## Exercise - 17.1

1. Draw a line segment of length 8.6 cm . Bisect it and measure the length of each part.

Sol:


## Steps of construction:

1. Draw a line segment AB of 8.6 cm
2. With center A and radius more than $n \frac{1}{2} A B$, draw arcs, one on each side of $A B$
3. With center B and same radius, draw arcs cutting the previous arcs at $P$ and $Q$ respectively
4. Join PQ
$\therefore A C=B C=4 \cdot 3 \mathrm{~cm}$
5. Draw a line segment $A B$ of length 5.8 cm . Draw the perpendicular bisector of this line segment.
Sol:


## Steps of construction:

1. Draw a line segment AB of $5 \cdot 8 \mathrm{~cm}$
2. With center A and radius more than $\frac{1}{2} A B$, draw arcs with one on each side of AB
3. With center B and same radius draw arcs cutting the previous arcs at $P$ and $Q$ respectively.
4. Join PQ

Hence, PQ is the perpendicular bisector of AB .
3. Draw a circle with centre at point $O$ and radius 5 cm . Draw its chord AB , draw the perpendicular bisector of line segment AB . Does it pass through the centre of the circle?
Sol:


## Steps of construction:

1. With center O and radius 5 cm draw a circle
2. Draw a chord AB.
3. With center A and radius more than $\frac{1}{2} A B$, draw arcs one on each side of
4. With center B and same radius draw arcs cutting previous arcs at $P$ and $Q$ respectively.
5. Join PQ
$\therefore$ yes perpendicular bisector PQ of AB passes through center of the circle.
6. Draw a circle with centre at point $O$. Draw its two chords $A B$ and $C D$ such that $A B$ is not parallel to CD. Draw the perpendicular bisectors of AB and CD . At what point do they intersect?

## Sol:



## Steps of construction:

1. With center $O$ and any radius, draw a circle
2. Draw two chords $A B$ and $C D$.
3. With center $A$ and radius more than $\frac{1}{2} A B$, draw arcs, one on each side of $A B$
4. With center B and same radius draw arcs cutting previous arcs at P and Q respectively.
5. Join PQ
6. With center D and radius more than $\frac{1}{2} D C$. draw arcs, one on each side of DC
7. With center C and same radius, draw arcs cutting previous arcs at R and S respectively 8. Join RS

Both perpendicular bisector PQ and RS intersect each other at the center O of he circle.
5. Draw a line segment of length 10 cm and bisect it. Further bisect one of the equal parts and measure its length.
Sol:


## Steps of construction:

1. Draw a line segment AB of 10 cm
2. With center $A$ and radius more than $\frac{1}{2} A B$, draw arcs one on each side of $A B$
3. With center B and same radius draw arcs cutting previous arcs at P and Q respectively.
4. Join $P Q$ and which intersect $A B$ at $C$
5. With center A and radius more than $\frac{1}{2} A C$, drawing on each side of $A C$.
6. With center C and same radius, draw arcs cutting previous arcs at R and S respectively.
7. Join RS and which intersect AC at b.
$\therefore A D=2 \cdot 5 \mathrm{~cm}$.
8. Draw a line segment AB and bisect it. Bisect one of the equal parts to obtain a line segment of length $\frac{1}{2}(\mathrm{AB})$.
Sol:


## Steps of construction:

1. Draw a line segment $A B$
2. With center A and radius more than $\frac{1}{2} A B$, draw arcs one on each side of AB
3. With center B and same radius draw arcs cutting previous arcs at P and Q respectively.
4. Join PQ and which intersect $A B$ at $C$
5. With center A and radius more than $\frac{1}{2} A C$, draw arcs, one on each side of AC .
6. With center C and same radius, draw arcs cutting previous arcs at R and S respectively.
7. Join RS and which intersect AC at D
$\therefore A D=\frac{1}{4} A B$.
8. Draw a line segment AB and by ruler and compasses1 obtain a line segment of length $\frac{3}{4} A B$.

## Sol:



## Steps of construction:

1. Draw a line segment AB
2. With center A and radius more than $\frac{1}{2} A B$, draw arcs one on each side of AB .
3. With center B and same radius draw arcs cutting previous arcs at P and Q respectively.
4. Join PQ and which intersect $A B$ at $C$
5. With center C and radius more than $\frac{1}{2} C B$, draw arcs, one on each side of CB .
6. With center B and same radius, draw arcs cutting previous arcs at $R$ and $S$ respectively.
7. Join RS and which intersect CB at D
$\therefore A D=\frac{3}{4} A B$.

