Exercise - 24.1

1. If the heights of 5 persons are $140 \mathrm{~cm}, 150 \mathrm{~cm}, 152 \mathrm{~cm}, 158 \mathrm{~cm}$ and 161 cm respectively, find the mean height.
Sol:
It is given that,
The heights of 5 persons are $-140 \mathrm{~cm}, 150 \mathrm{~cm}, 152 \mathrm{~cm}, 158 \mathrm{~cm}$ and 161 cm .
\therefore Mean height $=\frac{\text { Sum of heights }}{\text { Total No.of persons }}$
$=\frac{140+150+152+158+161}{5}$
$=\frac{761}{5}$
$=152 \cdot 2$.
2. Find the mean of $994,996,998,1002$ and 1000.

Sol:

Given numbers are $-994,996,998,1000$ and 1002.
\therefore Mean $=\frac{\text { Sum of Numbers }}{\text { Total Numbers }}$
$=\frac{994+996+998+1000+1002}{5}$
$=\frac{4990}{5}$
$=998$.
3. Find the mean of first five natural numbers.

Sol:
Given that,
The first five natural numbers are $1,2,3,4,5$
\therefore Mean $=\frac{\text { Sum of Numbers }}{\text { Total Numbers }}$
$=\frac{1+2+3+4+5}{5}$
$=\frac{15}{5}$
Mean $=3$
4. Find the mean of all factors of 10 .

Sol:

All factors of 10 are $-1,2,5,10$
\therefore Mean $=\frac{\text { Sum of factors }}{\text { Total factors }}$
$=\frac{1+2+5+10}{4}$
$=\frac{18}{4}$
$=\frac{9}{2}$
$=4 \cdot 5$
\therefore Mean $=4 \cdot 5$
5. Find the mean of first 10 even natural numbers.

Sol:
Given that,
The first 10 natural numbers be $-2,4,6,8,10,12,14,16,18,20$
\therefore Mean $=\frac{\text { Sum of all Numbers }}{\text { Total Numbers }}$
$=\frac{2+4+6+8+10+12+14+16+18+20}{10}=\frac{110}{10}$
$=\frac{110}{10}=11$
Mean $=11$
6. Find the mean of $x, x+2, x+4, x+6, x+8$.

Sol:
Numbers be $x, x+2, x+4, x+6$ and $x+8$
\therefore Mean $=\frac{\text { Sum of Numbers }}{\text { Total Numbers }}$
$=\frac{x+x+2+x+4+x+6+x+8}{5}$
$=\frac{5 x+20}{5}$
$=\frac{5(x+4)}{5}$
$=x+4$
7. Find the mean of first five multiples of 3 .

Sol:

First five multiple of 3: 3, 6, 9, 12,15
\therefore Mean $=\frac{\text { Sum of Numbers }}{\text { Total Numbers }}$
$=\frac{3+6+9+12+15}{5}$
$=\frac{45}{5}=9$.
8. Following are the weights (in kg) of 10 new born babies in a hospital on a particular day:
3.4, 3.6, 4.2, 4.5, 3.9, 4.1, 3.8, 4.5, 4.4, 3.6. Find the mean \bar{X}.

Sol:

The weight (in kg) of 10 new born babies
$=3 \cdot 4,3 \cdot 6,4 \cdot 2,4 \cdot 5,3 \cdot 9,4 \cdot 1,3 \cdot 8,4 \cdot 5,4 \cdot 4,3 \cdot 6$
\therefore Mean $(\bar{x})=\frac{\text { Sum of weights }}{\text { Total babies }}$
$\frac{=3 \cdot 4+3 \cdot 6+4 \cdot 2+4 \cdot 5+3 \cdot 9+4 \cdot 1+3 \cdot 8+4 \cdot 5+4 \cdot 4+3 \cdot 6}{10}$
$=\frac{40}{10} 4 \mathrm{~kg}$.
9. The percentage of marks obtained by students of a class in mathematics are : 64, 36, 47, 23, $0,19,81,93,72,35,3,1$. Find their mean.

