Chapter 18 - Practical Geometry (Construction)

Exercise 18.1

Page Number: 18.4

Question 1:

First, we draw a rough sketch of the quadrilateral $A B C D$ and write down its dimensions along the sides.

We may divide the quadrilateral into two constructible triangles $A B D$ and $B C D$.

Solutions:

Steps of Construction:

Step I: Draw $B D=6.6 \mathrm{~cm}$
Step II: With B as the center and radius $B C=4 \mathrm{~cm}$, draw an arc.
Step III: With D as the center and radius 6.4 cm , draw an arc to intersect the arc drawn in Step II at C.

Step IV: With B as the center and radius 4.4 cm , draw an arc on the side $B D$ opposite to that of C.

Step V: With D as the center and radius 3.8 cm , draw an arc to intersect the arc drawn in Step IV at A.

Step VI: Join $B A, D A, B C$ and $C D$ The quadrilateral $A B C D$ so obtained is the required quadrilateral.

Question 2:

Solutions:

Steps of construction:

Step I: Draw $A B=5.5 \mathrm{~cm}$
Step II: With B as the center and radius $B C=5.5 \mathrm{~cm}$, draw an arc.
Step III: With A as the center and radius $A C=9.4 \mathrm{~cm}$, draw an arc to intersect the arc drawn in Step II at C.

Step IV: With C as the center and radius $C D=4 \mathrm{~cm}$, draw an arc.
Step V: With A as the center and radius $A D=6.3 \mathrm{~cm}$, draw an arc to intersect the arc drawn in Step IV at D.

Step VI: Join $D A, B C, A C$, and $C D$.
The quadrilateral ABCD so obtained is the required quadrilateral.

Question 3:

Solutions:

Steps of construction:

Step I: Draw $X Z=9 \mathrm{~cm}$
Step II: With X as the center and radius 5 cm , draw an arc above $X Z$.
Step III: With Z as the center and radius 6 cm , draw an arc to intersect the arc drawn in Step II at Y above $X Z$.

Step IV: With Z as the center and radius 7 cm , draw an arc below $X Z$.
Step V: With X as the center and radius 3 cm , draw an arc to intersect the arc drawn in Step $I V$ at W below $X Z$.

Step VI: Join $X Y, Y Z, Z W$, and $X W$.
The quadrilateral $W X Y Z$ so obtained is the required quadrilateral.

Question 4:

In a parallelogram opposite sides are equal.
Thus, we have to construct a quadrilateral $P Q R S$ in which $P Q=5.2 \mathrm{~cm}, P R=6.8 \mathrm{~cm}$ and $Q S=$ 8.2 cm .

Solutions:

Steps of construction:

Step I: Draw $Q S=8.2 \mathrm{~cm}$
Step II: With Q as the center and radius 5.2 cm , draw an arc.
Step III: With S as the center and radius 5.2 cm , draw an arc to intersect the arc drawn in Step II at C.

Step IV: With P as the center and radius 6.8 cm .
Step V: With Q as the center and radius 5.2 cm , draw an arc to intersect the arc drawn in Step $I V$ at A.

Step VI: Join $Q R, Q P, P S$, and $S R$.
The quadrilateral $P Q R S$ so obtained is the required quadrilateral.

Question 5:

Solutions:

Steps of construction:

Step 1: Draw $A C=8 \mathrm{~cm}$.
Step 2: With A as the centre and radius $=6 \mathrm{~cm}$, draw arcs on both sides.
Step 3: With C as the center and radius $=6 \mathrm{~cm}$, draw arcs on both sides, intersecting the previous arcs at points B and D .

Step 4: Join $B D=8.9 \mathrm{~cm}$.
Thus, $A B C D$ is the required rhombus.

Question 6:

Solutions:

Steps of construction:

Step I: Draw $A C=7.2 \mathrm{~cm}$.
Step II: With A as the centre and radius 4 cm , draw arcs on both sides of the line segment $A C$.
Step III: With C as the centre and radius 4.9 cm , draw arcs on both sides of $A C$ intersecting the previous arcs of step II at B and D.

