Exercise - 20.1

1. Find the curved surface area of a cone, if its slant height is 60 cm and the radius of its base is 21 cm .
Sol:
Given that
Radius of its base is 21 cm
Slant height $=60 \mathrm{~cm}$
WKT, Curved surface area of a cone $=\pi r l$
\therefore Curved surface area $=\frac{22}{7} \times 21 \times 60$
$=3960 \mathrm{~cm}^{2}$
2. The radius of a cone is 5 cm and vertical height is 12 cm . Find the area of the curved surface.

Sol:
Given,
Radius of cone $=5 \mathrm{~cm}=r$
Height of a cone $=12 \mathrm{~cm}=h$
Slant height of the cone $=\sqrt{r^{2}+h^{2}}$
$=\sqrt{5^{2}+12^{2}}=13 \mathrm{~cm}$
\therefore Curved surface Area $=\pi r l$
$=\frac{22}{7} \times 5 \times 12$
$=204 \cdot 28 \mathrm{~cm}^{2}$
3. The radius of a cone is 7 cm and area of curved surface is $176 \mathrm{~cm}^{2}$. Find the slant height.

Sol:
Given
Radius of a cone $(r)=7 \mathrm{~cm}$.
Let ' l ' be the slant height of a cone
\therefore Curved surface area $=\pi r l$.
$\Rightarrow 176=\pi \times 7 \times l$
$\Rightarrow l=\frac{176}{7 \pi}=\frac{176 \times 7}{7 \times 22}=8 \mathrm{~cm}$.
4. The height of a cone is 21 cm . Find the area of the base if the slant height is 28 cm .

Sol:

Given that
Slant height ' 1 ' $=28 \mathrm{~m}$.
Height of cone $(h)=21 \mathrm{~cm}$
\therefore Radius of cone $(r)=\sqrt{28^{2}-21^{2}} \quad$ [by Pythagoras theorem]
$=7 \sqrt{7} \mathrm{~cm}$
\therefore Area of base $=\pi r^{2}$
$=\frac{22}{7} \times(7 \sqrt{7})^{2}$
$=\frac{22}{7} \times 7 \times 7 \times 7=1078 \mathrm{~cm}^{2}$.
5. Find the total surface area of a right circular cone with radius 6 cm and height 8 cm .

Sol:

WKT, Total surface area $=\pi r l+\pi r^{2}$
Now $l=\sqrt{h^{2}+r^{2}} \quad$ [by Pythagoras theorem]
Here, given
Radius $=6 \mathrm{~cm}$ and height $=8 \mathrm{~cm}$
\Rightarrow length $=\sqrt{6^{2}+8^{2}}$
$=10 \mathrm{~cm}$
\therefore Total surface area $=\pi r l+\pi r^{2}$
$=\left(\frac{22}{7} \times 6 \times 10\right)+\left(\frac{22}{7} \times 6 \times 6\right)$
$=\left(\frac{1320}{7}\right)+\frac{792}{7}=301 \cdot 71 \mathrm{~cm}^{2}$
6. Find the curved surface area of a cone with base radius 5.25 cm and slant height 10 cm .

Sol:

Given that,
Radius of a base of a cone $=5 \cdot 25 \mathrm{~cm}$
Slant height of cone $=10 \mathrm{~cm}$
Curved surface area of cone $=\pi r l$

$$
\begin{aligned}
& =\frac{22}{7} \times 5.25 \times 10 \mathrm{~cm}^{2} \\
& =(22 \times 0.75 \times 10) \mathrm{cm}^{2} \\
& =165 \mathrm{~cm}^{2}
\end{aligned}
$$