Sol:

The percentage marks obtained by students are
$=64,36,47,23,0,19,81,93,72,35,3,1$.
\therefore Mean marks $=\frac{64+36+47+23+0+19+81+93+72+35+3+1}{12}$
$=\frac{474}{12}=39 \cdot 5$
\therefore Mean marks $=39.5$
10. The numbers of children in 10 families of a locality are:
$2,4,3,4,2,0,3,5,1,1,5$. Find the mean number of children per family.
Sol:
The number of children in 10 families is
$\Rightarrow 2,4,3,4,2,3,5,1,1,5$.
\therefore Mean number of children per family
$=\frac{\text { Total no. of children }}{\text { Total families }}$
$=\frac{2+4+3+4+2+3+5+1+1+5}{10}$
$=\frac{30}{10}$
$=3$.
11. If M is the mean of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ and x_{6}, prove that
$\left(\mathrm{x}_{1}-\mathrm{M}\right)+\left(\mathrm{x}_{2}-\mathrm{M}\right)+\left(\mathrm{x}_{3}-\mathrm{M}\right)+\left(\mathrm{x}_{4}-\mathrm{M}\right)+\left(\mathrm{x}_{5}-\mathrm{M}\right)+\left(\mathrm{x}_{6}-\mathrm{M}\right)=0$.
Sol:
Let m be the mean of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ and x_{6}
Then $M=\frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}}{6}$
$\Rightarrow x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=6 M$
To prove: $\left(x_{1}-M\right)+\left(x_{2}-M\right)+\left(x_{3}-M\right)+\left(x_{4}-M\right)+\left(x_{5}-M\right)+\left(x_{6}-M\right)$
$=\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)-(M+M+M+M+M+M)$
$=6 M-6 M$
$=0$
$=$ RHS
12. Durations of sunshine (in hours) in Amritsar for first 10 days of August 1997 as reported by the Meteorological Department are given below:
9.6, 5.2, 3.5, 1.5, 1.6, 2.4, 2.6, 8.4, 10.3, 10.9
(i) Find the mean \bar{X} (ii) Verify that $=\sum_{i=1}^{10}\left(x_{i}-\bar{x}\right)=0$

Sol:

Duration of sunshine (in hours) for 10 days are $=9 \cdot 6,5 \cdot 2,3 \cdot 5,1 \cdot 5,1 \cdot 6,2 \cdot 4,2 \cdot 6,8 \cdot 4,10 \cdot 3,10 \cdot 9$
(i) Mean $\bar{x}=\frac{\text { Sum of all numbers }}{\text { Total numbers }}$

$$
\begin{aligned}
& =\frac{9 \cdot 6+5 \cdot 2+3 \cdot 5+1 \cdot 5+1 \cdot 6+2 \cdot 4+2 \cdot 6+8 \cdot 4+10 \cdot 3+10 \cdot 9}{10} \\
& =\frac{56}{10}=5 \cdot 6
\end{aligned}
$$

(ii) LHS $=\sum_{i=1}^{10}\left(x_{i}-\bar{x}\right)$

$$
\begin{aligned}
& =\left(x_{1}-\bar{x}\right)+\left(x_{2}-\bar{x}\right)+\left(x_{3}-\bar{x}\right)+\ldots \ldots \ldots \ldots . .+\left(x_{10}-\bar{x}\right) \\
& =(9 \cdot 6-5 \cdot 6)+(5 \cdot 2-5 \cdot 6)+(3 \cdot 5-5 \cdot 6)+(1 \cdot 5-5 \cdot 6)+(1 \cdot 6-5 \cdot 6)+(2 \cdot 4-5 \cdot 6) \\
& =(4)+(-0 \cdot 4)+(-2 \cdot 1)-4 \cdot 1-4-3 \cdot 2-3+2 \cdot 8+4 \cdot 7+5 \cdot 3 \\
& =16 \cdot 8-16 \cdot 8 \\
& =0 .
\end{aligned}
$$

13. Explain, by taking a suitable example, how the arithmetic mean alters by (i) adding a constant k to each term, (ii) subtracting a constant k from each them, (iii) multiplying each term by a constant k and (iv) dividing each term by a non-zero constant k .