Step IV: Join $B A, D A, B C$ and $C D$.
Thus, the quadrilateral $A B C D$ so obtained is the required kite.

Question 7:

cannot.

Solutions:

Steps of construction:

Step I: Draw $A B=6 \mathrm{~cm}$.
Step II: With A as the center and radius 5.5 cm , draw an arc.
Step III: With B as the center and radius 6.1 cm , draw an arc to intersect the arc drawn in Step II at D.

Step IV: With B as the centre and radius 3.7 cm , draw an arc on the side.
Step V: With D as the centre and radius 5.7 cm , draw an arc to intersect the arc drawn in Step IV at C.

Step VI: Join $B D, D A, B C$ and $C D$.

The quadrilateral $A B C D$ so obtained is the required quadrilateral.

Question 8:

Such a quadrilateral cannot be constructed because, in a triangle, the sum of the length of its two sides must be greater than that of the third side

But here in triangle $A C D$,
$A D+C D=5.5+3=8.5 \mathrm{~cm}$
and $A C=11 \mathrm{~cm}$
i.e., $A D+C D<A C$, which is not possible.

So, the construction is not possible.

Exercise 18.2

Page Number: 18.6

Question 1:

Solutions:

Steps of construction:

Step I: Draw $A C=6 \mathrm{~cm}$.
Step II: With A as the center and radius 3.8 cm , draw an arc.
Step III: With C as the center and radius 3.0 cm , draw an arc to intersect the arc drawn in Step II at B.

Step IV: With B as the center and radius 3.8 cm , draw an arc on the other side of $A C$.
Step V: With A as the center and radius 2.3 cm , draw an arc to intersect the arc drawn in Step IV at D.

Step VI: Join $B A, D A, B C$ and $C D$ to obtain the required quadrilateral.

Question 2:

Solutions:
Steps of construction:

Step I: Draw $A C=6 \mathrm{~cm}$.
Step II: With A as the center and radius 6 cm , draw an arc.
Step III: With C as the center and radius 5 cm , draw an arc to intersect the arc drawn in Step II at D.

Step IV: With D as the center and radius 10 cm , draw an arc on the other side of the line segment AC.

Step V: With C as the center and radius 7.5 cm , draw an arc to intersect the arc drawn in Step IV at B.

Step VI: Join $B A, D A, B C$ and $C D$ to obtain the required quadrilateral.

Question 3:

If we consider a triangle ABD from the given data, then

$$
\begin{aligned}
& A B=3 \mathrm{~cm} \\
& B D=4 \mathrm{~cm} \\
& A D=7.5 \mathrm{~cm} \\
& A B+B D=3+4=7 \mathrm{~cm}
\end{aligned}
$$

However, we know that the sum of the lengths of two sides of a triangle is always greater than the third side.

Therefore, construction is not possible from the given data.

Question 4:

Solutions:

Steps of construction:

Step I: Draw $C D=4.1 \mathrm{~cm}$.
Step II: With C as the center and radius 7.3 cm , draw an arc.
Step III: With D as the center and radius 3.5 cm , draw an arc to intersect the arc drawn in Step II at A.

Step IV: With D as the center and radius 3.2 cm , draw an arc on the other side of $A C$.
Step V: With C as the center and radius 2.5 cm , draw an arc to intersect the arc drawn in Step IV at B.

Step VI: Join $B A, D A, B C$ and $B D$ and $A C$ to obtain the required quadrilateral.

Question 5:

Solutions:

Steps of construction:

Step I: Draw $A B=5.5 \mathrm{~cm}$.
Step II: With A as the center and radius 7.1 cm , draw an arc.
Step III: With B as the center and radius 2.5 cm , draw an arc to intersect the arc drawn in Step II at C.

Step IV: With B as the center and radius 8 cm , draw an arc.
Step V: With A as the center and radius 5 cm , draw an arc to intersect the arc drawn in Step IV at D.

Step VI: Join $D A, D B, B C, A C$, and $C D$ to obtain the required quadrilateral.

Question 6:

Solutions:

Steps of construction:

Step I: Draw $B C=4 \mathrm{~cm}$.
Step II: With B as the center and radius 6.5 cm , draw an arc.
Step III: With C as the center and radius 5 cm , draw an arc to intersect the arc drawn in Step II at D.

