{~cm}$ respectively of a circle are parallel. If the distance between AB and CD is 3 cm , find the radius of the circle.
Sol:

Construction: Draw $O P \perp C D$
Chord $A B=5 \mathrm{~cm}$
Chord $C D=11 \mathrm{~cm}$
Distance $P Q=3 \mathrm{~cm}$
Let $O P=x \mathrm{~cm}$
And $O C=O A=r c m$
WKT perpendicular from center to chord bisects it
$\therefore C P=P D=\frac{11}{2} \mathrm{~cm}$
And $A Q=B Q=\frac{5}{2} c m$
In $\triangle O C P$, by Pythagoras theorem
$O C^{2}=O P^{2}+C P^{2}$
$\Rightarrow r^{2}=x^{2}+\left(\frac{11}{2}\right)^{2}$
In $\triangle O Q A$, by Pythagoras theorem

$$
\begin{equation*}
O A^{2}=O Q^{2}+A Q^{2} \tag{2}
\end{equation*}
$$

$\Rightarrow r^{2}=(x+3)^{2}+\left(\frac{5}{2}\right)^{2}$
Compare equation (1) and (2)
$(x+3)^{2}+\left(\frac{5}{2}\right)^{2}=x^{2}+\left(\frac{11}{2}\right)^{2}$
$\Rightarrow x^{2}+9+6 x+\frac{25}{4}=x^{2}+\left(\frac{121}{4}\right)$
$\Rightarrow x^{2}+6 x-x^{2}=\frac{121}{4}-\frac{25}{4}-9$
$\Rightarrow 6 x=15$
$\Rightarrow x=\frac{15}{6}=\frac{5}{2}$
5. Give a method to find the centre of a given circle.

Sol:

Steps of construction
(1) Take three point A, B and C on the given circle
(2) Join AB and BC
(3) Draw thee perpendicular bisectors of chord AB and BC which intersect each other at O
(4) Point will be required circle because WKT, perpendicular bisector of chord always passes through center

6. Prove that the line joining the mid-point of a chord to the centre of the circle passes through the mid-point of the corresponding minor arc.
Sol:

Given: C is the midpoint of chord AB
To prove: D is the midpoint of arc AB
Proof:
In $\triangle O A C$ and $\triangle O B C$
$O A=O B$
[Radius of circle]
$O C=O C$
[Common]
$A C=B C$
Then, $\triangle O A C \cong \triangle O B C$
[C is the midpoint of AB]
$\therefore \angle A O C=\angle B O C$
[By SSS condition]
$\Rightarrow m(\overline{A D})=m(\overline{B D})$
$\Rightarrow \overline{A D} \cong \overline{B D}$

Here, D is the midpoint of arc AB
7. Prove that a diameter of a circle which bisects a chord of the circle also bisects the angle subtended by the chord at the centre of the circle.
Sol:

Given: PQ is a diameter of circle which Bisects
Chord AB at C
To prove: PQ bisects $\angle A O B$
Proof:
In $\triangle A O C$ and $\triangle B O C$
$O A=O B$
[Radius of circle]
$O C=O C$
[Common]
$A C=B C$
[Given]
Then $\triangle A O C \cong B O C$
[by SSS condition]
$\therefore \angle A O C=\angle B O C$
[$c \cdot p \cdot c \cdot t$]

Hence PQ bisects $\angle A O B$
8. Given an arc of a circle, show how to complete the circle.

Sol:

Steps of construction:
(i) Take three point A, B and C on the given Arc
(ii) Join AB and BC
(iii) Draw the perpendicular bisectors of chords AB and BC which interest each other at point O , then O will required center of the required circle
(iv) Join OA
(v) With center O and radius OA , complete the circle
9. Prove that two different circles cannot intersect each other at more than two points.

Sol:

Suppose two circles intersect in three points A,B,C,
Then $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are non-collinear. So, a unique circle passes through these three points. This is contradiction to the face that two given circles are passing through A,B,C. Hence, two circles cannot intersect each other at more than two points.
10. A line segment $A B$ is of length 5 cm . Draw a circle of radius 4 cm passing through A and B. Can you draw a circle of radius 2 cm passing through A and B? Give reason in support of your answer.

Sol:

(i) Draw a line segment AB of 5 cm
(ii) Draw the perpendicular bisectors of AB
(iii) Draw an arc which intersects the perpendicular bisectors at point O will be required center.
(iv) With center O and radius OA draw a circle. No, we cannot draw a circle of radius 2 cm passing through A and B because when we draw an arc of radius 2 cm with center A, the arc will not interest the perpendicular bisector and we will not find the center
11. An equilateral triangle of side 9 cm is inscribed in a circle. Find the radius of the circle.

Sol:

Let ABC be an equilateral triangle of side 9 cm and let AD one of its medians. Let G be the centroid of $\triangle A B C$. Then $A G: G D=2: 1$
WKT in an equilateral $\Delta^{l e}$ centroid coincides with the circum center
Therefore, G is the center of the circumference with circum radius $G A$
Also G is the center and $G D \perp B C$. Therefore,
In right triangle ADB , we have
$A B^{2}=A D^{2}+D B^{2}$
$\Rightarrow 9^{2}=A B^{2}+D B^{2}$
$\Rightarrow A D=\sqrt{81-\frac{81}{4}}=\frac{9 \sqrt{3}}{2} \mathrm{~cm}$
\therefore Radius $=A G=\frac{2}{3} A D=3 \sqrt{3} \mathrm{~cm}$.
12. Given an arc of a circle, complete the circle.

Sol:

Steps of construction:
(i) Take three point $\mathrm{A}, \mathrm{B}, \mathrm{C}$ on the given Arc
(ii) Join AB and BC
(iii) Draw the perpendicular bisectors of chords AB and BC which interest each other at point O , then O will required center of the required circle
(iv) Join OA
(v) With center O and radius OA , complete the circle
13. Draw different pairs of circles. How many points does each pair have in common? What is the maximum number of common points?
Sol:

Each pair of circles have 0,1 or 2 points in common
The maximum number of points in common is ' 2 '
14. Suppose you are given a circle. Give a construction to find its centre.

Sol:

Steps of constructions:
(1) Take three point A, B and C the given circle
(2) Join AB and BC
(3) Draw the perpendicular bisectors of chord AB and BC which intersect each other at O .
(4) Point O will be the required center of the circle because we know that the perpendicular bisector of the cord always passes through the center
15. Two chords $A B$ and $C D$ of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are opposite side of its center. If the distance between $A B$ and $C D$ is 6 cm . Find the radius of the circle.