Sol:

Let us say numbers are be $3,4,5$
\therefore Mean $=\frac{\text { Sum of number }}{\text { Total number }}$
$=\frac{3+4+5}{3}$
$=\frac{12}{3}$
$=4$
(i) Adding constant term $k=2$ in each term

New numbers are $=5,6,7$.
\therefore New mean $=\frac{5+6+7}{3}$
$=\frac{18}{3}=6=4+2$
\therefore New mean will be 2 more than the original mean.
(ii) Subtracting constant term $k=2$ in each term New number are $=1,2,3$.
\therefore New mean $=\frac{1+2+3}{3}=\frac{6}{3}=2=4-2$.
\therefore New mean will be 2 less than the original mean
(iii) Multiplying by constant term $k=2$ in each term

New numbers are $=6,8,10$
New mean $=\frac{6+8+10}{3}$

$$
\begin{aligned}
& =\frac{24}{3} \\
& =8 \\
& =4 \times 2
\end{aligned}
$$

\therefore New mean will be 2 times of the original mean.
(iv) Divide by constant term $k=2$ in each term

New number are $=1 \cdot 5,2,2 \cdot 5$
\therefore New mean $=\frac{1 \cdot 5+2+2 \cdot 5}{3}$
$=\frac{6}{3}=2=\frac{4}{2}$
\therefore New mean will be half of the original mean.
14. The mean of marks scored by 100 students was found to be 40 . Later on it was discovered that a score of 53 was misread as 83 . Find the correct mean.

Sol:

Mean marks of 100 students $=40$
\Rightarrow Sum of marks of 100 students $=100 \times 40=4000$
Correct value $=53$.
Incorrect value $=83$.
Correct sum $=4000-83+53$
$=3970$
\therefore Correct mean $=\frac{3970}{100}$
$=39 \cdot 7$.
15. The traffic police recorded the speed (in kmlhr) of 10 motorists as $47,53,49,60,39,42,55$, $57,52,48$. Later on an error in recording instrument was found. Find the correct overage speed of the motorists if the instrument recorded $5 \mathrm{~km} / \mathrm{hr}$ less in each case.
Sol:
The speed of 10 motorists are $47,53,49,60,39,42,55,57,52,48$
Later on it was discovered that the instrument recorded $5 \mathrm{~km} / \mathrm{hr}$ less than in each case
Corrected values are $52,58,54,65,44,47,60,62,57,53$
\therefore Correct mean $=\frac{52+58+54+65+44+47+60+62+57+53}{10}$
$=\frac{552}{10}$
$=55 \cdot 2 \mathrm{~km} / \mathrm{hr}$
16. The mean of five numbers is 27 . If one number is excluded, their mean is 25 . Find the excluded number.
Sol:
The mean of the numbers 27
The, sum of five numbers $=5 \times 27$
$=135$.
If one number is excluded, then the new mean is 25
\therefore Sum of numbers $=4 \times 25=100$
\therefore Excluded number $=135-100$
$=35$
17. The mean weight per student in a group of 7 students is 55 kg . The individual weights of 6 of them (in kg) are $52,54,55,53,56$ and 54 . Find the weight of the seventh student.
Sol:
The mean weight per student in a group of 7 students is 55 kg .
Weight of 6 students (in kg) $=52,54,55,53,56$ and 54.
Let weight of $7^{\text {th }}$ student $=x \mathrm{~kg}$
\therefore Mean $=\frac{\text { Sum of all weights }}{\text { Total students }}$
$\Rightarrow 55=\frac{52+54+55+53+56+54+x}{7}$
$\Rightarrow 385=324+x$
$\Rightarrow x=385-324$
$\Rightarrow x=61 \mathrm{~kg}$
\therefore Weight of $7^{\text {th }}$ student $=61 \mathrm{~kg}$
18. The mean weight of 8 numbers is 15 . If each number is multiplied by 2 , what will be the new mean?

Sol:

We have,
The mean weight of 8 numbers is 15
Then, The sum of 8 numbers $=8 \times 15=120$.
If each number is multiplied by 2
Then, new mean $=120 \times 2$
$=240$
\therefore New mean $=\frac{240}{8}=30$.
19. The mean of 5 numbers is 18 . If one number is excluded, their mean is 16 . Find the excluded number.
Sol:
The mean of 5 numbers is 18
Then, the sum of 5 numbers $=5 \times 18$
$=90$
If the one number is excluded
Then, the mean of 4 numbers $=16$.
\therefore Sum of 4 numbers $=4 \times 16$
$=64$
Excluded number $=90-64$
$=26$.
20. The mean of 200 items was 50 . Later on, it was discovered that the two items were misread as 92 and 8 instead of 192 and 88 . Find the correct mean.