Step IV: With C as the center and radius 5.6 cm , draw an arc on the same side
Step V: With D as the center and radius 4.5 cm , draw an arc to intersect the arc drawn in Step IV at A.

Step VI: Join $B A, A C, D A, B D$, and $C D$ to obtained the required quadrilateral.

Exercise 18.3

Page Number: 18.7

Question 1:

Solutions:

Steps of construction:

Step I: Draw $A B=3.8 \mathrm{~cm}$.
Step II: Construct $\angle A B C=80^{\circ}$.
Step III: With B as the center and radius 3.4 cm , cut off $B C=3.4 \mathrm{~cm}$.
Step IV: With C as the center and radius 4.5 cm , draw an arc.
Step V: With A as the center and radius 5.3 cm , draw an arc to intersect the arc drawn in Step IV at D.

Step VI: Join $A D, B C$ and $C D$ to obtain the required quadrilateral.

Question 2:

Solutions:

Steps of construction:

Step I: Draw $A B=8 \mathrm{~cm}$.
Step II: Construct $\angle B A D=45^{\circ}$.
Step III: With A as the centre and radius 10 cm , cut off $A D=10 \mathrm{~cm}$.
Step IV: With D as the centre and radius 10 cm , draw an arc.
Step V: With B as the centre and radius 8 cm , draw an arc to intersect the arc drawn in Step IV at C.

Step VI: Join $B C$ and $C D$ to obtain the required quadrilateral.

Question 3:

Solutions:

Steps of construction:

Step I: Draw $D C=5.1 \mathrm{~cm}$.
Step II: Construct $\angle D C B=120^{\circ}$.
Step III: With C as the center and radius 6.8 cm , cut off $B C=6.8 \mathrm{~cm}$.
Step IV: With B as the center and radius 7.7 cm , draw an arc.
Step V: With D as the center and radius 3.6 cm , draw an arc to intersect the arc drawn in Step IV at A.

Step VI: Join AB and AD to obtain the required quadrilateral.

Question 4:

Solutions:

Steps of construction:

Step I: Draw $A B=3 \mathrm{~cm}$.
Step II: Construct $\angle A B C=120^{\circ}$.
Step III: With B as the center and radius 3 cm , cut off $B C=3 \mathrm{~cm}$.
Step IV: With C as the center and radius 5 cm , draw an arc.
Step V: With A as the center and radius 5 cm , draw an arc to intersect the arc drawn in Step IV at D.

Step VI: Join $A D$ and $C D$ to obtain the required quadrilateral.

Question 5:

Solutions:

Steps of construction:

Step I: Draw $A B=2.8 \mathrm{~cm}$.
Step II: Construct $\angle B A D=60^{\circ}$.
Step III: With A as the center and radius 3.3 cm , cut off $A D=3.3 \mathrm{~cm}$.
Step IV: With D as the center and radius 2.6 cm , draw an arc.
Step V: With B as the center and radius 3.1 cm , draw an arc to intersect the arc drawn in Step IV at C.

Step VI: Join $B C$ and $C D$ to obtain the required quadrilateral.

Question 6:

Solutions:

Steps of construction:

Step I: Draw $A B=6 \mathrm{~cm}$.
Step II: Construct $\angle A B C=120^{\circ}$.
Step III: With B as the centre and radius 6 cm , cut off $B C=6 \mathrm{~cm}$. Now, we can see that $A C$ is about 10.3 cm which is greater than $A D+C D=4.5+4.5=9 \mathrm{~cm}$.

We know that sum of the lengths of two sides of the triangle is always greater than the third side but here, the sum of $A D$ and $C D$ is less than $A C$.

So, construction of the given quadrilateral is not possible.

Exercise 18.4

Page Number: 18.10

Question 1:

Solutions:

Steps of construction:
Step I: Draw $B C=4 \mathrm{~cm}$.

