Exercise – 24.1

1. If the heights of 5 persons are 140 cm, 150 cm, 152 cm, 158 cm and 161 cm respectively, find the mean height.

Sol:

It is given that,

The heights of 5 persons are -140cm, 150cm, 152cm, 158cm and 161cm.

 $\therefore \text{ Mean height} = \frac{Sum of heights}{Total No.of persons}$ $= \frac{140 + 150 + 152 + 158 + 161}{5}$ $= \frac{761}{5}$ $= 152 \cdot 2.$

2. Find the mean of 994, 996, 998, 1002 and 1000. **Sol:**

Given numbers are -994,996,998,1000 and 1002.

$$\therefore Mean = \frac{Sum of Numbers}{Total Numbers}$$
$$= \frac{994 + 996 + 998 + 1000 + 1002}{5}$$
$$= \frac{4990}{5}$$
$$= 998.$$

3. Find the mean of first five natural numbers.

Sol:

Given that,

The first five natural numbers are 1, 2, 3, 4, 5

$$\therefore Mean = \frac{Sum of Numbers}{Total Numbers}$$
$$= \frac{1+2+3+4+5}{5}$$
$$= \frac{15}{5}$$
$$Mean = 3$$

- 4. Find the mean of all factors of 10. Sol: All factors of 10 are -1, 2, 5, 10 $\therefore Mean = \frac{Sum \ of \ factors}{Total \ factors}$ $= \frac{1+2+5+10}{4}$ $= \frac{18}{4}$ $= \frac{9}{2}$ $= 4 \cdot 5$ $\therefore Mean = 4 \cdot 5$
- 5. Find the mean of first 10 even natural numbers. Sol:

Given that,

The first 10 natural numbers be -2, 4, 6, 8, 10, 12, 14, 16, 18, 20

$$\therefore Mean = \frac{Sum \ of \ all \ Numbers}{Total \ Numbers}$$
$$= \frac{2+4+6+8+10+12+14+16+18+20}{10} = \frac{110}{10}$$
$$= \frac{110}{10} = 11$$
[Mean = 11]

6. Find the mean of x, x + 2, x + 4, x + 6, x + 8.Sol:

Numbers be x, x+2, x+4, x+6 and x+8

$$\therefore Mean = \frac{Sum of Numbers}{Total Numbers}$$
$$= \frac{x + x + 2 + x + 4 + x + 6 + x + 8}{5}$$
$$= \frac{5x + 20}{5}$$
$$= \frac{5(x + 4)}{5}$$
$$= x + 4$$

7. Find the mean of first five multiples of 3. Sol: First five multiple of 3: 3,6,9,12,15 $\therefore Mean = \frac{Sum \ of \ Numbers}{Total \ Numbers}$

$$=\frac{3+6+9+12+15}{5}$$
$$=\frac{45}{5}=9.$$

8. Following are the weights (in kg) of 10 new born babies in a hospital on a particular day:

3.4, 3.6, 4.2, 4.5, 3.9, 4.1, 3.8, 4.5, 4.4, 3.6. Find the mean \overline{X} . **Sol:** The weight (in kg) of 10 new born babies = 3.4, 3.6, 4.2, 4.5, 3.9, 4.1, 3.8, 4.5, 4.4, 3.6 $\therefore Mean(\overline{x}) = \frac{Sum \ of \ weights}{Total \ babies}$ = 3.4+3.6+4.2+4.5+3.9+4.1+3.8+4.5+4.4+3.6 10 = $\frac{40}{10}4kg$.

9. The percentage of marks obtained by students of a class in mathematics are : 64, 36, 47, 23, 0, 19, 81, 93, 72, 35, 3, 1. Find their mean.

Sol:

The percentage marks obtained by students are = 64, 36, 47, 23, 0, 19, 81, 93, 72, 35, 3, 1.

$$\therefore \text{ Mean marks} = \frac{64 + 36 + 47 + 23 + 0 + 19 + 81 + 93 + 72 + 35 + 3 + 1}{12}$$
$$= \frac{474}{12} = 39.5$$
$$\therefore \text{ Mean marks} = 39.5$$

10. The numbers of children in 10 families of a locality are:

2, 4, 3, 4, 2, 0, 3, 5, 1, 1, 5. Find the mean number of children per family. Sol: The number of children in 10 families is $\Rightarrow 2, 4, 3, 4, 2, 3, 5, 1, 1, 5.$ $\therefore \text{ Mean number of children per family} = \frac{Total no. of children}{Total families}$ $= \frac{2+4+3+4+2+3+5+1+1+5}{10}$ $= \frac{30}{10}$ = 3.

11. If M is the mean of x_1 , x_2 , x_3 , x_4 , x_5 and x_6 , prove that $(x_1 - M) + (x_2 - M) + (x_3 - M) + (x_4 - M) + (x_5 - M) + (x_6 - M) = 0.$ Sol: Let m be the mean of x_1, x_2, x_3, x_4, x_5 and x_6 Then $M = \frac{x_1 + x_2 + x_3 + x_4 + x_5 + x_6}{6}$ $\Rightarrow x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 6M$ To prove: $(x_1 - M) + (x_2 - M) + (x_3 - M) + (x_4 - M) + (x_5 - M) + (x_6 - M)$ $= (x_1 + x_2 + x_3 + x_4 + x_5 + x_6) - (M + M + M + M + M + M)$ = 6M - 6M= 0