Sol:

The mean of 200 items $=50$
Then the sum of 200 items $=200 \times 50$
$=10,000$
Correct values $=192$ and 88
Incorrect values $=92=8$
\therefore Correct sum $=10000-92-8+192+88$
$=10180$
\therefore Correct mean $=\frac{10180}{200}=50 \cdot 9$
$=\frac{101 \cdot 8}{2}=50 \cdot 9$.
21. Find the values of n and \bar{X} in each of the following cases:
(i) $\quad \sum_{i=1}^{n}\left(x_{i}-12\right)=-10 \sum_{i=1}^{n}\left(x_{i}-3\right)=62$
(ii) $\quad \sum_{i=1}^{n}\left(x_{i}-10\right)=30 \sum_{i=1}^{n}\left(x_{i}-6\right)=150$.

Sol:
(i) Given $\sum_{i=1}^{n}\left(x_{n}-12\right)=-10$

$$
\begin{aligned}
& \Rightarrow\left(x_{1}-12\right)+\left(x_{2}-12\right)+\ldots \ldots .+\left(x_{n}-12\right)=-10 \\
& \Rightarrow\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+\ldots \ldots \ldots . .+x_{n}\right)-(12+12+12+\ldots \ldots+12)=-10
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \sum x-12 n=-10 \tag{1}
\end{equation*}
$$

And $\sum_{i=1}^{n}\left(x_{i}-3\right)=62$
$\Rightarrow\left(x_{1}-3\right)+\left(x_{2}-x_{3}\right)+\left(x_{3}-3\right)+\ldots \ldots .+\left(x_{n}-3\right)=62$.
$\Rightarrow\left(x_{1}+x_{2}+\ldots \ldots \ldots .+x_{n}\right)-(3+3+3+3+\ldots \ldots+37)=62$
$\Rightarrow \Sigma x-3 n=62$
By subtracting equation (1) from equation (2)
We get
$\Sigma x-3 n-\Sigma x+12 n=62+10$
$\Rightarrow 9 n=72$
$\Rightarrow n=\frac{72}{9}=8$.
Put value of n in equation (1)
$\Sigma x-12 \times 8=-10$
$\Rightarrow \Sigma x-96=-10$
$\Rightarrow \Sigma x=-10+96=86$
$\therefore \bar{x}=\frac{\Sigma x}{x}=\frac{86}{8}=10.75$
(ii) Given $\sum_{i=1}^{n}\left(x_{i}-10\right)=30$
$\Rightarrow\left(x_{1}-10\right)+\left(x_{2}-10\right)+\ldots \ldots . .+\left(x_{n}-10\right)=30$
$\Rightarrow\left(x_{1}+x_{2}+x_{3}+\ldots \ldots \ldots .+x_{n}\right)-(10+10+10+\ldots \ldots+10)=30$
$\Rightarrow \sum x-10 n=30$
And $\sum_{i=1}^{n}\left(x_{i}-6\right)=150$.
$\Rightarrow\left(x_{1}-6\right)+\left(x_{2}-6\right)+\ldots \ldots . .+\left(x_{n}-6\right)=150$.
$\Rightarrow\left(x_{1}+x_{2}+x_{3}+\ldots \ldots \ldots .+x_{n}\right)-(6+6+6+\ldots \ldots+6)=150$
$\Rightarrow \Sigma x-6 n=150$
By subtracting equation (1) from equation (2)
$\Sigma x-6 n-\Sigma x+10 n=150-30$
$\Rightarrow \Sigma x-\Sigma x+4 n=120$
$\Rightarrow n=\frac{120}{4}$
$\Rightarrow n=30$
Put value of n in equation (1)

$$
\begin{aligned}
& \Sigma x-10 \times 30=30 \\
& \Rightarrow \Sigma x-300=30 \\
& \Rightarrow \Sigma x=30+300=330 \\
& \therefore \bar{x}=\frac{\Sigma x}{n}=\frac{330}{30}=11 .
\end{aligned}
$$

22. The sums of the deviations of a set of n values $x_{1}, x_{2}, \ldots x_{11}$ measured from 15 and -3 are - 90 and 54 respectively. Find the valùe of n and mean.