Sol:

Draw $O M \perp A B$ and $O N \perp C D$. Join OB and OD

$B M=\frac{A B}{2}=\frac{5}{2}$
(Perpendicular from center bisects the chord)
$N D=\frac{C D}{2}=\frac{11}{2}$
Let ON be x , So OM will be $6-x$ in $\triangle M O B$
$O M^{2}+M B^{2}=O B^{2}$
$(6-x)^{2}+\left(\frac{5}{2}\right)^{2}=O B^{2}$
$36+x^{2}-12 x+\frac{25}{4}=O B^{2}$
In $\triangle N O D$
$O N^{2}+N D^{2}=O D^{2}$
$x^{2}+\left(\frac{11}{2}\right)^{2}=O D^{2}$
$x^{2}+\frac{121}{4}=O D^{2}$
We have $O B=O D$. (radii of same circle)
So, from equation (1) and (2).
$36+x^{2}-12 x+\frac{25}{4}=x^{2}+\frac{121}{4}$
$\Rightarrow 12 x=36+\frac{25}{4}-\frac{121}{4}$
$=\frac{144+25-121}{4}=\frac{48}{4}=12$
$x=1$.
From equation (2)
$(1)^{2}+\left(\frac{121}{4}\right)=O D^{2}$
$O D^{2}=1+\frac{121}{4}=\frac{121}{4}$
$O D=\frac{5 \sqrt{5}}{2}$
So, radius of circle is found to be $\frac{5 \sqrt{5}}{2} \mathrm{~cm}$
16. The lengths of two parallel chords of a circle are 6 cm and 8 cm . if the smaller chord is at a distance of 4 cm from the centre, what is the distance of the other chord from the centre?
Sol:

Distance of smaller chord AB from center of circle $=4 \mathrm{~cm} \mathrm{OM}=4 \mathrm{~cm}$
$M B=\frac{A B}{2}=\frac{6}{2}=3 \mathrm{~cm}$
In $\triangle O M B$
$O M^{2}+M B^{2}=O B^{2}$
$(4)^{2}+3^{2}=O B^{2}$
$16+9=O B^{2}$
$O B=\sqrt{25}$
$O B=5 \mathrm{~cm}$
In $\triangle O N D$
$O D=O B=5 \mathrm{~cm} \quad$ [radii of same circle]
$N D=\frac{C D}{2}=\frac{8}{2}=4 \mathrm{~cm}$
$O N^{2}+N D^{2}=O D^{2}$
$O N^{2}+(4)^{2}=(5)^{2}$
$O N^{2}=25-16=9$
$O N=3$
So, distance of bigger chord from circle is 3 cm .

Exercise - 16.3

1. Three girls Ishita, Isha and Nisha are playing a game by standing on a circle of radius 20 m drawn in a park. Ishita throws a ball o Isha, Isha to Nisha and Nisha to Ishita. If the distance between Ishita and Isha and between Isha and Nisha is 24 m each, what is the distance between Ishita and Nisha.

Sol:

Let R, S and M be the position of Ishita, Isha and Nasha respectively

$A R=A S=\frac{24}{2}=12 \mathrm{~cm}$
$O R=O S=O M=20 \mathrm{~m} \quad$ (radii of circle)
In OAR
$O A^{2}+A R^{2}=O R^{2}$
$O A^{2}+(112 m)^{2}=(20 m)^{2}$
$O D^{2}=(400-144) m^{2}=256 m^{2}$
$O A=16 m$
WKT, in an isosceles triangle altitude divides the base, So in $\triangle R S M \angle R C S$ will be 90° and $R C=C M$.
Area of $\triangle O R S=\frac{1}{2} \times O A \times R S$
$\Rightarrow \frac{1}{2} \times R C \times O S=\frac{1}{2} \times 16 \times 24$
$\Rightarrow R C \times 20=16 \times 24 \Rightarrow R C=192 \Rightarrow R M=2(192)=38 \cdot 4 m$
So, distance between ishita and Nisha is $384 m$.
2. A circular park of radius 40 m is situated in a colony. Three boys Ankur, Amit and Anand are sitting at equal distance on its boundary each having a toy telephone in his hands to talk to each other. Find the length of the string of each phone.
Sol:

Given hat $A B=B C=C A$
So, ABC is an equilateral triangle
$O A$ (radius) $=40 \mathrm{~m}$.
Medians of equilaterals triangles pass through the circum center (0) of the equilaterals triangles $A B C$
We also know that median intersect each other at the $2: 1 \mathrm{As} \mathrm{AD}$ is the median of equilaterals triangle ABC , we can write:
$\frac{O A}{O D}=\frac{2}{7}$
$\Rightarrow \frac{40 \mathrm{~m}}{O D}=\frac{2}{7}$
$\Rightarrow O D=20 \mathrm{~m}$.
$\therefore A D=O A+O D=(40+20) m$
$=60 \mathrm{~m}$
In $\triangle A D C$
By using Pythagoras theorem
$A C^{2}=A D^{2}+D C^{2}$
$A C^{2}=A D^{2}+D C^{2}$
$A C^{2}=(60)^{2}+\left(\frac{A C}{2}\right)^{2}$
$A C^{2}=3600+\frac{A C^{2}}{4}$
$\Rightarrow \frac{3}{4} A C^{2}=3600$
$\Rightarrow A C^{2}=4800$
$\Rightarrow A C=40 \sqrt{3} \mathrm{~m}$
So, length of string of each phone will be $40 \sqrt{3} m$

Exercise - 16.4

1. In the below fig. O is the centre of the circle. If $\angle \mathrm{APB}=50^{\circ}$, find $\angle \mathrm{AOB}$ and $\angle \mathrm{OAB}$.

Sol:

$\angle A P B=50^{\circ}$
By degree measure theorem
$\angle A O B=2 \angle A P B$
$\Rightarrow \angle A P B=2 \times 50^{\circ}=100^{\circ}$
Since $O A=O B$
[Radius of circle]
Then $\angle O A B=\angle O B A$
[Angle's opposite to equal sides]
Let $\angle O A B=x$
In $\triangle O A B \cdot$ by angle sum property
$\angle O A B+\angle O B A+\angle A O B=180^{\circ}$
$\Rightarrow x+x+100=180^{\circ}$
$\Rightarrow 2 x+100=180^{\circ}$
$\Rightarrow 2 x=80^{\circ}$
$\Rightarrow x=40^{\circ}$
$\angle O A B=\angle O B A=40^{\circ}$
2. In the fig below, it is given that O is the centre of the circle and $\angle A O C=150^{\circ}$. Find $\angle \mathrm{ABC}$.