Thus, the curved surface area of a cone is
$165 \mathrm{~cm}^{2}$
7. Find the total surface area of a cone, if its slant height is 21 m and diameter of its base is 24 m .
Sol:
Given that,
Radius of base of cone $=\left(\frac{24}{2}\right)=12 m$
Slant height of cone $=21 \mathrm{~m}$.
Total surface area of cone $=\pi r^{2}+\pi r l$
$=\pi r(r+l)$
$=\frac{22}{7} \times 12 \times(12+21)$
$=\frac{22}{7} \times 12 \times 33 \mathrm{~m}^{2}$
$=1244 \cdot 57 \mathrm{~m}^{2}$.
8. The area of the curved surface of a cone is $60 \pi \mathrm{~cm}^{2}$. If the slant height of the cone be 8 cm , find the radius of the base?
Sol:
Given that
Curved surface area of cone $=60 \pi \mathrm{~cm}^{2}$
\therefore Slant height of cone $(l)=8 \mathrm{~cm}$.
i.e., $\pi r l=60 \pi$
$\Rightarrow \pi \times r \times 8=60 \pi$
$\Rightarrow r=\frac{60}{8}=7 \cdot 5$
\therefore Radius of cone $=7 \cdot 5 \mathrm{~cm}$.
9. The curved surface area of a cone is $4070 \mathrm{~cm}^{2}$ and its diameter is 70 cm . What is its slant height? (Use it $\pi=22 / 7$).
Sol:
Given diameter $=70 \mathrm{~cm}$
$\Rightarrow 2 r=70 \mathrm{~cm}$
$\Rightarrow r=35 \mathrm{~cm}$
Now, curved surface area $=4070 \mathrm{~cm}^{2}$
$\Rightarrow \pi r l=4070$
Where $r=$ radius of the cone
$l=$ slant height of the cone
$\therefore \pi r l=4070$
$\Rightarrow \frac{22}{7} \times 35 \times l=4070$
$\Rightarrow l=\frac{4070 \times 7}{22 \times 35}=37 \mathrm{~cm}$
\therefore Slant height of the cone $=37 \mathrm{~cm}$.
10. The radius and slant height of a cone are In the ratio of $4: 7$. If its curved surface area is 792 cm^{2}, find its radius. (Use it $\pi=22 / 7$).
Sol:
Given that,
Curved surface area $=\pi r l=792$.
Let the radius $(r)=4 x$
Height $(h)=7 x$
Now, CSA $=792$
$\frac{22}{7} \times 4 x \times 7 x=792$
$\Rightarrow 88 x^{2}=792$
$\Rightarrow x^{2}=\frac{792}{88}=9$.
$\Rightarrow x=3$.
\therefore Radius $=4 x=4 \times 3=12 \mathrm{~cm}$.
11. A Joker's cap is in the form of a right circular cone of base radius 7 cm and height 24 cm .

Find the area of the sheet required to make 10 such caps.

Sol:

Given that,
Radius of conical cap $(r)=7 \mathrm{~cm}$.
Height of conical cap $(h)=24 \mathrm{~cm}$.
Slant height (I) of conical cap $=\sqrt{r^{2}+h^{2}}$
$=\sqrt{(7)^{2}+(24)^{2}} \mathrm{~cm}$
$=25 \mathrm{~cm}$
CSA of 1 conical cap $=\pi r l=\frac{22}{7} \times 7 \times 25 \mathrm{~cm}^{2}=550 \mathrm{~cm}^{2}$
Curved surface area of such 10 conical caps $=5500 \mathrm{~cm}^{2}$
$[\because 550 \times 10]$
Thus, $5500 \mathrm{~cm}^{2}$ sheet will be req for making of 10 caps.
12. Find the ratio of the curved surface areas of two cones if their diameters of the bases are equal and slant heights are in the ratio $4: 3$.
Sol:
Given that,
Diameter of two cones area equal
\therefore Their radius are equal
Let $r_{1}=r_{2}=r$
Let ratio be x
\therefore Slant height l_{1} of $1^{\text {st }}$ cone $=4 x$
Similarly slant height l_{2} of $2^{\text {nd }}$ cone $=3 x$.
$\therefore \frac{C \cdot S A_{1}}{C \cdot S A_{2}}=\frac{\pi r_{1} l_{1}}{\pi r_{2} l_{2}}=\frac{\pi \times r \times 4 x}{\pi \times r \times 3 x}=\frac{4}{3}$.
13. There are two cones. The curved surface area of one is twice that of the other. The slant height of the later is twice that of the former. Find the ratio of their radii.

Sol:

Let curved surface area off $1^{\text {st }}$ cone $=2 x$
CSA of $2^{\text {nd }}$ cone $=x$
and slant height of $1^{\text {st }}$ cone $=h$
and slant height of $2^{\text {nd }}$ cone $=2 \mathrm{~h}$
$\therefore \frac{C S A \text { of } 1^{\text {st }} \text { cone }}{C S A \text { of } 2^{\text {nd }} \text { cone }}=\frac{2 x}{x}=\frac{2}{1}$.
$\Rightarrow \frac{\pi r_{1} l_{1}}{\pi r_{2} l_{2}}=\frac{2}{1}$
$\Rightarrow \frac{r_{1} h}{r_{2} h}=\frac{2}{1} \Rightarrow \frac{r_{1}}{r_{2}}=\frac{4}{1}$.
i.e., ratio of r_{1} and r_{2} is $(4: 1)$
14. The diameters of two cones are equal. If their slant heights are in the ratio $5: 4$, find the ratio of their curved surfaces.