Sol:
(i) Given $\sum_{i=1}^{n}\left(x_{i}+5\right)=-90$
$\Rightarrow\left(x_{1}-15\right)+\left(x_{2}-15\right)+\ldots \ldots . .+\left(x_{n}-15\right)=-90$
$\Rightarrow\left(x_{1}+x_{2}+\ldots \ldots \ldots . .+x_{n}\right)-(15+15+\ldots \ldots+15)=-90$
$\Rightarrow \sum x-15 n=-90$
And $\sum_{i=1}^{n}\left(x_{i}+3\right)=54$
$\Rightarrow\left(x_{1}-3\right)+\left(x_{2}-3\right)+\ldots \ldots .+\left(x_{n}+3\right)=54$.
$\Rightarrow\left(x_{1}+x_{2}+x_{3}+\ldots \ldots \ldots .+x_{n}\right)+(3+3+3+\ldots \ldots+37)=54$
$\Rightarrow \Sigma x+3 n=54$
By subtracting equation (1) from equation (2)
$\Sigma x-30-\Sigma x+15 n=54+90$
$\Rightarrow 18 n=144$
$\Rightarrow n=\frac{144}{18}=8$.
Put value of n in equation (1)

$$
\begin{aligned}
& \Sigma x-15 \times 8=-90 \\
& \Rightarrow \Sigma x-120=-90 \\
& \Rightarrow \Sigma x=-90+120=30 \\
& \therefore \text { Mean }=\frac{\Sigma x}{n}=\frac{30}{8}=\frac{15}{4} .
\end{aligned}
$$

23. Find the sum of the deviations of the variate values $3,4,6,7,8,14$ from their mean.

Sol:
Values are 3, 4, 6, 7, 8, 14 .
\therefore Mean $=\frac{\text { Sum of numbers }}{\text { Total number }}$
$=\frac{3+4+6+7+8+14}{6}$
$=\frac{42}{6}$
$=7$.
\therefore Sum of deviation of values from their mean
$\Rightarrow(3-7)+(4-7)+(6-7)+(7-7)+(8-7)+(14-7)$
$\Rightarrow(-4)+(-3)+(-1)+(0)+(1)+(7)$
$\Rightarrow-8+8$
$=0$.
24. If \bar{X} is the mean of the ten natural numbers $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{10}$, show that, $\left(x_{1}-\bar{X}\right)+\left(x_{2}-\bar{X}\right)+\ldots \ldots \ldots+\left(x_{10}-\bar{X}\right)=0$

Sol:

We have, $\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{10}}{10}$
$\Rightarrow x_{1}+x_{2}+\ldots \ldots . .+x_{10}=10 \bar{x}$
Now, $\left(x_{1}-\bar{x}\right)+\left(x_{2}-\bar{x}\right)+\ldots \ldots \ldots+\left(x_{10}-\bar{x}\right)$
$=\left(x_{1}+x_{2}+\ldots \ldots \ldots+x_{10}\right)-(\bar{x}+\bar{x}+\ldots \ldots . .$. up to 10 terms $)$
$\Rightarrow 10 \bar{x}-10 \bar{x} \quad$ [By equation (i)]
$=0$
$\therefore\left(x_{1}-\bar{x}\right)+\left(x_{2}-\bar{x}\right)+\ldots \ldots . .+\left(x_{10}-\bar{x}\right)=0$ Hence proved.

Exercise - 24.2

1. Calculate the mean for the following distribution:

$\mathrm{x}:$	5	6	7	8	9
$\mathrm{f}:$	4	8	14	11	3

Sol:

x	f	$F x$
5	4	20
6	8	48
7	14	98
8	11	88
9	3	27
	$\mathrm{~N}=40$	$\Sigma f x=281$.

\therefore Mean $\bar{x}=\frac{\Sigma f x}{N}$
$=\frac{281}{40}$
$=7 \cdot 025$
2. Find the mean of the following data:

x:	19	21	23	25	27	29	31
f:	13	15	16	18	16	15	13

Sol:

x	f	$f x$
19	13	247
21	15	315
23	16	368
25	18	450
27	16	432
29	15	435
31	13	403
	$\mathrm{~N}=106$	$\Sigma f x=2650$

\therefore Mean $\bar{x}=\frac{\Sigma f x}{N}=\frac{2650}{106}=25$.
3. The mean of the following data is 20.6 . Find the value of p.