Step II: Construct $\angle A B C=95^{\circ}$ at B.
Step III: With B as the center and radius 6 cm , cut off $B A=6 \mathrm{~cm}$.
Step IV: Construct $\angle B C D=90^{\circ}$ at C.
Step V: With C as the center and radius 4 cm , cut off $B A=4 \mathrm{~cm}$.
Step VI: Join $C D$.
The quadrilateral so obtained is the required quadrilateral.

Question 2:

Solutions:

Steps of construction:
Step I: Draw $B C=3.6 \mathrm{~cm}$.

Step II: Construct $\angle A B C=30^{\circ}$ at B.
Step III: With B as the center and radius 4.2 cm , cut off $B A=4.2 \mathrm{~cm}$.

Step IV: Construct $\angle B C D=150^{\circ}$ at C.
Step V: With C as the center and radius 4.8 cm , cut off $C D=4.8 \mathrm{~cm}$.
Step VI: Join $A D$.
The quadrilateral so obtained is the required quadrilateral.

Question 3:

Solutions:

Steps of construction:

Step I: Draw $Q R=2.5 \mathrm{~cm}$.
Step II: Construct $\angle P Q r=75^{\circ}$ at Q.
Step III: With Q as the center and radius 3.5 cm , cut off $Q P=3.5 \mathrm{~cm}$.

Step IV: Construct $\angle Q R S=120^{\circ}$ at R.
Step V: With R as the center and radius 4.1 cm , cut off $R S=4.1 \mathrm{~cm}$.
Step VI: Join PS.
The quadrilateral so obtained is the required quadrilateral.

Question 4:

Solutions:

Steps of construction:

Step I: Draw DC $=4.4 \mathrm{~cm}$.
Step II: Construct $\angle A D C=100^{\circ}$ at D.
Step III: With D as the center and radius 5.6 cm , cut off $D A=5.6 \mathrm{~cm}$.
Step IV: Construct $\angle B C D=95^{\circ}$ at C.
Step V: With C as the center and radius 6.6 cm , cut off $C B=6.6 \mathrm{~cm}$.

Step VI: Join $A B$.
The quadrilateral so obtained is the required quadrilateral.

Question 5:

Solutions:

Steps of construction:
Step I: Draw $A B=4.4 \mathrm{~cm}$.
Step II: Construct $\angle B A D=125^{\circ}$ at A.
Step III: With A as the centre and radius 3.5 cm , cut off $A D=3.5 \mathrm{~cm}$.

Step IV: Construct $\angle A B C=125^{\circ}$ at B.
Step V: With B as the centre and radius 4.7 cm , cut off $B C=4.7 \mathrm{~cm}$.
Step VI: Join $C D$.

The quadrilateral so obtained is the required quadrilateral.

Question 6:

Solutions:

Steps of construction:

Step I: Draw $Q R=5 \mathrm{~cm}$.
Step II: Construct $\angle P Q R=45^{\circ}$ at Q.
Step III: With Q as the center and radius 9 cm , cut off $Q P=9 \mathrm{~cm}$.
Step IV: Construct $\angle Q R S=90^{\circ}$ at R.
Step V: With R as the center and radius 7 cm , cut off $R S=7 \mathrm{~cm}$.

Since, the line segment $P Q$ and $R S$ intersect each other, the quadrilateral cannot be constructed.

Question 7:

Solutions:

Steps of construction:

Step I: Draw $A B=3 \mathrm{~cm}$.

Step II: Construct $\angle D A B=90^{\circ}$ at A.
Step III: With A as the center and radius 5 cm , cut off $A D=5 \mathrm{~cm}$.
Step IV: Construct $\angle A B C=105^{\circ}$ at B.
Step V: With B as the center and radius 3 cm , cut off $B C=3 \mathrm{~cm}$.

Step VI: Join $C D$.

The quadrilateral so obtained is the required quadrilateral.

Question 8:

Solutions:

Steps of construction:
Step I: Draw $E F=3.5 \mathrm{~cm}$.

Step II: Construct $\angle D E F=100^{\circ}$ at E.
Step III: With E as the center and radius 4.5 cm , cut off $D E=4.5 \mathrm{~cm}$.
Step IV: Construct $\angle E F B=50^{\circ}$ at F.
Step V: With F as the center and radius 6.5 cm , cut off $F B=6.5 \mathrm{~cm}$.
Step VI: Join $B D$.
The quadrilateral so obtained is the required quadrilateral.