- = RHS
- 12. Durations of sunshine (in hours) in Amritsar for first 10 days of August 1997 as reported by the Meteorological Department are given below:
 9.6, 5.2, 3.5, 1.5, 1.6, 2.4, 2.6, 8.4, 10.3, 10.9

(i) Find the mean
$$\overline{X}$$
 (ii) Verify that $=\sum_{i=1}^{10} (x_i - \overline{x}) = 0$

Sol:

Duration of sunshine (in hours) for 10 days are = $9 \cdot 6, 5 \cdot 2, 3 \cdot 5, 1 \cdot 5, 1 \cdot 6, 2 \cdot 4, 2 \cdot 6, 8 \cdot 4, 10 \cdot 3, 10 \cdot 9$

(i) Mean
$$\bar{x} = \frac{Sum \ of \ all \ numbers}{Total \ numbers}$$

= $\frac{9 \cdot 6 + 5 \cdot 2 + 3 \cdot 5 + 1 \cdot 5 + 1 \cdot 6 + 2 \cdot 4 + 2 \cdot 6 + 8 \cdot 4 + 10 \cdot 3 + 10 \cdot 9}{10}$
= $\frac{56}{10} = 5 \cdot 6$

(ii) LHS =
$$\sum_{i=1}^{10} (x_i - \overline{x})$$

= $(x_1 - \overline{x}) + (x_2 - \overline{x}) + (x_3 - \overline{x}) + \dots + (x_{10} - \overline{x})$
= $(9 \cdot 6 - 5 \cdot 6) + (5 \cdot 2 - 5 \cdot 6) + (3 \cdot 5 - 5 \cdot 6) + (1 \cdot 5 - 5 \cdot 6) + (1 \cdot 6 - 5 \cdot 6) + (2 \cdot 4 - 5 \cdot 6)$
= $(4) + (-0 \cdot 4) + (-2 \cdot 1) - 4 \cdot 1 - 4 - 3 \cdot 2 - 3 + 2 \cdot 8 + 4 \cdot 7 + 5 \cdot 3$
= $16 \cdot 8 - 16 \cdot 8$
= $0.$

13. Explain, by taking a suitable example, how the arithmetic mean alters by (i) adding a constant k to each term, (ii) subtracting a constant k from each them, (iii) multiplying each term by a constant k and (iv) dividing each term by a non-zero constant k.

Sol:

Let us say numbers are be 3, 4, 5

10

 $\therefore Mean = \frac{Sum \ of \ number}{Total \ number}$ $=\frac{3+4+5}{3}$ $=\frac{12}{3}$ = 4(i) Adding constant term k = 2 in each term New numbers are =5, 6, 7. $\therefore \text{New mean} = \frac{5+6+7}{3}$ $=\frac{18}{3}=6=4+2$ \therefore New mean will be 2 more than the original mean. Subtracting constant term k = 2 in each term New number are = 1, 2, 3. (ii) :. New mean $=\frac{1+2+3}{3}=\frac{6}{3}=2=4-2$. \therefore New mean will be 2 less than the original mean (iii) Multiplying by constant term k = 2 in each term New numbers are = 6, 8, 10New mean = $\frac{6+8+10}{3}$

 $=\frac{24}{3}$ = 8 = 4 × 2 : New mean will be 2 times of the original mean. (iv) Divide by constant term k = 2 in each term New number are =1.5, 2, 2.5: New mean $=\frac{1.5+2+2.5}{3}$ $=\frac{6}{3}=2=\frac{4}{2}$

- \therefore New mean will be half of the original mean.
- 14. The mean of marks scored by 100 students was found to be 40. Later on it was discovered that a score of 53 was misread as 83. Find the correct mean.

```
Sol:
```

```
Mean marks of 100 students = 40

\Rightarrow Sum of marks of 100 students = 100×40 = 4000

Correct value = 53.

Incorrect value = 83.

Correct sum = 4000-83+53

= 3970

\therefore Correct mean = \frac{3970}{100}

= 39.7.
```

15. The traffic police recorded the speed (in kmlhr) of 10 motorists as 47, 53, 49, 60, 39, 42, 55, 57, 52, 48. Later on an error in recording instrument was found. Find the correct overage speed of the motorists if the instrument recorded 5 km/hr less in each case.
Sol:

The speed of 10 motorists are 47,53,49,60,39,42,55,57,52,48

Later on it was discovered that the instrument recorded 5km/hr less than in each case Corrected values are 52, 58, 54, 65, 44, 47, 60, 62, 57, 53

 $\therefore \text{ Correct mean} = \frac{52 + 58 + 54 + 65 + 44 + 47 + 60 + 62 + 57 + 53}{10}$ $= \frac{552}{10}$ $= 55 \cdot 2 \ km / hr$

16. The mean of five numbers is 27. If one number is excluded, their mean is 25. Find the excluded number.
Sol:

The mean of the numbers 27 The, sum of five numbers $= 5 \times 27$ = 135. If one number is excluded, then the new mean is 25 \therefore Sum of numbers $= 4 \times 25 = 100$ \therefore Excluded number = 135 - 100= 35

17. The mean weight per student in a group of 7 students is 55 kg. The individual weights of 6 of them (in kg) are 52, 54, 55, 53, 56 and 54. Find the weight of the seventh student. Sol:

The mean weight per student in a group of 7 students is 55kg.

Weight of 6 students (in kg) = 52, 54, 55, 53, 56 and 54.