Sol:

We have $\angle A O C=150^{\circ}$
$\therefore \angle A O C+$ reflex $\angle A O C=360^{\circ} \quad$ [complex angle]
$\Rightarrow 150^{\circ}+$ reflex $\angle A O C=360^{\circ}$
\Rightarrow reflex $\angle A O C=360^{\circ}-150^{\circ}$
\Rightarrow reflex $\angle A O C=210^{\circ}$
$\Rightarrow 2 \angle A B C=210^{\circ} \quad$ [By degree measure theorem]
$\Rightarrow \angle A B C=\frac{210}{2}=105^{\circ}$
3. In the below fig. O is the centre of the circle. Find $\angle B A C$.

Sol:

We have $\angle A O B=80^{\circ}$
And $\angle A O C=110^{\circ}$
$\therefore \angle A O B+\angle A O C+\angle B O C=360^{\circ} \quad$ [Complete angle]
$\Rightarrow 80^{\circ}+110^{\circ}+\angle B O C=360^{\circ}$
$\Rightarrow \angle B O C=360^{\circ}-80^{\circ}-110^{\circ}$
$\Rightarrow \angle B O C=170^{\circ}$
By degree measure theorem
$\angle B O C=2 \angle B A C$
$\Rightarrow 170^{\circ}=2 \angle B A C$
$\Rightarrow \angle B A C=\frac{170^{\circ}}{2}=85^{\circ}$
4. If O is the centre of the circle, find the value of x in each of the following figures:

(vi)

(viii)

(x)

(xi)

(xii)

Sol:
(i)
$\angle A O C=135^{\circ}$
$\therefore \angle A O C+\angle B O C=180^{\circ}$
$\Rightarrow 135^{\circ}+\angle B O C=180^{\circ}$
$\Rightarrow \angle B O C=180^{\circ}-135^{\circ}=45^{\circ}$
By degree measures theorem
$\angle B O C=2 \angle C D B$
$\Rightarrow 45^{\circ}=2 x$
$\Rightarrow x=\frac{45^{\circ}}{2}=22 \frac{1^{\circ}}{2}$.
(ii) We have

$$
\begin{aligned}
& \angle A B C=40^{\circ} \\
& \angle A C B=90^{\circ}
\end{aligned}
$$

In $\triangle A B C$, by angle sum property
$\angle C A B+\angle A C B+\angle A B C=180^{\circ}$
$\Rightarrow \angle C A B+90^{\circ}+40^{\circ}=180^{\circ}$
$\Rightarrow \angle C A B=180^{\circ}-90^{\circ}$
$\Rightarrow \angle C A B=50^{\circ}$
Now,
$\angle C O B=\angle C A B$
$\Rightarrow x=50^{\circ}$
(iii) We have
$\angle A O C=120^{\circ}$
By degree measure theorem
$\angle A O C=2 \angle A P C$
$\Rightarrow 120^{\circ}=2 \angle A P C$
$\Rightarrow \angle A P C=\frac{120^{\circ}}{2}=60^{\circ}$
$\therefore \angle A P C+\angle A B C=180^{\circ}$
$\Rightarrow 60^{\circ}+\angle A B C=180^{\circ}$
$\Rightarrow-60^{\circ}+180^{\circ}=\angle A B C$
$\Rightarrow \angle A B C=120^{\circ}$
$\therefore \angle A B C+\angle D B C=180^{\circ} \quad$ [Linear pair of angles]
$\Rightarrow 120+x=180^{\circ}$
$\Rightarrow x=180^{\circ}-120^{\circ}=60^{\circ}$
(iv) We have
$\angle C B D=65^{\circ}$
$\therefore \angle A B C+\angle C B D=180^{\circ} \quad$ [Linear pair of angles]
$\Rightarrow \angle A B C+65^{\circ}=180^{\circ}$
$\Rightarrow \angle A B C=180^{\circ}-65^{\circ}=115^{\circ}$
\therefore Reflex $\angle A O C=2 \angle A B C$
$\Rightarrow x=2 \times 115^{\circ}$
$\Rightarrow x=230^{\circ}$
(v) We have
$\angle O A B=35^{\circ}$
Then, $\angle O B A=\angle O A B=35^{\circ}$
In $\triangle A O B$, by angle sum property
$\angle A O B+\angle O A B+\angle O B A=180^{\circ}$
$\Rightarrow \angle A O B+35^{\circ}+35^{\circ}=180^{\circ}$
$\Rightarrow \angle A O B=180^{\circ}-35^{\circ}-35^{\circ}=110^{\circ}$
$\therefore \angle A O B+$ reflex $\angle A O B=360^{\circ} \quad$ [comple angle]
$\Rightarrow 110^{\circ}+$ reflex $\angle A O B=360^{\circ}$
\Rightarrow reflex $\angle A O B=360^{\circ}-110^{\circ}=250^{\circ}$
By degree measure theorem reflex $\angle A O B=2 \angle A C B$
$\Rightarrow 250^{\circ}=2 x$
$\Rightarrow x=\frac{250^{\circ}}{2}=125^{\circ}$
(vi) We have
$\angle A O B=60^{\circ}$
By degree measure theorem
$\angle A O B=2 \angle A C B$
$\Rightarrow 60^{\circ}=2 \angle A C B$
$\Rightarrow \angle A C B=\frac{60^{\circ}}{2}=30^{\circ}$
[Angles opposite to equal radii]
$\Rightarrow x=30^{\circ}$
(vii) We have
$\angle B A C=50^{\circ}$
And $\angle D B C=70^{\circ}$
$\therefore \angle B D C=\angle B A C=50^{\circ} \quad$ [Angle in same segment]
In $\triangle B D C$, by angles sum property

$$
\begin{aligned}
& \angle B D C+\angle B C D+\angle D B C=180^{\circ} \\
& \Rightarrow 50^{\circ}+x+70=180^{\circ} \\
& \Rightarrow x=180^{\circ}-70^{\circ}-50^{\circ}=60^{\circ}
\end{aligned}
$$

