Exercise - 19.1

1. Curved surface area of a right circular cylinder is $4.4 \mathrm{~m}^{2}$. If the radius of the base of the cylinder is 0.7 m , find its height.

Sol:

Given that
Radius of base of the cylinder $e_{r}=0.7 \mathrm{~m}$
Curved surface area of cylinder $=4 \cdot 4 m^{2}=2 \pi r h$
Let h be the height of the cylinder
WKT,
$2 \pi r h=4.4 m^{2}$
$2 \times 3 \cdot 14 \times 0 \cdot 7 \times h=4 \cdot 4$
$(4.4) \mathrm{hm}-4.4 \mathrm{~m}^{2}$
$h=1 m$
\therefore The height of the cylinder $=1 \mathrm{~m}$.
2. In a hot water heating system, there is a cylindrical pipe of length 28 m and diameter 5 cm . Find the total radiating surface in the system.

Sol:

Given that
Height of cylinder $=$ length of cylindrical pipe $=28 \mathrm{~m}$.
Radius (r) of circular end of pipe $=\frac{5}{2} \mathrm{~cm}=2 \cdot 5 \mathrm{~cm}$
$=0.025 \mathrm{~m}$.
Curved surface area of cylindrical pipe $=2 \pi r h$
$=2 \times 3 \cdot 14 \times 0 \cdot 025 \times 28=4 \cdot 4 \mathrm{~cm}$
\therefore The area of radiation surface of the system is $4.4 \mathrm{~m}^{2}$ or $44000 \mathrm{~cm}^{2}$
3. A cylindrical pillar is 50 cm in diameter and 3.5 m in height. Find the cost of painting the curved surface of the pillar at the rate of 12.50 per m^{2}.
Sol:
Given that
Height of the pillar $=3.5 \mathrm{~m}$
Radius of the circular end of the pillar $=\frac{50}{2} \mathrm{~cm}$.
$=25 \mathrm{~cm}=0.25 \mathrm{~m}$
Curved surface area of pillar $=2 \pi r h$
$=2 \times \frac{22}{7} \times 0 \cdot 25 \times 3 \cdot 5 \mathrm{~m}^{2}$
$=5 \cdot 5 \mathrm{~m}^{2}$
Cost of painting $1 \mathrm{~m}^{2}$ area $-R s .12 \cdot 50$
Cost of painting $5 \cdot 5 \mathrm{~m}^{2}$ area $=R s .(5 \cdot 5 \times 12 \cdot 50)$
$=R s .68 .75$.
Thus, the cost of painting the CSA pillar is $R s .68,75$
4. It is required to make a closed cylindrical tank of height 1 m and base diameter 140 cm from a metal sheet. How many square meters of the sheet are required for the same?

Sol:

Height of the cylindrical tank $(h)=1 m$.
Base radius of cylindrical tank $(r)=\frac{140}{2} m=70 \mathrm{~cm}$
$=0.7 \mathrm{~m}$
Area of sheet required - total surface area of tank $=2 \pi(r+h)$
$=2 \times 3 \cdot 14 \times 0 \cdot 7(0 \cdot 7+1) \mathrm{m}^{2}$
$=4.4 \times 1.7 \mathrm{~m}^{2}$
$=7.48 \mathrm{~m}^{2}$
\therefore So, it will required $7 \cdot 48 m^{2}$ of metal sheet.
5. A solid cylinder has total surface area of $462 \mathrm{~cm}^{2}$. Its curved surface area is one-third of its total surface area. Find the radius and height of the cylinder.

Sol:

We have
Curved surface area $=\frac{1}{3} \times$ total surface area
$\Rightarrow 2 \pi r h=\frac{1}{3}\left(2 \pi r h+2 \pi r^{2}\right)$
$\Rightarrow 6 \pi r h=2 \pi r h+2 \pi r^{2}$
$\Rightarrow 4 \pi r h=2 \pi r^{2}$
$\Rightarrow 2 h=r$
We know that,
Total surface area $=462$
\Rightarrow Curved surface Area $=\frac{1}{3} \times 462$
$\Rightarrow 2 \pi r h=154$
$\Rightarrow 2 \times 3 \cdot 14 \times 2 h^{2}=154$
$\Rightarrow h^{2}=\frac{154 \times 7}{2 \times 22 \times 2}$
$=\frac{49}{4}$
$\Rightarrow h=\frac{7}{2} \mathrm{~cm}$
$\Rightarrow r=2 h$
$\Rightarrow r=2 \times \frac{7}{2} c m$
$\Rightarrow r=7 \mathrm{~cm}$.
6. The total surface area of a hollow cylinder which is open from both sides is $4620 \mathrm{sq} . \mathrm{cm}$, area of base ring is $115.5 \mathrm{sq} . \mathrm{cm}$ and height 7 cm . Find the thickness of the cylinder.
Sol:
Let the inner radii of hollow cylinder $\Rightarrow \mathrm{rcm}$
Outer radii of hollow cylinder \Rightarrow Rcm
Then,