Let weight of 7^{th} student = x kg

 $\therefore \text{Mean} = \frac{Sum \text{ of all weights}}{Total \text{ students}}$ $\Rightarrow 55 = \frac{52 + 54 + 55 + 53 + 56 + 54 + x}{7}$ $\Rightarrow 385 = 324 + x$ $\Rightarrow x = 385 - 324$ $\Rightarrow x = 61 \text{ kg}$ $\therefore \text{ Weight of 7th student} = 61 \text{ kg}$

18. The mean weight of 8 numbers is 15. If each number is multiplied by 2, what will be the new mean?

```
Sol:
We have,
The mean weight of 8 numbers is 15
Then, The sum of 8 numbers = 8×15 = 120.
If each number is multiplied by 2
Then, new mean = 120 \times 2
= 240
∴ New mean = \frac{240}{8} = 30.
```

19. The mean of 5 numbers is 18. If one number is excluded, their mean is 16. Find the excluded number.

```
Sol:

The mean of 5 numbers is 18

Then, the sum of 5 numbers =5 \times 18

=90

If the one number is excluded

Then, the mean of 4 numbers = 16.

\therefore Sum of 4 numbers = 4 \times 16

= 64

Excluded number = 90 - 64

= 26.
```

20. The mean of 200 items was 50. Later on, it was discovered that the two items were misread as 92 and 8 instead of 192 and 88. Find the correct mean.

```
Sol:

The mean of 200 items = 50

Then the sum of 200 items = 200 \times 50

= 10,000

Correct values = 192 and 88

Incorrect values = 92 = 8

\therefore Correct sum = 10000 - 92 - 8 + 192 + 88

= 10180

\therefore Correct mean = \frac{10180}{200} = 50.9

= \frac{101 \cdot 8}{2} = 50.9.
```

21. Find the values of n and \overline{X} in each of the following cases:

(i)
$$\sum_{i=1}^{n} (x_i - 12) = -10 \sum_{i=1}^{n} (x_i - 3) = 62$$

(ii)
$$\sum_{i=1}^{n} (x_i - 10) = 30 \sum_{i=1}^{n} (x_i - 6) = 150.$$

Sol:

(i) Given
$$\sum_{i=1}^{n} (x_n - 12) = -10$$

 $\Rightarrow (x_1 - 12) + (x_2 - 12) + \dots + (x_n - 12) = -10$
 $\Rightarrow (x_1 + x_2 + x_3 + x_4 + x_5 + \dots + x_n) - (12 + 12 + 12 + \dots + 12) = -10$

(ii)

$$\Rightarrow \sum x - 12n = -10 \qquad \dots (1)$$
And $\sum_{i=1}^{n} (x_i - 3) = 62$

 $\Rightarrow (x_i - 3) + (x_2 - x_3) + (x_3 - 3) + \dots + (x_n - 3) = 62.$

 $\Rightarrow (x_1 + x_2 + \dots + x_n) - (3 + 3 + 3 + 3 + \dots + 37) = 62$

 $\Rightarrow \sum x - 3n = 62 \qquad \dots (2)$
By subtracting equation (1) from equation (2)
We get

 $\sum x - 3n - \sum x + 12n = 62 + 10$

 $\Rightarrow 9n = 72$

 $\Rightarrow n = \frac{72}{9} = 8.$
Put value of n in equation (1)

 $\sum x - 12 \times 8 = -10$

 $\Rightarrow \sum x - 96 = -10$

 $\Rightarrow \sum x - 96 = -10$

 $\Rightarrow \sum x - 96 = -10$

 $\Rightarrow \sum x - 10 + 96 = 86$

 $\therefore \overline{x} = \frac{\sum x}{x} = \frac{86}{8} = 10.75$
Given $\sum_{i=1}^{n} (x_i - 10) = 30$

 $\Rightarrow (x_i - 10) + (x_2 - 10) + \dots + (x_n - 10) = 30$

 $\Rightarrow (x_i - 10) + (x_2 - 10) + \dots + (x_n - 10) = 30$

 $\Rightarrow \sum x - 10n = 30 \qquad \dots (1)$
And $\sum_{i=1}^{n} (x_i - 6) = 150.$

 $\Rightarrow (x_i - 6) + (x_2 - 6) + \dots + (x_n - 6) = 150.$

 $\Rightarrow (x_i - 6) + (x_2 - 6) + \dots + (x_n - 6) = 150.$

 $\Rightarrow (x_i - 6) + (x_2 - 6) + \dots + (x_n - 6) = 150.$

 $\Rightarrow (x_i - 6) + (x_2 - 6) + \dots + (x_n - 6) = 150.$

 $\Rightarrow (x_i - 6) + (x_2 - 6) + \dots + (x_n - 6) = 150.$

 $\Rightarrow (x_i - 6) + (x_2 - 6) + \dots + (x_n - 6) = 150.$

 $\Rightarrow \sum x - 6n = 150 \qquad \dots (2)$
By subtracting equation (1) from equation (2)

 $\sum x - 6n - \sum x + 10n = 150 - 30$

 $\Rightarrow \sum x - \sum x + 4n = 120$

 $\Rightarrow n = \frac{120}{4}$

 $\Rightarrow n = 30$
Put value of n in equation (1)

$$\Sigma x - 10 \times 30 = 30$$

$$\Rightarrow \Sigma x - 300 = 30$$

$$\Rightarrow \Sigma x = 30 + 300 = 330$$

$$\therefore \overline{x} = \frac{\Sigma x}{n} = \frac{330}{30} = 11.$$

22. The sums of the deviations of a set of n values x₁, x₂, ..., x₁₁ measured from 15 and -3 are - 90 and 54 respectively. Find the value of n and mean.
Sol:

(i) Given
$$\sum_{i=1}^{n} (x_i + 5) = -90$$

 $\Rightarrow (x_1 - 15) + (x_2 - 15) + \dots + (x_n - 15) = -90$
 $\Rightarrow (x_1 + x_2 + \dots + x_n) - (15 + 15 + \dots + 15) = -90$
 $\Rightarrow \sum x - 15n = -90$ (1)
And $\sum_{i=1}^{n} (x_i + 3) = 54$
 $\Rightarrow (x_1 - 3) + (x_2 - 3) + \dots + (x_n + 3) = 54.$
 $\Rightarrow (x_1 + x_2 + x_3 + \dots + x_n) + (3 + 3 + 3 + \dots + 37) = 54$
 $\Rightarrow \sum x + 3n = 54$ (2)
By subtracting equation (1) from equation (2)
 $\sum x - 30 - \sum x + 15n = 54 + 90$
 $\Rightarrow 18n = 144$
 $\Rightarrow n = \frac{144}{18} = 8.$
Put value of n in equation (1)
 $\sum x - 15 \times 8 = -90$
 $\Rightarrow \sum x - 120 = -90$
 $\Rightarrow \sum x = -90 + 120 = 30$

23. Find the sum of the deviations of the variate values 3, 4, 6, 7, 8, 14 from their mean. Sol:

Values are 3,4,6,7,8,14.

 $\therefore Mean = \frac{Sum of numbers}{Total number}$

 $\therefore Mean = \frac{\Sigma x}{n} = \frac{30}{8} = \frac{15}{4}.$

$$=\frac{3+4+6+7+8+14}{6}$$

= $\frac{42}{6}$
= 7.
∴ Sum of deviation of values from their mean
 $\Rightarrow (3-7)+(4-7)+(6-7)+(7-7)+(8-7)+(14-7)$
 $\Rightarrow (-4)+(-3)+(-1)+(0)+(1)+(7)$
 $\Rightarrow -8+8$
= 0.

- 24. If \bar{X} is the mean of the ten natural numbers $x_1, x_2, x_3, ..., x_{10}$, show that, $(x_1 - \bar{X}) + (x_2 - \bar{X}) + + (x_{10} - \bar{X}) = 0$ Sol: We have, $\bar{x} = \frac{x_1 + x_2 + + x_{10}}{10}$ $\Rightarrow x_1 + x_2 + + x_{10} = 10\bar{x}$ (*i*) Now, $(x_1 - \bar{x}) + (x_2 - \bar{x}) + + (x_{10} - \bar{x})$ $= (x_1 + x_2 + + x_{10}) - (\bar{x} + \bar{x} + up to 10 terms)$ $\Rightarrow 10\bar{x} - 10\bar{x}$ [By equation (i)] = 0
 - $\therefore (x_1 \overline{x}) + (x_2 \overline{x}) + \dots + (x_{10} \overline{x}) = 0$ Hence proved.

Exercise – 24.2

31 13

x:	5	6	7	8	9
f:	4	8	14	11	3
Sol:					
x		f		Fx	
5		4		20	
6		8		48	
7		14		98	
8		11		88	
9		3		27	
		N = 4	0	$\Sigma f x =$	281.
$=\frac{281}{40}$ $=7\cdot02$ Find th	25	of the	followii	ng data:	
= 7 · 02 Find th x: f:	25	n of the 1 21 15	followin 23 16	ng data: 25 18	27 16
= 7 · 02 Find th x: f: Sol:	25 ne mear 19	21 15	23	25 18	
$= 7 \cdot 0^{2}$ Find the first second	25 ne mear 19	21 15 <i>f</i>	23	25 18 <i>fx</i>	
$= 7 \cdot 02$ Find the first second sec	25 ne mear 19	21 15 <i>f</i> 13	23	25 18 <i>fx</i> 247	
$= 7 \cdot 02$ Find the first second sec	25 ne mear 19	21 15 <i>f</i> 13 15	23	25 18 <i>fx</i> 247 315	
$= 7 \cdot 02$ Find the first second sec	25 ne mear 19	21 15 <i>f</i> 13 15 16	23	25 18 <i>fx</i> 247 315 368	
$= 7 \cdot 02$ Find the first second sec	25 ne mear 19	21 15 <i>f</i> 13 15 16 18	23	$ \begin{array}{c} 25\\ 18\\ \hline fx\\ 247\\ 315\\ 368\\ 450\\ \end{array} $	
$= 7 \cdot 02$ Find the final formula of the final sector of the fina	25 ne mear 19	$ \begin{array}{c} 21 \\ 15 \\ \hline f \\ 13 \\ 15 \\ \hline 16 \\ 18 \\ \hline 16 \\ \hline 16 \\ \hline 16 \\ \hline 16 \\ \hline $	23	$ \begin{array}{c} 25\\ 18\\ f_x\\ 247\\ 315\\ 368\\ 450\\ 432\\ \end{array} $	
$= 7 \cdot 02$ Find the final sector of the field of the fie	25 ne mear 19	$\begin{array}{c} 21 \\ 15 \\ \hline f \\ 13 \\ 15 \\ 16 \\ 18 \\ 16 \\ 15 \\ 15 \\ \end{array}$	23	$ \begin{array}{c} 25\\ 18\\ \hline fx\\ 247\\ 315\\ 368\\ 450\\ 432\\ 435\\ \end{array} $	
$= 7 \cdot 02$ Find the final formula of the final sector of the fina	25 ne mear 19	$ \begin{array}{c} 21 \\ 15 \\ \hline f \\ 13 \\ 15 \\ \hline 16 \\ 18 \\ \hline 16 \\$	23 16	$ \begin{array}{c} 25\\ 18\\ f_x\\ 247\\ 315\\ 368\\ 450\\ 432\\ \end{array} $	16