(viii) We have
$\angle D B O=40^{\circ}$
$\angle D B C=90^{\circ} \quad$ [Angle in semi circle]
$\Rightarrow \angle D B O+\angle O B C=90^{\circ}$
$\Rightarrow 40^{\circ}+\angle O B C=90^{\circ}$
$\Rightarrow \angle O B C=90^{\circ}-40^{\circ}=50^{\circ}$
By degree measure theorem
$\angle A O C=2 \angle O B C$
$\Rightarrow x=2 \times 50^{\circ}=100^{\circ}$
(ix) In $\triangle D A B$, by angle sum property
$\angle A D B+\angle D A B+\angle A B D=180^{\circ}$
$\Rightarrow 32^{\circ}+\angle D A B+50^{\circ}=180^{\circ}$
$\Rightarrow \angle O A B=180^{\circ}-32^{\circ}-50^{\circ}$
$\Rightarrow \angle D A B=95^{\circ}$
Now,
$\angle O A B+\angle D C B=180^{\circ} \quad$ [Opposite angles of cyclic quadrilateral]

$$
\begin{aligned}
& \Rightarrow 98+x=180^{\circ} \\
& \Rightarrow x=180-98^{\circ}=82^{\circ}
\end{aligned}
$$

(x) We have
$\angle B A C=35^{\circ}$
$\angle B A C=\angle B A C=35^{\circ}$
[Angle in same segment]
In $\triangle B C D$ by angle sum property

$$
\angle B D C+\angle B C D+\angle D B C=180^{\circ}
$$

$\Rightarrow 35+x+65^{\circ}=180^{\circ}$
$\Rightarrow x=180^{\circ}-35^{\circ}-66^{\circ}=80^{\circ}$
(xi) We have
$\angle A B D=40^{\circ}$
$\therefore \angle A C D=\angle A B D=40^{\circ} \quad$ [Angle in same segment]
In $\triangle P C D$, By angle sum property
$\angle P C D+\angle C P O+\angle P D C=180^{\circ}$
$\Rightarrow 40^{\circ}+110^{\circ}+x^{\circ}=180^{\circ}$
$\Rightarrow x^{\circ}=180^{\circ}-150^{\circ}$
$\Rightarrow x=30^{\circ}$
(xii) Given that $\angle B A C=52^{\circ}$

Then, $\angle B D C=\angle B A C=52^{\circ} \quad$ [Angle in same segment]
Since $O D=O C$
Then, $O D=O C$
Then, $\angle O D C=\angle O C D$
[Opposite angles to equal radii]
5. O is the circumcentre of the triangle ABC and OD is perpendicular on BC . Prove that $\angle \mathrm{BOD}=\angle \mathrm{A}$.

Sol:

Given O is the circum center of $\triangle A B C$ and $O D \perp B C$
To prove $\angle B O D=2 \angle A$
Proof:

In $\triangle O B A$ and $\triangle O C A$

$$
\begin{aligned}
& \angle O D B=\angle O D C \\
& O B=O C \\
& O D=O D
\end{aligned}
$$

[Each 90°]

[Radii of circle]
[Common]
[By RHS condition]
Then, $\triangle O B D \cong \triangle O C D$
$\therefore \angle B O D=\angle C O D$

$$
\begin{equation*}
(P \cdot C \cdot T) \tag{1}
\end{equation*}
$$

By degree measure theorem
$\angle B O C=2 \angle B A C$
$\Rightarrow 2 \angle B O D=2 \angle B A C$
[By using (1)]
$\Rightarrow \angle B O D=\angle B A C$
6. In the fig. below, O is the centre of the circle, $B O$ is the bisector of $\angle A B C$. Show that $A B=$ AC.

Sol:

Given, $B O$ is the bisector of $\angle A B C$
To prove $A B=B C$
Proof:
Since, $B O$ is the bisector of $\angle A B C$
Then, $\angle A B O=\angle D A B$
Since $O B=O C$
The $\angle C B O=\angle O C B$
[Opposite angles to equal sides]
[Radius of circle]
[Opposite angles to equal sides]

Compare equation (1), (2) and (3)
$\angle O A B=\angle O C B$
In $\angle O A B=\angle O C B$
$\angle O B A=\angle O B C$
$O B=O B$
Then, $\triangle O A B \cong O C B$
$\therefore A B=B C$
[from (4)]
[Given]
[Common]
[By AAS condition]
$[c \cdot p \cdot c \cdot t]$
7. In the below fig. O is the centre of the circle, prove that $\angle x=\angle y+\angle z$.

Sol:

We have, $\angle 3=\angle 4$
$\therefore \angle x=2 \angle 3$
$\Rightarrow \angle x=\angle 3+\angle 8$
$\Rightarrow \angle x=\angle 3+\angle 4$
But $\angle y=\angle 3+\angle 1$
$\ldots . . .(1)[\angle 3=\angle 4]$
$\Rightarrow \angle 3=\angle y-\angle 1$
[by exterior angle prop]

From (1) and (2)
$\angle x=\angle y-\angle 1+\angle 4$
$\Rightarrow \angle x=\angle y+\angle y-\angle 1$
$\Rightarrow \angle x=\angle y+\angle z$
(By exterior angle prop)
$\Rightarrow \angle x=\angle y+\angle z$
8. In the below fig. O and O^{\prime} are centres of two circles intersecting at B and C, ACD is a straight line, find x.

Sol:

By degree measure theorem

$$
\begin{aligned}
& \angle A O B=2 \angle A C B \\
& \Rightarrow 130^{\circ}=2 \angle A C B \\
& \Rightarrow \angle A C B=\frac{130^{\circ}}{2}=65^{\circ}
\end{aligned}
$$

$$
\therefore \angle A C B+\angle B C D=180^{\circ}
$$

[Linear pair of angle]

$$
\Rightarrow 65^{\circ}+\angle B C D=180^{\circ}
$$

$\Rightarrow \angle B C D=180^{\circ}-65^{\circ}=115^{\circ}$
By degree measure theorem
Reflex $\angle B O D=2 \angle B C A$
\Rightarrow Reflex $\angle B O D=2 \times 115^{\circ}=230^{\circ}$
Now, reflex $\angle B O D+\angle B O D=360^{\circ} \quad$ [Complex angle]
$\Rightarrow 230^{\circ}+x=360^{\circ}$
$\Rightarrow x=360^{\circ}-230^{\circ}$
$\Rightarrow 130^{\circ}$
$x=130^{\circ}$
9. In the below fig. O is the centre and $P Q$ is a diameter. If $\angle R O S=40^{\circ}$, find $\angle R T S$.