## Exercise - 17.2

1. Draw an angle and label it as $\angle \mathrm{BAC}$. Construct another angle, equal to $\angle \mathrm{BAC}$.

## Sol:



## Steps of construction:

1. Draw an angle ABO and a Line segment QR
2. With center A and any radius, draw an arc which intersects $\angle B A C$ at E and O
3. With center $Q$ and same radius draw arc which intersect $Q R$ at $S$.
4. With center S and radius equal to DE , draw an arc which intersect previous arc at T
5. Draw a line segment joining Q and T
$\therefore \angle P Q R=\angle B A C$
6. Draw an obtuse angle, Bisect it. Measure each of the angles so obtained.

Sol:


## Steps of construction:

1. Draw angle ABC of $120^{\circ}$
2. With center $B$ and any radius, draw an arc which intersects $A B$ at $P$ and $B C$ at $Q$
3. With center P and Q and radius more than $\frac{1}{2} P Q$, draw two arcs, with intersect each other at R.
4. Join BR
$\therefore \angle A B R=\angle R B C=60^{\circ}$
5. Using your protractor, draw an angle of measure $108^{\circ}$. With this angle as given, draw an angle of $54^{\circ}$.
Sol:


## Steps of construction:

1. Draw an angle ABC of $108^{\circ}$
2. With center $B$ and any radius, draw an arc which intersects $A B$ at $P$ and $B C$ at $Q$
3. With center P and Q and radius more than $\frac{1}{2} P Q$, draw two arcs, which intersect each other at R.
4. Join BR
$\therefore \angle R B C=54^{\circ}$
5. Using protractor, draw a right angle. Bisect it to get an angle of measure $45^{\circ}$.

Sol:


Steps of construction:

1. Draw an angle ABC of $90^{\circ}$
2. With center $B$ and any radius, draw an arc which intersects $A B$ at $P$ and $B C$ at $Q$
3. With center P and Q and radius more than $\frac{1}{2} P Q$, draw two arcs, which intersect each other at R.
4. Join RB
$\therefore \angle R B C=45^{\circ}$
5. Draw a linear pair of angles. Bisect each of the two angles. Verify that the two bisecting rays are perpendicular to each other.
Sol:


## Steps of construction:

1. Draw two angle DCA and DCB forming Linear pair
2. With center C and any radius, draw an arc which intersects AC at $\mathrm{P}, \mathrm{CD}$ at Q and CB at R.
3. With center P and Q and any radius draw two arcs which interest each other at S
4. Join SC
5. With center Q and R any radius draw two arcs, which intersect each other at T .
6. Join TC
$\angle S C T=90^{\circ}$
[By using protractor]
7. Draw a pair of vertically opposite angles. Bisect each of the two angles. Verify that the bisecting rays are in the same line.
Sol:


## Steps of construction:

1. Draw a pair of vertically opposite angle AOC and DOB
2. With center O and any radius drawn two arcs which intersect OA at $\mathrm{P}, Q \cdot O B$ at S and OD at R.
3. With center P and Q and radius more than $\frac{1}{2} P Q$, draw two arcs which intersect each other at 7 .
4. Join to
5. With center R and S radius more than $\frac{1}{2} R S$, draw two arcs which intersect each other at U.
6. Join OU.
$\therefore T O U$ is a straight line
7. Using ruler and compasses only, draw a right angle.

Sol:


## Steps of construction:

1. Draw a line segment $A B$
2. With center A and any radius draw arc which intersect AB at C .
3. With center C and same radius draw an arc which intersects AB at C .
4. With center D and same radius draw arc which intersect arc in (2) at E .
5. With centers E and C and any radius, draw two arcs which intersect each other at F .
6. Join FA
$\angle F A B=90^{\circ}$
7. Using ruler and compasses only, draw an angle of measure $135^{\circ}$.