: Mean $\bar{x} = \frac{2fx}{N} = \frac{2650}{106} = 25.$

3. The mean of the following data is 20.6. Find the value of p.

x:	10	15	р	25	35
f:	3	10	25	7	5
Sol:					

x	f	Fx
10	3	30
15	10	150
Р	25	25p
25	7	175
35	5	175
	N = 50	$\Sigma f x = 25P + 530$

It is given that

 $Mean = 20 \cdot 6$

$$\Rightarrow \frac{\Sigma fx}{N} = 20 \cdot 6$$

$$\Rightarrow \frac{25p + 530}{50} = 20 \cdot 6$$

$$\Rightarrow 25p + 530 = 20 \cdot 6(50) = 1030$$

$$\Rightarrow 25p = 1030 - 530$$

$$\Rightarrow 25p = 500$$

$$\Rightarrow p = \frac{500}{25} = 20$$

$$\Rightarrow p = 20$$

$$\therefore P = 20$$

4. If the mean of the following data is 15, find p.

			0		· 1
x:	5	10	15	20	25
f:	6	р	6	10	5
Sol:					
x		f		Fx	
5		6		30	
10		Р		10p	
15		6		90	
20		10		200	
25		5		125	
		N = P +	- 27	$\Sigma f x =$	10P + 445
Civen		15		•	

Given mean = 15

$$\Rightarrow \frac{\Sigma x f}{N} = 15$$

 $\Rightarrow \frac{10p + 445}{p + 27} = 15$ $\Rightarrow 10p + 445 = 15p + 405$ $\Rightarrow 15p - 10p = 445 - 405$ $\Rightarrow 5p = 40$ $\Rightarrow p = \frac{40}{5}$ $\therefore p = 8.$

5. Find the value of p for the following distribution whose mean is 16.6

x:	8	12	15	р	20	25	30
f:	12	16	20	24	16	8	4
Sol:							
x		f			fx		
8		12			96		
12		16			192		
15		20			300		
Р		24			24p		
20		16			320		
25		8			200		
30		4			120		
		N =	= 100		$\Sigma f x = 24$	P + 122	8
<u> </u>							

Given mean $= 16 \cdot 6$

$$\Rightarrow \frac{\Sigma fx}{N} = 16 \cdot 6$$
$$\Rightarrow \frac{24 p + 1228}{100} = 16 \cdot 6$$
$$\Rightarrow 24 p = 1660 - 1228$$
$$\Rightarrow 24 p = 432$$
$$\Rightarrow p = \frac{432}{24} = 18$$

6. Find the missing value of p for the following distribution whose mean is 12.58.

x:	5	8	10	12	р	20	25
f:	2	5	8	22	7	4	2
Sol:							
x		f		fx			
5		2		10			
8		5		40			
10		8		80			
12		22		264			
Р		7		7p			
20		4		80			
25		2		50			
		N = 50		$\Sigma f x =$	=7P+5	524.	

Given mean = 12.58

$$\Rightarrow \frac{\Sigma fx}{N} = 12 \cdot 58$$
$$\Rightarrow \frac{7p + 524}{50} = 12 \cdot 58$$
$$\Rightarrow 7p + 524 = 629$$
$$\Rightarrow 7p = 629 - 524$$
$$\Rightarrow 7p = 105$$
$$\Rightarrow p = \frac{105}{7} = 15$$

7. Find the missing frequency (p) for the following distribution whose mean is 7.68.

		0	- J (1			0
x:	3	5	7	9	11	13
f:	6	8	15	р	8	4
Sol:						
x		f		Fx		
3		6		18		
5		8		40		
7		15		105		
9		Р		9p		
11		8		88		
13		4		52		
		N = P -	+ 41	$\Sigma f x =$	= 9 <i>P</i> + 3	03.
Ciuon	maan	7 69				

Given mean $= 7 \cdot 68$

$$\Rightarrow \frac{\Sigma fx}{N} = 7 \cdot 68$$

$$\Rightarrow \frac{9p + 303}{p + 41} = 7 \cdot 68$$

$$\Rightarrow 9p + 303 = 7 \cdot 68p + 314 \cdot 88$$

$$\Rightarrow 9p - 7 \cdot 68p = 314 \cdot 88 - 303$$

$$\Rightarrow 1 \cdot 32p = 11 \cdot 88$$

$$\Rightarrow p = \frac{11 \cdot 88}{1 \cdot 32}$$

$$\Rightarrow p = 9.$$

8. Find the mean of the following distribution:

1 1110 1110	mean	01 110 1	0110 11 11	ig and th	o atroni	
x:	10	12	20	25	35	
f:	3	10	15	7	5	
Sol:						
x		f		Fx		
10		3		30		
12		10		120		
20		15		300		
25		7		175		
35		5		175		
		N = 40	0	$\Sigma f x =$	= 800	
$\therefore Mean(\overline{x}) = \frac{\Sigma f x}{N}$						

$$\therefore Mean(\overline{x}) = \frac{800}{40} = 20$$

- $\overline{x} = 20.$
- 9. Candidates of four schools appear in a mathematics test. The data were as follows:

Schools	No. of candidates	Average score
Ι	60	75
II	48	80
III	N A	55
IV	40	50

If the average score of the candidates of all the four schools is 66, find the number of candidates that appeared from school III.