Sol:

Given that,
Diameters of two cones are equal
\therefore Their radius are also equal i.e., $r_{1}=r_{2}$
Let the ratio of slant height be x
$\therefore l_{1}=5 x$ and $l_{2}=4 x$
\therefore Ratio of curved surface area $=\frac{C_{1}}{C_{2}}$
$\therefore \frac{C_{1}}{C_{2}}=\frac{\pi r_{1} l_{1}}{\pi r_{2} l_{2}}=\frac{\pi r_{1} S x}{\pi r_{2}(4 x)}=\frac{5}{4}$
\therefore Ratio of curved surface area $=5: 4$
15. Curved surface area of a cone is $308 \mathrm{~cm}^{2}$ and its slant height is 14 cm . Find the radius of the base and total surface area of the cone.
Sol:
(i) Given that,

Slant height of cone $=14 \mathrm{~cm}$
Let radius of circular end of cone $=r$.
Curved surface area of cone $=\pi r h$
$308 \mathrm{~cm}^{2}=\left(\frac{22}{7} \times r \times 14\right) \mathrm{cm} \quad\left[\because C S A=308 \mathrm{~cm}^{2}\right)$
$\Rightarrow r=\frac{308}{44} \mathrm{~cm}=7 \mathrm{~cm}$
Thus, radius of circular end of cone $=7 \mathrm{~cm}$
(ii) Given that CSA $=308 \mathrm{~cm}^{2}$

WKT, total surface area of cone
$=$ curved surface area of cone + area of base
$=\pi r l+\pi r^{2}$
$=\left[308+\frac{22}{7}(7)^{2}\right] \mathrm{cm}^{2}$
$=308+154 \mathrm{~cm}^{2}$
$=462 \mathrm{~cm}^{2}$
Thus, the total SA of the cone is $462 \mathrm{~cm}^{2}$.
16. The slant height and base diameter of a conical tomb are 25 m and 14 m respectively. Find the cost of white-washing its curved surface at the rate of Rs. 210 per $100 \mathrm{~m}^{2}$.

Sol:

Given that,
Slant height of conical tomb $(l)=25 \mathrm{~m}$
Base radius (r) of tomb $=\frac{14}{2} m=7 m$.
CSA of conical length tomb $=\pi r l$
$=\left(\frac{22}{7} \times 7 \times 25\right) m^{2}$
$=550 \mathrm{~m}^{2}$

Cost of white - washing $100 \mathrm{~m}^{2}$ area $=$ Rs. 210
Cost of white - washing $550 \mathrm{~m}^{2}$ area $=R s .\left(\frac{210 \times 550}{100}\right)$
$=R s .1155$.
Thus the cost of white washing total tomb = Rs. 1155
17. A conical tent is 10 m high and the radius of its base is 24 m . Find the slant height of the tent. If the cost of $1 \mathrm{~m}^{2}$ canvas is Rs. 70, find the cost of the canvas required to make the tent.

Sol:

(i) Given that

Height of conical tent $(h)=10 \mathrm{~m}$
Radius of conical tent $(r)=24 m$.
Let slant height of conical tent be l
$l^{2}=h^{2}+r^{2}=(10 m)^{2}+(24 m)^{2}=(100+576) m^{2}$
$=676 \mathrm{~m}^{2}$
$l=26 \mathrm{~m}$.
Thus, the slant height of the conical tent is 26 m .
(ii) Given that

Radius $(r)=24$
Slant height $(l)=26$
CSA of tent $=\pi r l=\frac{22}{7} \times 24 \times 26=\frac{13728}{7} m^{2}$
Cost of $1 \mathrm{~m}^{2}$ canvas $S=R s .70$.
Cost of $\frac{13728}{7} m^{2}$ canvas $=\frac{13728}{7} \times 10$
$=R s .1,37,280$.
Thus, the cost of canvas required to make the tent is Rs. 137280.
18. A tent is in the form of a right circular cylinder surmounted by a cone. The diameter of cylinder is 24 m . The height of the cylindrical portion is 11 m while the vertex of the cone is 16 m above the ground. Find the area of the canvas required for the tent.