$$
\begin{aligned}
& 2 \pi r h+2 \pi R h+2 \pi R^{2}-2 \pi r^{2}=4620 \rightarrow(1) \\
& \pi R^{2}-\pi r^{2}=115.5 \rightarrow(2) \\
& \Rightarrow 2 \pi h(R+r)+2\left(\pi R^{2}-\pi r^{2}\right)=4620 \text { and } \pi R^{2}-m^{2}=115 \cdot 5 \\
& \Rightarrow 2 \pi h(R+r)+231=4620 \text { and } \pi\left(R^{2}-r^{2}\right)=115 \cdot 5 \\
& \Rightarrow 2 \pi \times 7(r+R)=4389 \text { and } \pi\left(R^{2}-r^{2}\right)=115 \cdot 5 \\
& \Rightarrow \pi(R+r)=313 \cdot 5 \text { and } \pi(R+r)(R-r)=115 \cdot 5 \\
& \Rightarrow \frac{\pi(R+r)(R-r)}{\pi(R+r)}=\frac{115 \cdot 5}{313 \cdot 5} \\
& \Rightarrow R-r=\frac{7}{19} \mathrm{~cm} .
\end{aligned}
$$

7. Find the ratio between the total surface area of a cylinder to its curved surface area, given that its height and radius are 7.5 cm and 3.5 cm .
Sol:
For cylinder, total surface Area $=2 \pi r(h+r)$
Curved surface area $=2 \pi r h$
$\frac{\text { Total surface area }}{\text { Curved surface area }}=\frac{2 \pi r(h+r)}{2 \pi r h}=\frac{h+r}{h}$
$\therefore \frac{\text { Total surface area }}{\text { curved surface area }}=\frac{7 \cdot 5+3 \cdot 5}{7 \cdot 5}=\frac{11}{7 \cdot 5}$
$=\frac{11 \times 10}{7 \cdot 5}=\frac{22}{15}=22: 15$.
8. The total surface area of a hollow metal cylinder, open at both ends of external radius 8 cm and height 10 cm is $338 \mathrm{p} \mathrm{cm}^{2}$. Taking r to be inner radius, obtain an equation in r and use it to obtain the thickness of the metal in the cylinder.

Sol:

Given that,
External radius $(R)=8 \mathrm{~cm}$
Height $(h)=10 \mathrm{~cm}$
The total surface area of a hollow metal cylinder $=338 \mathrm{IT} \mathrm{cm}{ }^{2}$
We know that
$2 \pi R h+2 \pi r h+2 \pi R^{2}-2 \pi r^{2}=338 \pi$.
$\Rightarrow h(R+r)+(R+r)(R-r)=169$
$\Rightarrow 10(8+r)+(8+r)(8-r)=169$
$\Rightarrow 80+10 r+64-r^{2}=169$
$\Rightarrow x^{2}-10 r+25=0$
$\Rightarrow r=5$
$\therefore R-r=8-5 \mathrm{~cm}=3 \mathrm{~cm}$
9. A cylindrical vessel, without lid, has to be tin-coated on its both sides. If the radius of the base is 70 cm and its height is 1.4 m , calculate the cost of tin-coating at the rate of Rs. 3.50 per $1000 \mathrm{~cm}^{2}$.
Sol:
Given that
$r=70 \mathrm{~cm}, h=1.4 \mathrm{~m}=140 \mathrm{~cm}$
\therefore Area to be tin coated $=2\left(2 \pi r h+\pi r^{2}\right)=2 \pi r(2 h+r)$
$=2 \times \frac{22}{7} \times 70(280+70)$
$=154000 \mathrm{~cm}^{2}$
Required cost $=\frac{154000 \times 3 \cdot 50}{1000}=R s .539$.
10. The inner diameter of a circular well is 3.5 m . It is 10 m deep Find:
(i) inner curved surface area.
(ii) the cost of plastering this curved surface at the rate of Rs. 40 per m^{2}.

Sol:
Inner radius (r) of circular well $=1.75 m$
Depth (n) of circular well $=10 \mathrm{~m}$
(i) Inner curved surface area $=2 \pi r h$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 1 \cdot 75 \times 10 \mathrm{~m}^{2} \\
& =(144 \times 0 \cdot 25 \times 10) \mathrm{m}^{2} \\
& =110 \mathrm{~m}^{2}
\end{aligned}
$$

(ii) Cost of plastering $1 \mathrm{~m}^{2}$ area $=R s .40$.