Sol:

Since PQ is diameter
Then, $\angle P R O=90^{\circ}$
$\therefore \angle P R Q+\angle T R Q=180^{\circ}$
[Angle in semi-circle]
[Linear pair of angle]
$\angle 90^{\circ}+\angle T R Q=180^{\circ}$
$\angle T R Q=180^{\circ}-90^{\circ}=90^{\circ}$
By degree measure theorem
$\angle R O S=2 \angle R Q S$
$\Rightarrow 40^{\circ}=2 \angle R Q S$
$\Rightarrow \angle R Q S=\frac{40^{\circ}}{2}=20^{\circ}$
In $\triangle R Q T$, By angle sum property
$\angle R Q T+Q R T+\angle R T S=180^{\circ}$
$\Rightarrow 20^{\circ}+90^{\circ}+\angle R+\angle S=180^{\circ}$
$\Rightarrow \angle R T S=180^{\circ}-20^{\circ}-90^{\circ}=70^{\circ}$
10. In the below fig. if $\angle \mathrm{ACB}=40^{\circ}, \angle \mathrm{DPB}=120^{\circ}$, find $\angle \mathrm{CBD}$.

Sol:

We have
$\angle A C B=40^{\circ}, \angle D P B=120^{\circ}$
$\therefore \angle A D B=\angle A C B=40^{\circ} \quad$ [Angle in same segment]
In $\triangle P O B$, by angle sum property

$$
\begin{aligned}
& \angle P D B+\angle P B D+\angle B P P=180^{\circ} \\
& \Rightarrow 40^{\circ}+\angle P B D+120^{\circ}=180^{\circ} \\
& \Rightarrow \angle P B D=180^{\circ}-40^{\circ}-120^{\circ} \\
& \Rightarrow \angle P B D=20^{\circ} \\
& \therefore \angle C B D=20^{\circ}
\end{aligned}
$$

11. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.
Sol:

We have
Radius $O A=$ chord $A B$
$\Rightarrow O A=O B=A B$
Then $\triangle O A B$ is an equilateral triangle
$\therefore \angle A O B=60^{\circ}$
[one angle of equilateral]
By degree measure theorem
$\angle A O B=2 \angle A P B$
$\Rightarrow 60^{\circ}=2 \angle A P B$
$\Rightarrow 60^{\circ}=2 \angle A P B$
$\Rightarrow \angle A P B=\frac{60^{\circ}}{2}=30^{\circ}$

Now, $\angle A P B+\angle A Q B=180^{\circ}$
$\Rightarrow 30^{\circ}+\angle A Q B=180^{\circ}$
$\Rightarrow \angle A Q B=180^{\circ}-30^{\circ}=150^{\circ}$
\therefore Angle by chord AB at minor arc $=150^{\circ}$
Angle by chord AB at major arc $=30^{\circ}$

Exercise - 16.5

1. In the below fig. $\triangle \mathrm{ABC}$ is an equilateral triangle. Find $\mathrm{m} \angle \mathrm{BEC}$.

Sol:

Since, $\triangle A B C$ is an equilateral triangles
Then, $\angle B A C=60^{\circ}$
$\therefore \angle B A C+\angle B E C=180^{\circ} \quad$ [Opposite angles of a quadrilaterals]
$\Rightarrow 60^{\circ}+\angle B E C=180^{\circ} \Rightarrow \angle B E C=180^{\circ}-60^{\circ}$
$\Rightarrow \angle B E C=180^{\circ}$
2. In the below fig. $\triangle \mathrm{PQR}$ is an isosceles triangle with $\mathrm{PQ}=\mathrm{PR}$ and $\mathrm{m} \angle \mathrm{PQR}=35^{\circ}$. Find m $\angle \mathrm{QSR}$ and $\mathrm{m} \angle \mathrm{QTR}$.

Sol:

We have $\angle P Q R=35^{\circ}$
Since, $\triangle P Q R$ is an isosceles triangle with $P Q=R R$
Then $\angle P Q R=\angle P R Q=35^{\circ}$
In $\triangle P Q R$ by angle sum property
$\angle P+\angle P Q R+\angle P R Q=180^{\circ}$
$\Rightarrow \angle P+35^{\circ}+35^{\circ}=180^{\circ}$
$\Rightarrow \angle P=180^{\circ}-35^{\circ}=35^{\circ}$
$\Rightarrow \angle P=110^{\circ}$
[Angles in same segment]
Now, $\angle Q S R+\angle Q T R=180^{\circ}$
$\Rightarrow 110^{\circ}+\angle Q T R=180^{\circ}$
$\Rightarrow \angle Q T R=180^{\circ}-110^{\circ}$
$\Rightarrow \angle Q T R=70^{\circ}$
3. In the below fig., O is the centre of the circle. If $\angle \mathrm{BOD}=160^{\circ}$, find the values of x and y .

Sol:

Given that O is the center of the circle
We have, $\angle B O D=160^{\circ}$
By degree measure theorem
$\angle B O D=2 \angle B C D$
$\Rightarrow 160^{\circ}=2 \times x$
$\Rightarrow x=\frac{160^{\circ}}{2}=80^{\circ}$
$\therefore \angle B A D+\angle B C D=180^{\circ}$
[Opposite angles of cyclic quadrilaterals]
$\Rightarrow y+x=180^{\circ}$
$\Rightarrow y+80^{\circ}=180^{\circ}$
$\Rightarrow y=180^{\circ}-80^{\circ}=100^{\circ}$
4. In the below fig. ABCD is a cyclic quadrilateral. If $\angle \mathrm{BCD}=100^{\circ}$ and $\angle \mathrm{ABD}=70^{\circ}$, find $\angle A D B$.

Sol:

We have
$\angle B C D=100^{\circ}$ and $\angle A B D=70^{\circ}$
$\therefore \angle D A B+\angle B C D=180^{\circ} \quad$ [Opposite angles of cyclic quadrilaterals]
$\Rightarrow \angle D A B+100^{\circ}=180^{\circ}$
$\Rightarrow \angle D A B=180^{\circ}-100^{\circ}=80^{\circ}$
$\Rightarrow \angle P A B=80^{\circ}$
In $\triangle D A B$, by angle sum property
$\angle A D B+\angle D A B+\angle D B D=180^{\circ}$
$\Rightarrow \angle A B D+80^{\circ}+70^{\circ}=180^{\circ}$
$\Rightarrow \angle A B D=180^{\circ}-150^{\circ}=30^{\circ}$
5. If $A B C D$ is a cyclic quadrilateral in which $A D \| B C$ (Fig below). Prove that $\angle B=\angle C$.

Sol:

Since $A B C D$ is a cyclic quadrilateral with $A D \| B C$.
Then $\angle A+\angle C=180^{\circ}$
[Opposite angles of cyclic quadrilaterals]
And, $\angle A+\angle B=180^{\circ}$
[Co interior angles]
Compare (1) and (2) equations $\angle B=\angle C$
6. In the below fig. O is the centre of the circle. Find $\angle C B D$.