Sol:


## Steps of construction:

1. Draw a line segment AB and produce BA to point C .
2. With center $A$ and any radius draw arc which intersect $A C$ at $D$ and $A B$ at $E$.
3. With center D and E and radius more than $\frac{1}{2} D E$, draw two arcs which intersect each other at F .
4. Join FA which intersect the arc in (2) at G.
5. With centers G and D and radius more than $\frac{1}{2} G D$, draw two arcs which intersect each other at H .
6. Join HA

$$
\therefore \angle H A B=135^{\circ}
$$

9. Using a protractor, draw an angle of measure $72^{\circ}$. With this angle as given, draw angles of measure $36^{\circ}$ and $54^{\circ}$.
Sol:


## Steps of construction:

1. Draw an angle ABC of $72^{\circ}$ with the help of protractor.
2. With center $B$ and any radius, draw an arc which intersect $A B$ at $D$ and $B C$ at $E$.
3. With center D and E and radius more than $\frac{1}{2} D E$, draw two arcs which intersect each other at F .
4. Join FB which intersect the arc in (2) at G.
5. With centers D and G and radius more than $\frac{1}{2} D E$, draw two arcs which intersect each other at F .
6. With centers D and G and radius more than $n \frac{1}{2} D G$ draw two arcs which intersect each other at H
7. Join HB
$\therefore \angle H B C=54^{\circ}$
$\angle F B C=36^{\circ}$
8. Construct the following angles at the initial point of a given ray and justify the construction:
(i) $45^{\circ}$ (ii) $90^{\circ}$

Sol:
(i)


## Steps of construction:

1. Draw a line segment AB and produce BA to point C .
2. With center $A$ and any radius drawn an arc which intersect $A C$ at $D$ and $A B$ at $E$.
3. With center D and E and radius more than $\frac{1}{2} D E$, draw arcs cutting each other at F .
4. Join FA which intersect arc in (2) at G.
5. With centers G and E and radius more than $\frac{1}{2} G E$, draw arcs cutting each other at H .
6. Join HA
$\therefore \angle H A B=45^{\circ}$
(ii)


## Steps of construction:

1. Draw a line segment $A B$.
2. With center A and any radius draw in arc which intersect AB at C .
3. With center C and same radius draw an arc which intersects previous arc at D .
4. With centers D same radius draw an arc which intersects are in (2) at E.
5. With centers $E$ and $D$ same radius more than $\frac{1}{2}$ ED draw an arc cutting each other at $F$.
6. Join FA
$\angle F A B=90^{\circ}$
7. Construct the angles of the following measurements:
(i) $30^{\circ}$
(ii) $75^{\circ}$
(iii) $105^{\circ}$
(iv) $135^{\circ}$
(v) $15^{\circ}$
(vi) $22 \frac{1^{\circ}}{2}$

Sol:
(i)


## Steps of construction:

1. Draw a line segment AB .
2. With center $A$ and any radius, draw an arc which intersect $A B$ at $C$.
3. With center C and same radius, draw an arc which intersects previous arc at D .
4. With centers D and C and radius more than $\frac{1}{2} D C$, draw arcs intersecting each other at E
5. Join EA
$\therefore \angle E A B=30^{\circ}$
(ii)


## Steps of construction:

1. Draw a line segment $A B$.
2. With center $A$ any radius, draw an arc which intersect $A B$ at $C$.
3. With center C and same radius, draw an arc which intersects previous arc at D .
4. With center D and same radius, draw an arc which interest are in (2) at E
5. With centers E and D and radius more than $\frac{1}{2} E D$, draw arcs intersecting each other at F.
6. Join FA which intersects arc in (2) at G
7. With centers G and D , and radius more than $\frac{1}{2} G D$, draw arcs intersecting each other at H.
8. Join HA

$$
\therefore \angle H A B=75^{\circ}
$$

(iii)


## Steps of construction:

1. Draw a line segment AB .
2. With center $A$ and any radius, draw an arc which intersect $A B$ at $C$.
3. With center C and same radius, draw an arc which intersects previous arc at D .
4. With center D and same radius, draw an arc which interest are in (2) at E
5. With centers E and D and radius more than $\frac{1}{2} E D$, draw arcs intersecting each other at F.
6. Join FA which intersects arc in (2) at E
7. With centers E and G , and radius more than half of EG , draw arcs intersecting each other at H .
8. Join HA
$\angle H A B=105^{\circ}$
(iv)