Sol:

Given that,
Diameter of cylinder $=24 m$
\therefore Radius $=\frac{\text { diameter }}{2}=\frac{24 \mathrm{~cm}}{2}=12 \mathrm{~cm}$

Also Radius of cone $=12 \mathrm{~m}$.
Height of cylinder $=11 \mathrm{~m}$
Height of cone $=16-11=5 \mathrm{~m}$
Slant height of cone $=\sqrt{h^{2}+r^{2}}$
$=\sqrt{5^{2}+12^{2}}=13 \mathrm{~m}$
$\left[\because l=\sqrt{r^{2}+h^{2}}\right]$
\therefore area of canvas required for the
tent $=\pi r l+2 \pi r h$
$=\frac{22}{7}[12 \times 13+2 \times 12 \times 11]$
$=490 \cdot 285+829 \cdot 714$
$=1320 \mathrm{~m}^{2}$.
19. A circus tent is cylindrical to a height of 3 meters and conical above it. If its diameter is 105 m and the slant height of the conical portion is 53 m , calculate the length of the canvas 5 m wide to make the required tent.

Sol:

Given diameter $=105 \mathrm{~m}$
Radius $=\frac{105}{2} m=52 \cdot 5 m$.
\therefore Curved surface area of circus tent $=\pi r l+2 \pi r h$
$=\frac{22}{7} \times 52 \cdot 5 \times 53+2 \times 52.5 \times 3 \times \frac{22}{7}$
$=8745+990$
$=9735 \mathrm{~m}^{2}$
\therefore Length of the canvas equation for tent $=\frac{\text { Area of canvas }}{\text { width of canvas }}$

$$
=\frac{9735}{5}=1947 \mathrm{~m}
$$

20. The circumference of the base of a 10 m height conical tent is 44 metres. Calculate the length of canvas used in making the tent if width of canvas is 2 m . (Use it $\pi=22 / 7$).
Sol:
WKT, CSA of cone $=\pi r l$
Given circumference $=2 \pi r$
$\Rightarrow 2 \times \frac{22}{7} \times r=44 \Rightarrow \frac{r}{7}=1 \Rightarrow r=7 m$
$\therefore L=\sqrt{r^{2}+h^{2}}=\sqrt{7^{2}+10^{2}}=\sqrt{149} \mathrm{~m}$
$\therefore C S A$ of tent $=\pi r l=\frac{22}{7} \times 7 \times \sqrt{149}=22 \sqrt{149}$.
\therefore The length of can vas used in making tent
$=\frac{\text { Area of canvas }}{\text { width of canvas }}$
$=\frac{22 \sqrt{149}}{2}=11 \sqrt{149}$
$=134 \cdot 2 \mathrm{~m}$.
21. What length of tarpaulin 3 m wide will be required to make a conical tent of height 8 m and base radius 6 m ? Assume that the extra length of material will be required for stitching margins and wastage in cutting is approximately 20 cm (Use it $\pi=3.14$)

Sol:

Given that,
Height of conical tent $(h)=8 m$.
Radius of base of tent $(r)=6 m$.
Slant height $(l)=\sqrt{r^{2}+h^{2}}=\sqrt{8^{2}+6^{2}}=\sqrt{100}=10 \mathrm{~m}$
CSA of conical tent $=\pi r l=(3 \cdot 14 \times 6 \times 10) m^{2}$
$=188 \cdot 4 \mathrm{~m}^{2}$
Let the length of tarpaulin sheet require be L
As 200 m will be wasted, So effective length will be $(L-0 \cdot 2 m)$
Breadth of tarpaulin $=3 \mathrm{~m}$
Area of sheet $=$ CSA of sheet
$(L \times 0 \cdot 2 m \times 3) m=188 \cdot 40 m^{2}$
$\Rightarrow L-0 \cdot 2 m=62 \cdot 8 m$
$\Rightarrow L=63 \mathrm{~m}$
Thus, the length of the tarpaulin sheet will be $=163 \mathrm{~m}$.
22. A bus stop is barricated from the remaining part of the road, by using 50 hollow cones made of recycled card-board. Each cone has a base diameter of 40 cm and height 1 m . If the outer side of each of the cones is to be painted and the cost of painting is Rs. 12 per m^{2}, what will be the cost of painting all these cones. (Use $\pi=3.14$ and $\sqrt{1.04}=1.02$)

Sol:

Radius of cone $(r)=\frac{40}{2}=20 \mathrm{~m}=0 \cdot 2 \mathrm{~m}$.