Sol:

Let no. of candidates appeared from school III = x.

School	No. of candidates	Average score
Ι	60	75
II	48	80
III	x	55
IV	40	50

Given, average score of all school = 66.

$$\Rightarrow \frac{N_1 \overline{x}_1 + N_2 \overline{x}_2 + N_3 \overline{x}_3 + N_4 \overline{x}_4}{N_1 + N_2 + N_3 + N_4} = 66$$

$$\Rightarrow \frac{60 + 75 + 48 + 80 + x \times 55 + 40 \times 50}{60 + 48 + x + 40} = 66$$

$$\Rightarrow \frac{4500 + 3840 + 55x + 2000}{148 + x} = 66$$

$$\Rightarrow \frac{10340 + 55x}{148 + x} = 66$$

$$\Rightarrow 10340 + 55x = 66x + 9768$$

$$\Rightarrow 10340 - 9768 = 66x - 55x$$

$$\Rightarrow 11x = 572$$

$$\Rightarrow x = \frac{572}{11} = 52.$$

∴ No. of candidates appeared from school (3) - 52.

10. Five coins were simultaneously tossed 1000 times and at each toss the number of heads were observed. The number of tosses during which 0, 1, 2, 3, 4 and 5 heads were obtained are shown in the table below. Find the mean number of heads per toss.

No. of heads per toss	No. of tosses
0	38
1	144
2	342
3	287
4	164
5	25
Total	1000
Sol:	· · · · · ·

No. of heads per toss (x)	No. of tosses (f)	fx
0	38	0
1	144	144
2	342	684
3	287	861
4	164	656

5	25	125		
	N = 100	$\Sigma f x = 2470$		

 \therefore Mean number of heads per toss = $\frac{\Sigma f x}{N}$

$$=\frac{2470}{1000}$$

- $= 2 \cdot 47.$
- **11.** Find the missing frequencies in the following frequency distribution if its known that the mean of the distribution is 50.

x:	10	30	50	70	90	
f:	17	f_1	32	f_2	19	Total 120
Sol:						
x		f		fx		
10		17		170		
30		f_1		$30 f_1$		
50		32		1600		
70		f_2		$70 f_2$		
90		19		1710		
		N = 1	20	$\Sigma f x =$	= 3480 +	$30f_1 + 70f_2$

It is give that

Mean = 50

$$\Rightarrow \frac{\Sigma f x}{N} = 50$$

$$\Rightarrow \frac{3480 + 30 f_1 + 70 f_2}{N} = 50$$

$$\Rightarrow 3480 + 30 f_1 + 70 f_2 = 50(120)$$

$$\Rightarrow 30 f_1 + 70 f_2 = 6000 - 3480$$

$$\Rightarrow 10(3 f_1 + 7 f_2) = 10(252)$$

$$\Rightarrow 3 f_1 + 7 f_2 = 252 \qquad \dots (1) \qquad [\because \text{Divide by 10}]$$
And $N = 120$

$$\Rightarrow 17 + f_1 + 32 + f_2 + 19 = 120$$

$$\Rightarrow 68 + f_1 + f_2 = 120$$

$$\Rightarrow f_1 + f_2 = 120 - 68$$

$$\Rightarrow f_1 + f_2 = 52$$
Multiply with '3' on both sides

$$\Rightarrow 3 f_1 + 3 f_2 = 156 \qquad \dots (2)$$

1.

Subtracting equation (2) from equation (1) $3f_1 + 7f_2 - 3f_1 - 3f_2 = 252 - 156$ $\Rightarrow 4f_2 = 96$ $\Rightarrow f_2 = \frac{96}{4}$ $\Rightarrow f_2 = 24$ Put value of f_2 in equation (1) $\Rightarrow 3f_1 + 7 \times 24 = 250$ $\Rightarrow 3f_1 = 252 - 168 - 84$ $\Rightarrow f_1 = \frac{84}{3} = 28.$

Exercise – 24.3

Find the median of the following data (1-8)

83, 37, 70, 29, 45, 63, 41, 70, 34, 54 Sol: Given numbers are 83, 37, 70, 29, 45, 63, 41, 70, 34, 54 Arrange the numbers is ascending order 29, 34, 37, 41, 45, 54, 63, 70, 70, 83 n = 10 (even) ∴ Median = $\frac{\frac{n^{th}}{2} value + (\frac{n}{2} + 1)^{th} value}{2}$

$$= \frac{\frac{10^{th}}{2} value + \left(\frac{10}{2} + 1\right)^{th} value}{2}$$
$$= \frac{5^{th} value + 6^{th} value}{2}$$
$$= \frac{45 + 54}{2} = \frac{99}{2} = 49 \cdot 5$$