## Steps of construction:

1. Draw a line segment $A B$ and produce $B A$ to pint $C$
2. With center $A$ and any radius, draw an arc which intersect $A C$ to $D$ and $A B$ at $E$.
3. With center D and E and radius more than half of DE, draw two arcs which intersects each other at $F$.
4. Join FA which intersect the arc in (2) at G
5. With center G and D radius more than $\frac{1}{2} G D$, draw two arcs which intersect each other at H
6. Join HA
$\angle H A B=135^{\circ}$
(v)


## Steps of construction:

Step 1: Draw a line segment $A B$
Step 2: with center A and any radius, draw an arc which intersects previous arc at C
Step 3: with center C and same radius, draw an arc which intersect previous arc at D
Step 4: with center D and C radius more than half of DC draw arcs intersecting each other at E
Step 5: Join EA which intersects arc in (2) at F.
Step 6: With centers F and C and radius more than $\frac{1}{2} F C$, draw arcs intersecting each other
Step 7: Join GA
$\therefore \angle G A B=15^{\circ}$
(vi)


## Steps of construction:

Step 1: Draw a line segment $A B$
Step 2: with center A and any radius, draw an arc which intersects AB at C
Step 3: with center $C$ and same radius, draw an arc which intersect previous arc at $D$
Step 4: with center D and same radius, draw an arc which intersects arc in (2) at E.

Step 5: with center E and D and radius more than half of ED, draw arcs intersecting each other at $F$.
Step 6: Join FA which intersects arc in (2) at G
Step 7: with center G and C and radius more than half of GC, draw arcs intersecting each other at H
Step 8: Join HA which intersects arc in (2) at 1.
Step 9: with centers I and C and radius more than half of IC, draw arcs intersecting each other
Step 10: Join JA
$\therefore \angle J A B=22 \frac{1^{\circ}}{2}$.

## Exercise - 17.3

1. Construct a $\triangle \mathrm{ABC}$ in which $\mathrm{BC}=3.6 \mathrm{~cm}, \mathrm{AB}+\mathrm{AC}=4.8 \mathrm{~cm}$ and $\angle \mathrm{B}=60^{\circ}$.

## Sol:



## Steps of construction:

1. Draw a line segment BC of 3.6 cm .
2. At the point B , draw $\angle x B C$ of $60^{\circ}$
3. With center B and radius 4.8 cm , draw an arc which intersects XB at D .
4. Join DC
5. Draw the perpendicular bisector of DC which intersects DB at A .
6. Join AC

Hence $\triangle A B C$ is the required triangle
2. Construct a $\triangle \mathrm{ABC}$ in which $\mathrm{AB}+\mathrm{AC}=5.6 \mathrm{~cm}, \mathrm{BC}=4.5 \mathrm{~cm}, \mathrm{AB}-\mathrm{AC}=1.5 \mathrm{~cm}$ and $\angle \mathrm{B}$ $=45^{\circ}$.
Sol:


## Steps of construction:

Step 1: Draw a line segment BC of 4.5 cm .
Step 2: At B, draw an angle XBC of $45^{\circ}$
Step 3: With center B and radius 5.6 cm , draw an arc which intersects BX at D.
Step 4: Join DC
Step 5: Draw the perpendicular bisector of DC which intersects BD at A.
Step 6: Join AC
$\therefore \triangle A B C$ is a required triangle
3. Construct a $\triangle \mathrm{ABC}$ in which $\mathrm{BC}=3.4 \mathrm{~cm}, \mathrm{AB}-\mathrm{AC}=1.5 \mathrm{~cm}$ and $\angle \mathrm{B}=45^{\circ}$.

## Sol:



## Steps of construction:

Step 1: Draw a line segment BC of $3 \cdot 5 \mathrm{~cm}$.
Step 2: At B, draw an angle XBC of $45^{\circ}$
Step 3: With center B and radius 1.5 cm , draw an arc which intersects BX at D.
Step 4: Join DC
Step 5: Draw the perpendicular bisector of DC which intersects BD produced at A .
Step 6: Join AC
$\therefore \triangle A B C$ is the required triangle
4. Using ruler and compasses only, construct a $\triangle \mathrm{ABC}$, given base $\mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{ABC}=60^{\circ}$ and $\mathrm{AB}+\mathrm{AC}=12 \mathrm{~cm}$.