Height of cone $=1 \mathrm{~m}$.
Slant height of cone $(l)=\sqrt{h^{2}+r^{2}}$
$=\sqrt{1^{2}+(0 \cdot 2)^{2} m}$
$=\sqrt{1 \cdot 04} m=1 \cdot 02 m$
Curved surface area of each one
$=\pi r l=(3.14 \times 0.2 \times 1.02) \mathrm{m}^{2}$
$=0.64056 \mathrm{~m}^{2}$
CSA of 50 such cone $=50 \times 0 \cdot 64056 \mathrm{~m}^{2}=32 \cdot 028 \mathrm{~m}^{2}$
Cost of painting $1 \mathrm{~m}^{2}$ area $=$ Rs. 12.
Cost of painting $32 \cdot 028 m^{2}$ area $=R s .(32 \cdot 028 \times 12)$
= Rs. 384.326 PS.
Thus, it will cost Rs. 38434 (Approx) in painting the so hollow cones.
23. A cylinder and a cone have equal radii of their bases and equal heights. If their curved surface areas are in the ratio 8:5, show that the radius of each is to the height of each as 3:4.

Sol:

Let us assume radius of cone $=r$.
Also, radius of cylinder $=r$.
Height of cone $=h$
And, height of cylinder $=h$.
Let C_{1}, be the curved surface area of cone
$\therefore C_{1}=\pi r \sqrt{r^{2}+h^{2}}$
Similarly, C_{2} be the curved surface area of cone cylinder.
$\therefore C_{2}=2 \pi r h$
According to question $\frac{C_{2}}{C_{1}}=\frac{8}{5}$.
$\Rightarrow \frac{2 \pi r h}{\pi r \sqrt{r^{2}+h^{2}}}=\frac{8}{5}$
$\Rightarrow 10 h=8 \sqrt{r^{2}+h^{2}}$
$\Rightarrow 100 h^{2}=64 r^{2}+64 h^{2}$
$\Rightarrow 36 h^{2}=64 r^{2}$
$\frac{h}{r}=\sqrt{\frac{64}{30}}$
$\Rightarrow\left(\frac{h}{r}\right)^{2}=\frac{64}{36}$
$\Rightarrow \frac{b}{r}=\sqrt{\frac{64}{30}}=\frac{8}{6}=\frac{4}{3}$
$\therefore \frac{r}{h}=\frac{3}{4}$.

Exercise - 20.2

1. Find the volume of a right circular cone with:
(i) radius 6 cm , height 7 cm .
(ii) radius 3.5 cm , height 12 cm
(iii) height 21 cm and slant height 28 cm .

Sol:
(i) Given that,

Radius of cone $(r)=6 m$
Height of cone $(h)=7 \mathrm{~cm}$
Volume of cone $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times(6)^{2} \times 7$
$=264 \mathrm{~cm}^{3}$
(ii) Given,

Radius of cone $(r)=3 \cdot 5 \mathrm{~cm}$
Height of cone $(h)=12 \mathrm{~cm}$
Volume of cone $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times(3 \cdot 5)^{2} \times 12$
$=154 \mathrm{~cm}^{3}$
(iii) From the relation
$l^{2}=r^{2}+h^{2}$, we have
$r=\sqrt{l^{2}-h^{2}}=\sqrt{(28)^{2}-}(21)^{2}=7 \sqrt{7} \mathrm{~cm}$
So, volume of cone $=\frac{1}{3} \times \pi r^{2} \times h$
$=\frac{1}{3} \times \frac{22}{7} \times(21)^{2} \times(7 \sqrt{7})^{2}$
$=7546 \mathrm{~cm}^{3}$
2. Find the capacity in litres of a conical vessel with:
(i) radius 7 cm , slant height 25 cm
(ii) height 12 cm , slant height 13 cm .

Sol:
(i) Radius of cone $(r)=7 \mathrm{~cm}$

Slant height (l) of cone $=25 \mathrm{~cm}$
Height (h) of cone $=\sqrt{l^{2}-r^{2}}$
$=\sqrt{(25)^{2}-b^{2}}=\sqrt{25^{2}-7^{2}}=24 \mathrm{~cm}$.
Volume of cone $=\frac{1}{3} \pi r^{2} h=\left[\frac{1}{3} \times \frac{22}{7} \times(7)^{2} \times 24\right] \mathrm{cm}^{3}$
$=1232 \mathrm{~cm}^{3}$.
(ii) Height (h) of cone $=12 \mathrm{~cm}$.