Exercise 18.5

Page Number: 18.13

Question 1:

Solutions:

Steps of construction:
Step I: Draw $A B=4 \mathrm{~cm}$.
Step II: Construct $\angle X A B=75^{\circ}$ at A and $\angle A B Y=80^{\circ}$ at B.
Step III: With B as the center and radius 3 cm , cut off $B C=3 \mathrm{~cm}$.
Step IV: At C, draw $\angle B C Z=120^{\circ}$ such that it meets $A X$ at D.
The quadrilateral so obtained is the required quadrilateral.

Question 2:

We know that the sum of all the angles in a quadrilateral is 360 .
i.e. $\angle A+\angle B+\angle C+\angle D=360^{\circ}$
$\angle C=105^{\circ}$

Solutions:

Steps of construction:
Step I: Draw $A B=5.5 \mathrm{~cm}$.
Step II: Construct $\angle X A B=60^{\circ}$ at A and $\angle A B Y=105^{\circ}$.
Step III: With B as the center and radius 3.7 cm , cut off $B C=3.7 \mathrm{~cm}$.
Step IV: At C, draw $\angle B C Z=105^{\circ}$ such that it meets $A X$ at D.
The quadrilateral so obtained is the required quadrilateral.

Question 3:

We know that the sum of all the angles in a quadrilateral is 360 .
i.e., $\angle P+\angle Q+\angle R+\angle S=360^{\circ}$
$\angle Q=75^{\circ}$

Solutions:

Steps of construction:

Step I: Draw $P Q=3.5 \mathrm{~cm}$.
Step II: Construct $\angle X P Q=75^{\circ}$ at P and $\angle P Q Y=75^{\circ}$ at Q.
Step III: With Q as the center and radius 6.5 cm , cut off $Q R=6.5$
Step IV: At R, draw $\angle Q R Z=105^{\circ}$ such that it meets $P X$ at S.
The quadrilateral so obtained is the required quadrilateral.

Question 4:

We know that the sum of all the angles in a quadrilateral is 360 . i.e.
i.e. $\angle A+\angle B+\angle C+\angle D=360^{\circ}$
$\angle C=95^{\circ}$

Solutions:

Steps of construction:

Step I: Draw $B C=5.5 \mathrm{~cm}$.
Step II: Construct $\angle X B C=110^{\circ}$ at A and $\angle B C Y=95^{\circ}$.
Step III: With C as the center and radius 4.1 cm , cut off $C D=4.1 \mathrm{~cm}$.

Step IV: At D, draw $\angle C D Z=85^{\circ}$ such that it meets $B Y$ at A.
The quadrilateral so obtained is the required quadrilateral.

Question 5:

We know that the sum of all the angles in a quadrilateral is 360 . i.e
i.e. $\angle A+\angle B+\angle C+\angle D=360^{\circ}$
$\angle D=115^{\circ}$

Solutions:

Steps of Construction:

Step I: Draw $B C=5.7 \mathrm{~cm}$.

Step II: Construct $\angle X B C=105^{\circ}$ at B and $\angle B C Y=105^{\circ}$ at C.
Step III: With C as the center and radius 6.8 cm , cut off $C D=6.8 \mathrm{~cm}$.
Step IV: At D, draw $\angle C D Z=115^{\circ}$ such that it meets $B Y$ at A.
The quadrilateral so obtained is the required quadrilateral.

Question 6:

Solutions:

Steps of construction:

Step I: Draw $P Q=4 \mathrm{~cm}$.
Step II: Construct $\angle X P Q=50^{\circ}$ at P and $\angle P Q Y=110^{\circ}$ at Q.
Step III: With Q as the center and radius 5 cm , cut off $Q R=5 \mathrm{~cm}$.
Step IV: At R, draw $\angle Q R Z=70^{\circ}$ such that it meets $P X$ at S.
The quadrilateral so obtained is the required quadrilateral.