Cost of plastering $110 m^{2}$ area $=R s .(110 \times 40)$
= Rs. 4400
11. Find the lateral curved surface area of a cylinderical petrol storage tank that is 4.2 m in diameter and 4.5 m high. How much steel was actually used, if $\frac{1}{12}$ of steel actually used was wasted in making the closed tank?
Sol:
Height (h) cylindrical tank $=4 \cdot 5 m$
Radius (r) of circular end of cylindrical tank $=\frac{4 \cdot 2}{2} m=2 \cdot 1 m$.
(i) Lateral or curved surface area of tank $=2 \pi r h$

$$
\begin{aligned}
& \Rightarrow 2 \times 3 \cdot 14 \times 2 \cdot 1 \times 4 \cdot 5 \mathrm{~m}^{2} \\
& =59 \cdot 4 \mathrm{~m}^{2}
\end{aligned}
$$

(ii) Total surface area of tank $=2 \pi r(r+h)$

$$
\begin{aligned}
& =2\left[\frac{22}{7}\right] \times 2 \cdot 1(2 \cdot 1+4 \cdot 5) \mathrm{m}^{2} \\
& =87 \cdot 12 \mathrm{~m}^{2}
\end{aligned}
$$

Let $A m^{2}$ steel sheet be actually used in making the tank

$$
\begin{aligned}
& \therefore A\left(1-\frac{1}{12}\right)=87 \cdot 12 m^{2} \\
& \Rightarrow A=\left(\frac{12}{\pi} \times 87 \cdot 12\right) m^{2} \\
& \Rightarrow A=95 \cdot 04 \mathrm{~m}^{2}
\end{aligned}
$$

Thus, $95.04 \mathrm{~m}^{2}$ steel was used in actual while making the tank.
12. The students of a Vidyalaya were asked to participate in a competition for making and decorating pen holders in the shape of a cylinder with a base, using cardboard. Each pen holder was to be of radius 3 cm and height 10.5 cm . The Vidyalaya was to supply the competitors with cardboard. If there were 35 competitors, how much cardboard was required to be bought for the competition?

Sol:

Radius of circular end of cylinder pen holder $=3 \mathrm{~cm}$
Height of pen holder $=10 \cdot 5 \mathrm{~cm}$
Surface area of 1 pen holder $=$ CSA of penholder + Area of base of SA of 1 penholder $=$ $2 \pi r h+\pi r^{2}$
$=2 \times 3 \cdot 14 \times 3 \times 10 \cdot 5+3 \cdot 14138$
$=132 \times 1 \cdot 5+\frac{198}{7} \mathrm{~cm}^{2}$
$=198+\frac{198}{7} \mathrm{~cm}^{2}$
$=\frac{1584}{7} \mathrm{~cm}^{2}$
Area of car board sheet used by 1 competitor $=\frac{1584}{7} \mathrm{~cm}^{2}$
Area of car board sheet used by 35 competitors $=\frac{1584}{7} \times 35 \mathrm{~cm}^{2}=7920 \mathrm{~cm}^{2}$.
13. The diameter of roller 1.5 m long is 84 cm . If it takes 100 revolutions to level a playground, find the cost of levelling this ground at the rate of 50 paise per square metre.

Sol:

Given that,
Diameter of the roller $=84 \mathrm{~cm}=0.84 \mathrm{~m}$.
Length of the roller $=1.5 \mathrm{~m}$.
Radius of the roller $=\frac{D}{2}=\frac{0 \cdot 84}{2}=0 \cdot 42$.
Area covered by the roller on one revolution = covered surface area of roller
Curved surface of roller $=2 \pi r h=2 \times \frac{22}{7} \times 0.42 \times 1 \cdot 5$
$=0 \cdot 12 \times 22 \times 1.5 \mathrm{~m}^{2}$
Area of the playground $=100 \times$ Area covered by roller in one revolution
$=(100 \times 0 \cdot 12 \times 22 \times 1 \cdot 5) \mathrm{m}^{2}$
$=396 \mathrm{~m}^{2}$
Now,

Cost of leveling $1 m^{2}=50 P=\frac{50}{100} \Rightarrow \operatorname{Re}=\frac{1}{2} r s$
Cost of leveling $396 m^{2}=\frac{1}{2} \times 396=R s \cdot 198$
Hence, cost of leveling $396 \mathrm{~m}^{2}$ is 198
14. Twenty cylindrical pillars of the Parliament House are to be cleaned. If the diameter of each pillar is 0.50 m and height is 4 m . What will be the cost of cleaning them at the rate of Rs. 2.50 per square metre?
Sol:
Diameter of each pillar $=0.5 \mathrm{~m}$
Radius of each pillar $(r) \frac{a}{2}=\frac{0 \cdot 5}{2}=0 \cdot 25 \mathrm{~m}$.
Height of each pillar $=4 \mathrm{~m}$.
Curved surface area of each pillar $=2 \pi r h$
$=2 \times 3 \cdot 14 \times 0 \cdot 25 \times 4 m^{2}$
$=\frac{44}{7} m^{2}$
Curved surface area of 20 pillars $=20 \times \frac{44}{7} m^{2}$
Given, cost of cleaning $=R s .2 \cdot 50$ per square meter
\therefore Cost of cleaning 20 pillars $=$ Rs. $2 \cdot 50 \times 20 \times \frac{44}{7}$
$=R s .314 \cdot 28$.