Slant height of cone $(l)=13 \mathrm{~cm}$.
Radius (r) of cone $=\sqrt{l^{2}-r^{2}}=\sqrt{13^{2}-12^{2}} \mathrm{~cm}$
$=5 \mathrm{~cm}$.
Volume of cone $=\frac{1}{3} \pi r^{2} h=\left(\frac{1}{3} \times \frac{22}{7} \times(5)^{2} \times 12\right) \mathrm{cm}^{3}$
$=\frac{2200}{7} \mathrm{~cm}^{3}$
Capacity of the conical vessel $=\left(\frac{2200}{7000}\right)$ liters

$$
=\frac{11}{35} \text { liters }
$$

3. Two cones have their heights in the ratio $1: 3$ and the radii of their bases in the ratio $3: 1$. Find the ratio of their volumes.
Sol:
Given that, let height $\rightarrow h$ say
Height of $1^{\text {st }}$ cone $=h$
Height of $2^{\text {nd }}$ cone $=3 \mathrm{~h}$
Let the ratio of radii be r
\therefore Radius of $1^{\text {st }}$ cone $=3 \mathrm{r}$
Radius of $2^{\text {nd }}$ cone $=r$
\therefore ratio of volume $=\frac{V_{1}}{V_{2}}$
$\Rightarrow \frac{V_{1}}{V_{2}}=\frac{\frac{1}{3} \pi r_{1}^{2} h_{1}}{\frac{1}{3} \pi r_{2}^{2} h_{2}}=\frac{r_{1}^{2} h_{1}}{r_{2}^{2} h_{2}}$
$=\frac{(3 r)^{2} \times h}{r^{2} \times 3 h}$
$=\frac{9 r^{2} h}{3 r^{2} h}$
$=\frac{3}{1}$
$\Rightarrow \frac{V_{1}}{V_{2}}=\frac{3}{1}$.
4. The radius and the height of a right circular cone are in the ratio $5: 12$. If its volume is 314 cubic meter, find the slant height and the radius (Use it $\pi=3.14$).
Sol:
Let the ratio be x
\therefore Radius ' r ' $=5 x$
Height ' h ' $=12 x$
WKT,
\therefore Slant height $=\sqrt{r^{2}+h^{2}}=\sqrt{(5 x)^{2}+(12 x)^{2}}=13 x$
Now volume $=314 m^{3}$ [given data]
$\Rightarrow \frac{1}{3} \pi r^{2} h=314 m^{3}$
$\Rightarrow \frac{1}{3} \times 3 \cdot 14 \times 25 x^{2} \times 12 x=314$
$\Rightarrow x^{3}=\frac{314 \times 3}{3 \cdot 14 \times 25 \times 12}$
$\Rightarrow x^{3}=1 \Rightarrow x=1$
\therefore Slant height $=13 x=13 m$
Radius $=5 x=5 m$.
5. The radius and height of a right circular cone are in the ratio $5: 12$ and its volume is 2512 cubic cm . Find the slant height and radius of the cone. (Use it $\pi=3.14$).
Sol:
Let the ratio be x
Radius ' r ' $=5 x$
Height ' h ' $=12 x$
\therefore Slant height ' $l^{\prime}=\sqrt{r^{2}+h^{2}}=\sqrt{(5 x)^{2}+(12 x)^{2}}=13 x$.
Now volume $=2512 \mathrm{~cm}^{3}$
$\Rightarrow \frac{1}{3} \times \pi \times(5 x)^{2} \times 12 x=2512$
$\Rightarrow \frac{1}{3} \times 3 \cdot 14 \times 25 x^{2} \times 12 x=2512$
$\Rightarrow x^{3}=\frac{2512 \times 3}{314 \times 25 \times 2}$
$\Rightarrow x=2$.
\therefore Slant height $=13 x=13 \times 2=26 \mathrm{~cm}$
And, Radius of cone $=5 x=5 \times 2=10 \mathrm{~cm}$.
6. The ratio of volumes of two cones is $4: 5$ and the ratio of the radii of their bases is $2: 3$. Find the ratio of their vertical heights.