Sol:

Given that $\angle B O C=100^{\circ}$
By degree measure theorem
$\angle A O C=2 \angle A P C$
$\Rightarrow 100^{\circ}=2 \angle A P C$
$\Rightarrow \angle A P C=\frac{100^{\circ}}{2}=90^{\circ}$
$\therefore \angle A P C+\angle A B C=180^{\circ}$
$\Rightarrow 50^{\circ}+\angle A B C=180^{\circ}$
$\Rightarrow \angle A B C=180^{\circ}-50^{\circ}$
$=130^{\circ}$
$\therefore \angle A B C+\angle C B D=180^{\circ} \quad$ [Linear pair of angles]
$\Rightarrow 130^{\circ}+\angle C B D=180^{\circ}$
$\Rightarrow \angle C B D=50^{\circ}$
[Opposite angles of cyclic quadrilaterals]
7. In the below fig. AB and CD are diameters of a circle with centre O . if $\angle \mathrm{OBD}=50^{\circ}$, find $\angle A O C$.

Sol:

Given that,

$$
\angle O B D=50^{\circ}
$$

Since, $A B$ and $C D$ are the diameter of circle then O is the center of the circle
$\therefore \angle P B C=90^{\circ}$
[Angle in semicircle]
$\Rightarrow \angle O B D+\angle D B C=90^{\circ}$
$\Rightarrow 50^{\circ}+\angle D B C=90^{\circ}$
$\Rightarrow \angle D B C=90^{\circ}-50^{\circ}=40^{\circ}$
By degree measure theorem
$\angle A O C=2 \angle A B C$
$\Rightarrow \angle A O C=2 \times 40^{\circ}=80^{\circ}$
8. On a semi-circle with AB as diameter, a point C is a taken, so that $\mathrm{m}(\angle \mathrm{CAB})=30^{\circ}$. Find $\mathrm{m}(\angle \mathrm{ACB})$ and $\mathrm{m}(\angle \mathrm{ABC})$.
Sol:

We have, $\angle C A B=30^{\circ}$
$\angle A C B=90^{\circ}$
[Angle in semicircle]
In $\triangle A B C$, by angle sum property
$\angle C A B+\angle A C B+\angle A B C=180^{\circ}$
$\Rightarrow 30^{\circ}+90^{\circ}+\angle A B C=180^{\circ}$
$\Rightarrow \angle A B C=180^{\circ}-120^{\circ}$
$=60^{\circ}$
9. In a cyclic quadrilateral ABCD if $\mathrm{AB} \| \mathrm{CD}$ and $\angle \mathrm{B}=70^{\circ}$, find the remaining angles.

Sol:
Given that $\angle B=70^{\circ}=70^{\circ}$
Since $A B C D$ is a cyclic quadrilaterals

Then, $\angle B+\angle D=180^{\circ}$
$\Rightarrow 70^{\circ}+\angle D=180^{\circ}$
$\Rightarrow \angle D=180^{\circ}-70^{\circ}=110^{\circ}$
Since $A B \| D C$
Then $\angle B+\angle C=180^{\circ}$
$\Rightarrow 70^{\circ}+\angle C=180^{\circ} \quad$ [Cointerior angles]
$\Rightarrow \angle C=180^{\circ}-70^{\circ}$
$=110^{\circ}$
Now, $\angle A+\angle C=180^{\circ}$
[Opposite angles of cyclic quadrilateral]
$\Rightarrow \angle A+110^{\circ}=180^{\circ}$
$\Rightarrow \angle A=180^{\circ}-110^{\circ}$
$\Rightarrow \angle A=70^{\circ}$
10. In a quadrilateral ABCD , if $\mathrm{m} \angle \mathrm{A}=3(\mathrm{~m} \angle \mathrm{C})$. Find $\mathrm{m} \angle \mathrm{A}$.

Sol:

We have, $\angle A=3 \angle C$
Let $\angle C=x$
Then $A=3 x$
$\therefore \angle A+\angle C=180^{\circ}$
[Opposite angles of cyclic quadrilaterals]
$\Rightarrow 3 x+x=180^{\circ}$
$\Rightarrow 4 x=180^{\circ} \Rightarrow x=\frac{180}{4}=45^{\circ}$
$\therefore \angle A=3 x$
$=3 \times 45^{\circ}$
$=135^{\circ}$
$\therefore \angle A=135^{\circ}$
11. In the below fig. O is the centre of the circle and $\angle \mathrm{DAB}=50^{\circ}$. Calculate the values of x and y.

Sol:

We have $\angle D A B=50^{\circ}$
By degree measure theorem
$\angle B O D=2 \angle B A D$
$\Rightarrow x=2 \times 50^{\circ}=100^{\circ}$
Since, ABCD is a cyclic quadrilateral

Then $\angle A+\angle C=180^{\circ}$
$\Rightarrow 50+y=180^{\circ}$
$\Rightarrow y=180^{\circ}-50^{\circ}$
$=130^{\circ}$
12. In the below fig. if $\angle B A C=60^{\circ}$ and $\angle B C A=20^{\circ}$, find $\angle A D C$.

Sol:

By using angle sum property in $\triangle A B C$
$\angle B=180^{\circ}-\left(60^{\circ}+120^{\circ}\right)=100^{\circ}$
In cyclic quadrilaterals ABCD , we have:
$\angle B+\angle D=180^{\circ}$
$\angle D=180^{\circ}-100^{\circ}=80^{\circ}$
13. In the below fig. if ABC is an equilateral triangle. Find $\angle \mathrm{BDC}$ and $\angle \mathrm{BEC}$.

Sol:

Since $\triangle A B C$ is an equilateral triangle
Then, $\angle B A C=60^{\circ}$
$\therefore \angle B D C=\angle B A C=60^{\circ}$
[Angles in same segment]
Since, quadrilaterals $A B E C$ is a cyclic quadrilaterals
Then $\angle B A C+\angle B E C=180^{\circ}$
$\Rightarrow 60^{\circ}+\angle B E C=180^{\circ}$
$\Rightarrow \angle B E C=180^{\circ}-60^{\circ}=120^{\circ}$
14. In the below fig. O is the centre of the circle, if $\angle C E A=30^{\circ}$, find the values of x, y and z.