2. 133, 73, 89, 108, 94, 104, 94, 85, 100, 120
Sol: Given numbers are 133, 73, 89, 108, 94, 104, 94, 85, 100, 120 Arrange in ascending order
73, 85, 89, 94, 94, 100, 104, 105, 120, 133

$$n = 10 \text{ (even)}$$

$$\therefore Median = \frac{\frac{n}{2}^{th} value + \left(\frac{n}{2} + 1\right)^{th} value}{2}$$

$$= \frac{\frac{10}{2}^{th} value + \left(\frac{10}{2} + 1\right)^{th} value}{2}$$

$$= \frac{5^{th} value + 6^{th} value}{2}$$

$$= \frac{90 + 104}{2} = 97$$

3. 31, 38, 27, 28, 36, 25, 35, 40 Sol: Given numbers are 31, 38, 27, 28, 36, 35, 40 Arranging in increasing order 25, 27, 28, 31, 35, 36, 38, 40 n = 8 (even) n^{th} $(n)^{th}$

$$\therefore Median = \frac{\frac{n}{2}^{m} value + \left(\frac{n}{2} + 1\right)^{m} value}{2}$$
$$= \frac{\frac{8}{2}^{th} value + \left(\frac{8}{2} + 1\right)^{th} value}{2}$$
$$= \frac{4^{th} value + 5^{th} value}{2} = \frac{31 + 35}{2}$$
$$= \frac{66}{2} = 33$$

4. 15, 6, 16, 8, 22, 21, 9, 18, 25 Sol: Given numbers are 15, 6, 16, 8, 22, 21, 9, 18, 25 Arrange in increasing order 6, 8, 9, 15, 16, 18, 21, 22, 25 n = 9 (odd)∴ Median = $\left(\frac{n+1}{2}\right)^{th}$ value = $\left(\frac{9+1}{2}\right)^{th}$ value 5.

 $=5^{th}$ value =16

41, 43, 127, 99, 71, 92, 71, 58, 57 **Sol:** Given numbers are 41, 43, 127, 99, 71, 92, 71, 58, 57 Arrange in increasing order 41, 43, 57, 58, 71, 71, 92, 99, 127 *n* = 9 (odd) ∴ *Median* = $\left(\frac{n+1}{2}\right)^{th}$ value = $\left(\frac{9+1}{2}\right)^{th}$ value

$$(2)$$

= 5th value
= 71

6. 25, 34, 31, 23, 22, 26, 35, 29, 20, 32 Sol: Given number are 25, 34, 31, 23, 22, 26, 35, 29, 20, 32 Arranging in increasing order 20, 22, 23, 25, 26, 29, 31, 32, 34, 35 n = 10 (even) $\therefore Median = \frac{\frac{n}{2}^{th} value + (\frac{n}{2} + 1)^{th} value}{2}$ $= \frac{\frac{10}{2}^{th} value + (\frac{10}{2} + 1)^{th} value}{2}$ $= \frac{5^{th} value + 6^{th} value}{2}$ $= \frac{26 + 29}{2} = \frac{55}{2}$.

7. 12, 17, 3, 14, 5, 8, 7, 15
Sol: Given numbers are 12, 17, 3, 14, 5, 8, 7, 15 Arranging in increasing order 3, 5, 7, 8, 12, 14, 15, 17 n=8 (even)

$$\therefore Median = \frac{\frac{n}{2}^{th} value + \left(\frac{n}{2} + 1\right)^{th} value}{2}$$
$$= \frac{\frac{8}{2}^{th} value + \left(\frac{8}{2} + 1\right)^{th} value}{2}$$
$$= \frac{4^{th} value + 5^{th} value}{2}$$
$$= \frac{8 + 12}{2} = \frac{20}{2}$$
$$\therefore Median = 10$$

8. 92, 35, 67, 85, 72, 81, 56, 51, 42, 69
Sol:
Given number are
92, 35, 67, 85, 72, 81, 56, 51, 42, 69

Arranging in increasing order 35, 42, 51, 56, 67, 69, 72, 81, 85, 92 *n* = 10 (even)

$$\therefore Median = \frac{\frac{n}{2}^{th} value + \left(\frac{n}{2} + 1\right)^{th} value}{2}$$
$$= \frac{5^{th} value + 6^{th} value}{2}$$
$$= \frac{67 + 69}{2} = 68.$$

9. Numbers 50, 42, 35, 2x + 10, 2x - 8, 12, 11, 8 are written in descending order and their median is 25, find x.

Sol:

Given number of observation, n = 8

Median =
$$\frac{\left(\frac{n}{2}\right)^{th} observation + \left(\frac{n}{2} + 1\right)^{th} observation}{2}$$
$$= \frac{2x + 10 + 2x - 8}{2}$$
$$= 2x + 1$$
Given median = 25

 $\therefore 2x + 1 = 25$ $\Rightarrow 2x = 24$ $\Rightarrow x = 12$

10. Find the median of the following observations : 46, 64, 87, 41, 58, 77, 35, 90, 55, 92, 33. If 92 is replaced by 99 and 41 by 43 in the above data, find the new median?

Sol:

Given numbers are 46, 64, 87, 41, 58, 77, 35, 90, 55, 92, 33 Arrange in increasing order 33, 35, 41, 46, 55, 58, 64, 77, 87, 90, 92 n = 1 (odd) $\therefore Median = \left(\frac{n+1}{2}\right)^{th} value$ $=\left(\frac{11+1}{2}\right)^{th}$ value $= 6^{th} value = 58$ If 92 is replaced by 99 and 41 by 43 Then, the new values are 33, 35, 43, 46, 55, 58, 64, 77, 87, 90, 99 $\therefore n = 11 (\text{odd})$ New median $=\left(\frac{n+1}{2}\right)^{th}$ value $=\left(\frac{11+1}{2}\right)^{th}$ value $= 6^{th} value$ = 58.