Sol:

Let ratio of radius be ' r '
Radius of $1^{\text {st }}$ cone $=2 r$
Radius of $2^{\text {nd }}$ cone $=3 \mathrm{r}$
Similarly
Let volume ratio be ' v '
Volume of $1^{\text {st }}$ cone $\rightarrow 4 v$
Similarly volume of $2^{\text {nd }}$ cone $\rightarrow 5 v$
$\therefore \frac{V_{1}}{V_{2}}=\frac{4 v}{5 v}=\frac{4}{5}$
$\Rightarrow \frac{\frac{1}{3} \pi r_{1}^{2} h_{1}}{\frac{1}{3} \pi r_{2}^{2} h_{2}}=\frac{4}{5}$
$\Rightarrow \frac{h_{1}(2 r)^{2}}{h_{2}(3 r)^{2}}=\frac{4}{5}$
$\Rightarrow \frac{h_{1}}{h_{2}} \times \frac{4 r^{2}}{9 r^{2}}=\frac{4}{5}$
$\Rightarrow \frac{h_{1}}{h_{2}} \times \frac{36}{20}=\frac{18}{20}=\frac{9}{5}$
\therefore Ratio of the inner height is $9: 5$
7. A cylinder and a cone have equal radii of their bases and equal heights. Show that their volumes are in the ratio 3:1.
Sol:
Given that,
A cylinder and a cone have equal radii of their equal bases and heights
Let radius of cone $=$ radius of cylinder $=r$
Let height of cone $=$ height of cylinder $=h$
Let $V_{1}=$ volume of cone
$V_{2}=$ volume of cylinder
$\Rightarrow \frac{V_{1}}{V_{2}}=\frac{\frac{1}{3} \pi r^{2} h}{\pi r^{2} h}=\frac{1}{3}$
$\Rightarrow \frac{V_{2}}{V_{1}}=\frac{3}{1}$
Hence their volumes are in the ratio $3: 4$.
8. If the radius of the base of a cone is halved, keeping the height same, what is the ratio of the volume of the reduced cone to that of the original cone?
Sol:
Let radius of cone is r and height is h
Volume $V_{1}=\frac{1}{3} \pi r^{2} h$.
In another case,
Radius of cone $=$ half of radius $=\frac{r}{2}$
Height $=h$
\therefore Volume $=\left(V_{2}\right)=\frac{1}{3} \pi\left(\frac{1}{2} r\right)^{2} h$
$=\frac{1}{3} \pi \times \frac{r^{2}}{4} \times h$
$=\frac{1}{12} \pi r^{2} h$.
$\therefore \frac{V_{1}}{V_{2}}=\frac{\frac{1}{12} \pi r^{2} h}{\frac{1}{3} \pi r^{2} h}=\frac{3}{12}=\frac{1}{4}$.
\therefore Ratio will be $(1: 4)$.
9. A heap of wheat is in the form of a cone of diameter 9 m and height 3.5 m . Find its volume.

How much canvas cloth is required to just cover the heap? (Use $\pi=3.14$).
Sol:
Diameter of heap $d=9 m$
Radius $=\frac{9}{2} m=4 \cdot 5 m$.
Height $(h)=3 \cdot 5 \mathrm{~m}$.
Volume of heap $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3}\left[3 \cdot 14 \times(4 \cdot 5)^{2} \times 3 \cdot 5\right] \mathrm{m}^{3}$
$=74 \cdot 18 m^{3}$
Slant height $l=\sqrt{r^{2}+h^{2}}=\sqrt{(4 \cdot 5)^{2}+(3 \cdot 5)^{2}}$
$=5.70 \mathrm{~m}$.
Area of canvas required $=$ CSA of cone
$=\pi r l$
$=3 \cdot 14 \times 4 \cdot 5 \times 5 \cdot 7 \mathrm{~m}^{2}$
$=80 \cdot 54 \mathrm{~m}^{2}$
10. A heap of wheat is in the form of a cone of diameter 9 m and height 3.5 m . Find its volume.

How much canvas cloth is required to just cover the heap? (Use $\pi=3.14$).
Sol:
Given diameter of cone 14 cm
\therefore Radius of cone $=7 \mathrm{~cm}$
Height of cone $=51 \mathrm{~cm}$.
\therefore Volume of cone $=\frac{1}{3} \times \pi r^{2} h$
$=\frac{1}{3} \times \frac{22}{7} \times 7 \times 5 \times 51$
$=2618 \mathrm{~cm}^{3}$
It is given that $1 \mathrm{~cm}^{3}$ weight 10 gm
$\therefore 2618 \mathrm{~cm}^{3}$ weight $(261 \times 10) \mathrm{gm}$
i.e., $26 \cdot 180 \mathrm{~kg}$.
11. A right angled triangle of which the sides containing he right angle are 6.3 cm and 1 cm in length, is made to turn round on the longer side. Find the volume of the solid, thus generated. Also, find its curved surface area.