Sol:

We have, $\angle A E C=30^{\circ}$
Since, quadrilateral $A B C E$ is a cyclic quadrilaterals
Then, $\angle A B C+\angle A E C=180^{\circ}$

$$
x+30^{\circ}=180^{\circ}
$$

$\Rightarrow x=180^{\circ}-30^{\circ}=150^{\circ}$
By degree measure theorem
$\angle A O C=2 \angle A E C$
$\Rightarrow y=2 \times 30^{\circ}=60^{\circ}$
$\Rightarrow \therefore \angle A D C=\angle A E C \quad$ [Angles in same segment]
$\Rightarrow z=30^{\circ}$
15. In the below fig. $\angle \mathrm{BAD}=78^{\circ}, \angle \mathrm{DCF}=\mathrm{x}^{\circ}$ and $\angle \mathrm{DEF} \mathrm{y}^{\circ}$. find the values of x , and y .

Sol:

We have, $\angle B A D=78^{\circ} \cdot \angle D C F=x^{\circ}$ and $\angle D E F=y^{\circ}$
Since, $A B C D$ is a cyclic quadrilateral
Then, $\angle B A D+\angle B C D=180^{\circ}$
$\Rightarrow 78^{\circ}+\angle B C D=180^{\circ}$
$\Rightarrow \angle B C D=180^{\circ}-78^{\circ}=102^{\circ}$
Now, $\angle B C D+\angle D C F=180^{\circ}$
[Linear pair of angles]
$\Rightarrow 102^{\circ}=x-180^{\circ}$
$\Rightarrow x=180^{\circ}-102^{\circ}=78^{\circ}$
Since, DCEF is a cyclic quadrilateral
Then, $x+y=180^{\circ}$
$\Rightarrow 78^{\circ}+y=180^{\circ}$
$\Rightarrow y=180^{\circ}-78^{\circ}=102^{\circ}$
$\therefore y=102^{\circ}$
16. In a cyclic quadrilateral ABCD , if $\angle \mathrm{A}-\angle \mathrm{C}=60^{\circ}$, prove that the smaller of two is 60°.

Sol:

We have
$\angle A-\angle C=60^{\circ}$
Since, ABCD is a cyclic quadrilaterals
Then $\angle A+\angle C=180^{\circ}$
Add equations (1) and (2)
$\angle A-\angle C+\angle A+\angle C=60^{\circ}+180^{\circ}$
$\Rightarrow 2 \angle A=240^{\circ}$
$\Rightarrow \angle A=\frac{240^{\circ}}{2}=120^{\circ}$
Put value of $\angle A$ in equation (2)
$120^{\circ}+\angle C=180^{\circ}$
$\Rightarrow \angle A=180^{\circ}-120^{\circ}=60^{\circ}$
17. In the below fig. ABCD is a cyclic quadrilateral. Find the value of x .

Sol:

$\angle E D C+\angle C D A=180^{\circ} \quad$ [Linear pair of angles]
$\Rightarrow 80^{\circ}+\angle C D A=180^{\circ}$
$\Rightarrow \angle C D A=180^{\circ}-60^{\circ}=100^{\circ}$
Since, ABCD is a cyclic quadrilateral
$\angle A D C+\angle A B C=180^{\circ}$
$\Rightarrow 100^{\circ}+\angle A B C=180^{\circ}$
$\Rightarrow \angle A B C=180^{\circ}-100^{\circ}=80^{\circ}$
Now, $\angle A B C+\angle A B F=180^{\circ}$
[Linear pair of angles]
$\Rightarrow 80+x^{\circ}=180^{\circ}$
$\Rightarrow x=180^{\circ}-80^{\circ}=100^{\circ}$
18. ABCD is a quadrilateral in which:
(i) $\mathrm{BC} \| \mathrm{AD}, \angle \mathrm{ADC}=110^{\circ}$ and $\angle \mathrm{BAC}=50^{\circ}$. Find $\angle \mathrm{DAC}$.
(ii) $\angle \mathrm{DBC}=80^{\circ}$ and $\angle \mathrm{BAC}=40^{\circ}$, find $\angle \mathrm{BCD}$.
(iii) $\angle \mathrm{BCD}=100^{\circ}$ and $\angle \mathrm{ABD}=70^{\circ}$, find $\angle \mathrm{ADB}$.

Sol:

(i) Since, ABCD is a cyclic quadrilateral

Then, $\angle A B C+110^{\circ}=180^{\circ}$
$\Rightarrow \angle A B C+110^{\circ}=180^{\circ}$
$\Rightarrow \angle A B C=180^{\circ}-110^{\circ}$
$=70^{\circ}$
Since $A D \| B C$
Then, $\angle D A B+\angle A B C=180^{\circ}$
angle]
[Co-interior
$\Rightarrow \angle D A C+50^{\circ}+70^{\circ}=180^{\circ}$
$\Rightarrow \angle D A C=180^{\circ}-120^{\circ}=60^{\circ}$
(ii) $\angle B A C=\angle B D C=40^{\circ}$
[Angle in same
segment]
In $\triangle B D C$, by angle sum property
$\angle D B C+\angle B C D+\angle B D C=180^{\circ}$
$\Rightarrow 80^{\circ}+\angle B C D+40^{\circ}=180^{\circ}$
$\Rightarrow \angle B C D=180^{\circ}-40^{\circ}-80^{\circ}$
$\Rightarrow \angle B C D=60^{\circ}$

(iii) Given that $A B C D$ is a cyclic quadrilaterals

Ten $\angle B A D+\angle B C D=180^{\circ}$
$\Rightarrow \angle B A D+100^{\circ}=180^{\circ}$
$\Rightarrow \angle B A D=180^{\circ}-100^{\circ}$
$\Rightarrow \angle B A D=80^{\circ}$
In $\triangle A B D$, by angle sum property
$\angle A B D+\angle A D B+\angle B A D=180^{\circ}$
$\Rightarrow 70^{\circ}+\angle A D B+80^{\circ}=180^{\circ}$
$\Rightarrow \angle A D B=180^{\circ}-150^{\circ}$
$\Rightarrow \angle A D B=30^{\circ}$
19. Prove that the perpendicular bisectors of the sides of a cyclic quadrilateral are concurrent.

Sol:

Let ABCD be a cyclic quadrilateral, and let O be the center of the corresponding circle Then, each side of the equilateral ABCD is a chord of the circle and the perpendicular bisector of a chord always passes through the center of the circle
So, right bisectors of the sides of quadrilaterals ABCD , will pass through the circle O of the corresponding circle
20. Prove that the centre of the circle circumscribing the cyclic rectangle $A B C D$ is the point of intersection of its diagonals.