11. Find the median of the following data : 41, 43, 127, 99, 61, 92, 71, 58, 57 If 58 is replaced by 85, what will be the new median.

Sol:

Given numbers are 41, 43, 127, 99, 61, 92, 71, 58 and 57 Arrange in ascending order 41, 43, 57, 58, 61, 71, 92, 99, 127 n = 9 (odd)

$$\therefore \text{Median} = \left(\frac{n+1}{2}\right)^{th} \text{ value}$$

$$= \left(\frac{9+1}{2}\right)^{th} \text{ value}$$

$$= 5^{th} \text{ value}$$

$$= 61$$
If 58 is replaced by 85
Then new values be in order are
41, 43, 57, 61, 71, 85, 92, 99, 27
 $n = 9 \text{ (odd)}$

$$\therefore \text{Median} = \left(\frac{n+1}{2}\right)^{th} \text{ value}$$

$$= \left(\frac{9+1}{2}\right)^{th} \text{ value}$$

$$= 5^{th} \text{ value}$$

$$= 71$$

12. The weights (in kg) of 15 students are: 31, 35, 27, 29, 32, 43, 37, 41, 34, 28, 36, 44, 45, 42, 30. Find the median. If the weight 44 kg is replaced by 46 kg and 27 kg by 25 kg, find the new median.

Sol:

Given numbers are 31, 35, 27, 29, 32, 43, 37, 41, 34, 28, 36, 44, 45, 42, 30 Arranging increasing order 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 41, 42, 43, 44, 45 n = 15 (odd) $\therefore \text{Median} = \left(\frac{n+1}{2}\right)^{th} value$ $= \left(\frac{15+1}{2}\right)^{th} value$ $= 8^{th} value$ = 35kgIf the weight 44kg is replaced by 46 kg and 27 kg is replaced by 25 kg Then, new values in order be 25, 28, 29, 30, 31, 32, 34, 35, 36, 37, 41, 42, 43, 45, 46 n = 15 (odd)

$$\therefore \text{Median} = \left(\frac{n+1}{2}\right)^{th} value$$
$$= \left(\frac{15+1}{2}\right)^{th} value$$
$$= 8^{th} value$$
$$= 35kg$$

13. The following observations have been arranged in ascending order. If the median of the data is 63, find the value of x: 29, 32, 48, 50, x, x + 2, 72, 78, 84, 95Sol:

Total number of observation in the given data is 10 (even number). So median of this data 10 10

will be mean of $\frac{10}{2}$ i.e., 5^{th} and $\frac{10}{2}$ + 1 i.e., 6^{th} observations. So, median of data = $\frac{5^{th}observation + 6^{th}observation}{2}$ $\Rightarrow 63 = \frac{x + x + 2}{2}$ $\Rightarrow 63 = \frac{2x + 2}{2}$ $\Rightarrow 63 = x + 1$

 $\Rightarrow x = 62$

Exercise – 24.4

1. Find out the mode of the following marks obtained by 15 students in a class: Marks : 4, 6, 5, 7, 9, 8, 10, 4, 7, 6, 5, 9, 8, 7, 7.

Sol:

Marks	4	5	6	7	8	9	10
No. of students	2	2	2	4	2	2	1

Since, the maximum frequency corresponds to the value 7 then mode = 7 marks.

2. Find the mode from the following data:

125, 175, 225, 125, 225, 175, 325, 125, 375, 225, 125

Sol:

Values	125	175	225	325	375
Frequency	4	2	3	1	1
<u>a:</u> :	0	4	1 1 105 1		25

Since, maximum frequency 4 corresponds value 125 then mode = 125

3. Find the mode for the following series : 7.5, 7.3, 7.2, 7.2, 7.4, 7.7, 7.7, 7.5, 7.3, 7.2, 7.6, 7.2 Sol: Values $7 \cdot 2$ 7.37.4 $7 \cdot 5$ 7.67.7Frequency 4 2 1 2 2 1 Since, maximum frequency 4 corresponds to value $7 \cdot 2$ then mode = $7 \cdot 2$ 4. Find the mode of the following data in each case: 14, 25, 14, 28, 18, 17, 18, 14, 23, 22, 14, 18 (i) (ii) 7, 9, 12, 13, 7, 12, 15, 7, 12, 7, 25, 18, 7 Sol: Arranging the data in an ascending order (i) 14, 14, 14, 14, 17, 18, 18, 18, 22, 23, 25, 28 Here observation 14 is having the highest frequency i.e., 4 in given data, so mode of given data is 14. (ii) Values 7 9 12 13 15 18 25 Frequency 5 1 3 1 1 1 1 Since, maximum frequency 5 corresponds to value 7 then the mode = 75. The demand of different shirt sizes, as obtained by a survey, is given below: Size: 38 39 40 41 42 44 Total 43 39 15 5 No of persons (wearing it)26 20 13 7 125 Find the modal shirt sizes, as observed from the survey.

Sol:

Size	38	39	40	41	42	43	44	Total
No. of persons	26	39	20	15	13	7	5	125

Since, maximum frequency 39 corresponds to value -39 then mode size =39.