## Sol:



## Steps of construction:

1. Draw a line segment BC of 7 cm .
2. At $B$, draw an angle $X B C$ of $60^{\circ}$
3. With center B and radius 12 cm , draw an arc which intersects BX at D .
4. Join DC
5. Draw the perpendicular bisector of DC which intersects BD at A .
6. Join AC
$\therefore \triangle A B C$ is the required triangle.
7. Construct a triangle whose perimeter is 6.4 cm , and angles at the base are $60^{\circ}$ and $45^{\circ}$.

## Sol:



## Steps of construction:

1. Draw a line segment $X Y$ of $6 \cdot 4 \mathrm{~cm}$.
2. Draw $\angle D X Y=B=60^{\circ}$ and $\angle E Y X=\angle C=45^{\circ}$
3. Draw the angle bisector of $\angle D X Y$ and $\angle E Y X$ which interest each other at A .
4. Draw the perpendicular bisector of AX and AY which interest XY at B and C respectively.
5. Join AB and AC
$\therefore \triangle A B C$ is the required triangle.
6. Using ruler and compasses only, construct a $\triangle \mathrm{ABC}$ from the following data:
$\mathrm{AB}+\mathrm{BC}+\mathrm{CA}=12 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}$ and $\angle \mathrm{C}=60^{\circ}$.
Sol:


## Steps of construction:

Step 1: Draw a line segment XY of 12 cm .
Step 2: Draw $\angle D X Y=\angle B=45^{\circ}$ and $\angle E Y X=\angle C=60^{\circ}$
Step 3: Draw the angle bisectors of angles of $D X Y$ and EYX which intersects each other at A.

Step 4: Draw the perpendicular of $A X$ and $A Y$ which intersect $X Y$ at $B$ and $C$ respectively.
Step 5: Join AB and AC
$\therefore \triangle A B C$ is the required triangle
7. Construct a right-angled triangle whose perimeter is equal to 10 cm and one acute angle equal to $60^{\circ}$.
Sol:


## Steps of construction:

Step 1: Draw a line segment XY of 10 cm .
Step 2: Draw $\angle D X Y=\angle B=90^{\circ}$ and $\angle F Y X=\angle C=60^{\circ}$
Step 3: Draw the angle bisectors of $\angle D X Y$ and $\angle E Y X$ which intersects each other at A.
Step 4: Draw the perpendicular of AX and AY which intersect XY at B and C respectively.
Step 5: Join AB and AC
$\therefore \triangle A B C$ is the required triangle
8. Construct a triangle ABC such that $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{AB}=6 \mathrm{~cm}$ and median $\mathrm{AD}=4 \mathrm{~cm}$.

## Sol:



## Steps of construction:

Step 1: Draw a line segment $B C$ of 6 cm .
Step 2: Take midpoint $D$ of $B C$.
Step 3: with center B and D and radii 6 cm and 4 cm draw two arcs which intersects each other A
Step 4: Join $A B, A D$ and $A C$
$\therefore \triangle A B C$ is the required triangle
9. Construct a right triangle ABC whose base BC is 6 cm and the sum of hypotenuse AC and other side AB is 10 cm .
Sol:


## Steps of construction:

Step 1: Draw a line segment $B C$ of 6 cm .
Step 2: At B draw an angle $l e \times B C$ of $90^{\circ}$.
Step 3: with center B and radius 10 cm draw an arc which intersects XB at D.
Step 4: Join DC.
Step 5: Draw the perpendicular bisector of DC which intersects DB at A
Step 6: Join AC
$\therefore \triangle A B C$ is the required triangle
10. Construct a triangle XYZ in which $\angle \mathrm{Y}=30^{\circ}, \angle \mathrm{Z}=90^{\circ}$ and $\mathrm{XY}+\mathrm{YZ}+\mathrm{ZX}=11$.

Sol:


## Steps of construction:

Step 1: Draw a line segment $A B$ of 11 cm .
Step 2: Draw $\angle D A B=Y=30^{\circ}$ and $\angle F B A=\angle Z=90^{\circ}$
Step 3: Draw the angle bisector of $\angle D A B$ and $\angle E B A$ which intersect each other at $x$
Step 4: Draw the perpendicular bisector XA and XB which intersect AB at Y and Z respectively.
Step 5: Join XY and XZ
$\therefore \triangle X Y Z$ is the required triangle