Sol:

Let O be the circle circumscribing the cycle rectangle $A B C D$. Since $\angle A B C=90^{\circ}$ and AC is a chord of the circle, so AC is a diameter of a circle. Similarly BD is a diameter
Hence, point of intersection of AC and BD is the center of the circle

21. Prove that the circles described on the four sides of a rhombus as diameters, pass through the point of intersection of its diagonals.
Sol:

Let ABCD be a rhombus such that its diagonals AC and BD interest at O
Since, the diagonals of a rhombus intersect at right angle
$\therefore \angle A C B=\angle B O C=\angle C O D=\angle D O A=90^{\circ}$
Now, $\angle A O B=90^{\circ} \Rightarrow$ circle described on BC, AD and CD as diameter pass through O .
22. If the two sides of a pair of opposite sides of a cyclic quadrilateral are equal, prove that its diagonals are equal.
Sol:

Given $A B C D$ is a cyclic quadrilateral in which $A B=D C$
To prove: $A C=B D$
Proof: In $\triangle P A B$ and $\triangle P D C$

Given that $A B=D C$
$\angle B A D=\angle C D P \quad$ [Angles in the same segment]
$\angle P B A=\angle P C D$
[Angles in same segment]
Then $\triangle P A B=\triangle P D C$
......(1) $[c \cdot p \cdot c \cdot t]$
$P C=P B$(2) $[c \cdot p \cdot c \cdot t]$
Add equation (1) and (2)
$P A+P C=P D+P B$
$\Rightarrow A C=B D$
23. ABCD is a cyclic quadrilateral in which BA and CD when produced meet in E and $\mathrm{EA}=$ ED. Prove that:
(i) $\mathrm{AD} \| \mathrm{BC}$
(ii) $\mathrm{EB}=\mathrm{EC}$

Sol:

Given $A B C D$ is a cyclic quadrilateral in which $E A=E D$
To prove: (i) $A D \| B C$ (ii) $E B=E C$
Proof: (i) Since $E A=E D$
Then $\angle E A D=\angle E D A \quad$ [Opposite angles to equal sides]
Since, ABCD is a cyclic quadrilaterals
Then, $\angle A B C+\angle A D C=180^{\circ}$
But $\angle A B C+\angle E B C=180^{\circ} \quad$ [Linear pair of angles]
Then $\angle A D C=E B C$
Compare equations (1) and (2)
$\angle E A D=\angle C B A$
Since, corresponding angle are equal
Then $B C \| A D$
(ii) From equation (2)
$\angle E A D=\angle E B C$
Similarly $\angle E D A=\angle E C B$
Compare equation (1), (3) and (4) $\angle E B C=\angle E C D$
$\Rightarrow E B=E C$
(Opposite angles to equal sides)
24. Circles are described on the sides of a triangle as diameters. Prove that the circles on any two sides intersect each other on the third side (or third side produced).
Sol:

Since $A B$ is a diameter
Then $\angle A D B=90^{\circ}$
[Angle in semicircle]
Since $A C$ is a diameter
Then $\angle A D C=90^{\circ}$
[Angle in semicircle]
Add equation (1) and (2)
$\angle A D B+\angle A D C=90^{\circ}+90^{\circ}$
$\Rightarrow \angle B D C=180^{\circ}$
Then, BDC is a line
Hence, the circles on any two sides intersect each other on the third side
25. Prove that the angle in a segment shorter than a semicircle is greater than a right angle.

Sol:

Given: $\angle A C B$ is an angle in mirror segment
To prove: $\angle A C B>90^{\circ}$
Proof: By degree measure theorem
Reflex $\angle A O B>180^{\circ}$
And reflex $\angle A O B>180^{\circ}$
Then, $2 \angle A C B>180^{\circ}$
$\angle A C B>\frac{180^{\circ}}{2}$
$\Rightarrow \angle A C B>90^{\circ}$
26. Prove that the angle in a segment greater than a semi-circle is less than a right angle.

Sol:

Given:
$\angle A C B$ is an angle in major segment
To prove $\angle A C B<90^{\circ}$
Proof: by degree measure theorem
$\angle A O B=2 \angle A C B$
And $\angle A O B<180^{\circ}$
Then, $2 \angle A C B<180^{\circ}$
$\angle A C B<90^{\circ}$
27. ABCD is a cyclic trapezium with $\mathrm{AD} \| \mathrm{BC}$. If $\angle \mathrm{B}=70^{\circ}$, determine other three angles of the trapezium.

Sol:

Given that
ABCD is a cyclic trapezium with $A D \| B C$ and $\angle B=70^{\circ}$
Since, $A B C D$ is a quadrilateral
Then $\angle B+\angle D=180^{\circ}$
$\Rightarrow 70^{\circ}+\angle D=180^{\circ}$
$\Rightarrow \angle D=180^{\circ}-70^{\circ}=110^{\circ}$
Since $A D \| B C$
Then $\angle A+\angle B=180^{\circ} \Rightarrow \angle A+70^{\circ}=180^{\circ} \quad$ [Cointerior angles]
$\Rightarrow \angle A=110^{\circ}$
Since $A B C D$ is a cyclic quadrilateral then $\angle A+\angle c=180^{\circ}$
$\Rightarrow 110^{\circ}+\angle C=180^{\circ}$
$\Rightarrow \angle C=180^{\circ}-110^{\circ}=70^{\circ}$
28. Prove that the line segment joining the mid-point of the hypotenuse of a right triangle to its opposite vertex is half of the hypotenuse.
Sol:

Let $\triangle A B C$ be a right angle triangle at angle B.
Let P be the midpoint of trypotenuse AC .
Draw a circle with center P and AC as a diameter
Since, $\angle A B C=90^{\circ}$, therefore the circle passes through B
$\therefore B P=$ radius
Also $A D=C P=$ Radius
$\therefore A P=B P=C P$
Hence, $B P=\frac{1}{2} A C$.
29. In Fig. below, ABCD is a cyclic quadrilateral in which AC and BD are its diagonals. If $\angle \mathrm{DBC}=55^{\circ}$ and $\angle \mathrm{BAC}=45^{\circ}$, find $\angle \mathrm{BCD}$.

Sol:

Since angles in the same segment of a circle are equal
$\therefore \angle C A D=\angle D B C=65^{\circ}$
$\therefore \angle D A B=\angle C A D+\angle B A C=55^{\circ}+45^{\circ}=100^{\circ}$
But, $\angle D A B+\angle B C D=180^{\circ}$
[Opposite angles of a cyclic]
$\therefore \angle B C D=180^{\circ}-100^{\circ}$
$=80^{\circ}$
$\therefore \angle B C D=80^{\circ}$