Sol:

Given, radius of cone $(r)=6 \cdot 3 \mathrm{~cm}$
Height of cone $(h)=10 \mathrm{~cm}$
\therefore WKT, Slant height $l=\sqrt{(6 \cdot 3)^{2}+(10)^{2}}$
$=11 \cdot 819 \mathrm{~cm}\left[l=\sqrt{r^{2}+h^{2}}\right]$
\therefore Volume of cone $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times 3 \cdot 14 \times(6 \cdot 3)^{2} \times 10=4158 \mathrm{~cm}^{3}$
And CSA of cone $=\pi r l$
$=\frac{22}{7} \times 6 \cdot 3 \times 11 \cdot 819=234 \cdot 01 \mathrm{~cm}^{2}$
12. Find the volume of the largest right circular cone that can be fitted in a cube whose edge is 14 cm .

Sol:

For largest circular cone radius of the base of the cone $=\frac{1}{2}$ edge of cube
$=\frac{1}{2} \times 14=7 \mathrm{~cm}$
And height of the cone $=14 \mathrm{~cm}$
Volume of cone $=\frac{1}{3} \times 3 \cdot 14 \times 7 \times 7 \times 14$
$=718.666 \mathrm{~cm}^{3}$.
13. The volume of a right circular cone is $9856 \mathrm{~cm}^{3}$. If the diameter of the base is 28 cm , find:
(i) height of the cone (ii) slant height of the cone
(iii) curved surface area of the cone.

Sol:
(i) Radius of cone $=\left(\frac{28}{2}\right) \mathrm{cm}=14 \mathrm{~cm}$

Let height of cone is h
Volume of cone $=9856 \mathrm{~cm}^{3}$
$\Rightarrow \frac{1}{3} \pi r^{2} h=9856 \mathrm{~cm}^{2}$

$$
\Rightarrow\left[\frac{1}{3} \times 3.14 \times 7 \times 7 \times h\right] \mathrm{cm}^{2}=9856 \mathrm{~cm}^{2}
$$

$h=48 \mathrm{~cm}$.
Thus the height of the cone is 48 cm .
(ii) Slant height (l) of cone $=\sqrt{r^{2}+h^{2}}$

$$
\begin{aligned}
& =\left(\sqrt{(14)^{2}+(48)^{2}} \mathrm{~cm}\right. \\
& =\sqrt{196+2304}=\sqrt{2500} \mathrm{~cm} \\
& =50 \mathrm{~cm}
\end{aligned}
$$

Thus, the slant height of cone is 50 cm .
(iii) CSA of cone $=\pi r l=\left(\frac{22}{7} \times 14 \times 50\right) \mathrm{cm}^{2}$

$$
=2200 \mathrm{~cm}^{2} .
$$

14. A conical pit of top diameter 3.5 m is 12 m deep. What is its capacity in kilo litres?

Sol:

Radius (r) of pit $=\frac{3 \cdot 5}{2} m=1.75 m$.
Depth (h) of pit $=12 \mathrm{~m}$.
Volume of pit $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times(1.75)^{2} \times 12$
$=38 \cdot 5 \mathrm{~m}^{3}$
\therefore Capacity of the pit $=(38 \cdot 5 \times 1)$ Kilometers
$=38 \cdot 5$ Kilo liters
15. Monica has a piece of Canvas whose area is $551 \mathrm{~m}^{2}$. She uses it to have a conical tent made, with a base radius of 7 m . Assuming that all the stitching margins and wastage incurred while cutting, amounts to approximately $1 \mathrm{~m}^{2}$. Find the volume of the tent that can be made with it.

Sol:

Given that,
Area of canvas $=551 \mathrm{~m}^{2}$ and area of the canvas lost in wastage is $1 \mathrm{~m}^{2}$
\therefore area of canvas available for making the tent is $(551-1) m^{2}=550 \mathrm{~m}^{2}$.
SA of tent $=550 \mathrm{~m}^{2}$ required \cdot base radius of conical tent $=7 \mathrm{~m}$.
CSA of tent $=550 \mathrm{~m}^{2}$
$\pi r l=550 m^{2}$
$\Rightarrow \frac{22}{7} \times 7 \times l=550$
$\Rightarrow l=\frac{550}{22}=25 m$
Now, WKT
$l^{2}=r^{2}+h^{2}$
$\Rightarrow(25)^{2}-(7)^{2}=h^{2}$
$\Rightarrow h=\sqrt{625-49}$
$=\sqrt{576}=24 m$
So, the volume of the conical tent $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \times 3 \cdot 14 \times(7 \times 7)(24) m^{3}=1232 m^{3}$.