$\mathrm{x}:$	10	15	p	25	35
$\mathrm{f}:$	3	10	25	7	5

Sol:

x	f	$F x$
10	3	30
15	10	150
P	25	25 p
25	7	175
35	5	175
	$\mathrm{~N}=50$	$\Sigma f x=25 P+530$

It is given that
Mean $=20 \cdot 6$
$\Rightarrow \frac{\Sigma f x}{N}=20.6$
$\Rightarrow \frac{25 p+530}{50}=20 \cdot 6$
$\Rightarrow 25 p+530=20 \cdot 6(50)=1030$
$\Rightarrow 25 p=1030-530$
$\Rightarrow 25 p=500$
$\Rightarrow p=\frac{500}{25}=20$
$\Rightarrow p=20$
$\therefore P=20$
4. If the mean of the following data is 15 , find p .

$\mathrm{x}:$	5	10	15	20	25
$\mathrm{f}:$	6	p	6	10	5

Sol:

x	f	$F x$
5	6	30
10	P	10 p
15	6	90
20	10	200
25	5	125
	$\mathrm{~N}=\mathrm{P}+27$	$\Sigma f x=10 P+445$

Given mean $=15$
$\Rightarrow \frac{\Sigma x f}{N}=15$
$\Rightarrow \frac{10 p+445}{p+27}=15$
$\Rightarrow 10 p+445=15 p+405$
$\Rightarrow 15 p-10 p=445-405$
$\Rightarrow 5 p=40$
$\Rightarrow p=\frac{40}{5}$
$\therefore p=8$.
5. Find the value of p for the following distribution whose mean is 16.6

x:	8	12	15	p	20	25	30
f:	12	16	20	24	16	8	4

Sol:

x	f	$f x$
8	12	96
12	16	192
15	20	300
P	24	24 p
20	16	320
25	8	200
30	4	120
	$\mathrm{~N}=100$	$\Sigma f x=24 P+1228$

Given mean $=16 \cdot 6$
$\Rightarrow \frac{\Sigma f x}{N}=16 \cdot 6$
$\Rightarrow \frac{24 p+1228}{100}=16 \cdot 6$
$\Rightarrow 24 p=1660-1228$
$\Rightarrow 24 p=432$
$\Rightarrow p=\frac{432}{24}=18$
6. Find the missing value of p for the following distribution whose mean is 12.58 .

$\mathrm{x}:$	5	8	10	12	p	20	25
$\mathrm{f}:$	2	5	8	22	7	4	2

Sol:

x	f	$f x$
5	2	10
8	5	40
10	8	80
12	22	264
P	7	7 p
20	4	80
25	2	50
	$\mathrm{~N}=50$	$\Sigma f x=7 P+524$.

Given mean $=12 \cdot 58$
$\Rightarrow \frac{\Sigma f x}{N}=12 \cdot 58$
$\Rightarrow \frac{7 p+524}{50}=12 \cdot 58$
$\Rightarrow 7 p+524=629$
$\Rightarrow 7 p=629-524$
$\Rightarrow 7 p=105$
$\Rightarrow p=\frac{105}{7}=15$
7. Find the missing frequency (p) for the following distribution whose mean is 7.68.

$\mathrm{x}:$	3	5	7	9	11	13
$\mathrm{f}:$	6	8	15	p	8	4

Sol:

x	f	$F x$
3	6	18
5	8	40
7	15	105
9	P	9 p
11	8	88
13	4	52
	$\mathrm{~N}=\mathrm{P}+41$	$\Sigma f x=9 P+303$.

Given mean $=7.68$
$\Rightarrow \frac{\Sigma f x}{N}=7.68$
$\Rightarrow \frac{9 p+303}{p+41}=7.68$
$\Rightarrow 9 p+303=7 \cdot 68 p+314 \cdot 88$
$\Rightarrow 9 p-7 \cdot 68 p=314 \cdot 88-303$
$\Rightarrow 1.32 p=11.88$
$\Rightarrow p=\frac{11.88}{1.32}$
$\Rightarrow p=9$.
8. Find the mean of the following distribution:

x:	10	12	20	25	35
f:	3	10	15	7	5

Sol:

x	f	$F x$
10	3	30
12	10	120
20	15	300
25	7	175
35	5	175
	$\mathrm{~N}=40$	$\Sigma f x=800$

$\therefore \operatorname{Mean}(\bar{x})=\frac{\Sigma f x}{N}$
$=\frac{800}{40}=20$
$\bar{x}=20$.
9. Candidates of four schools appear in a mathematics test. The data were as follows:

Schools	No. of candidates	Average score
I	60	75
II	48	80
III	N A	55
IV	40	50

If the average score of the candidates of all the four schools is 66, find the number of candidates that appeared from school III.

Sol:

Let no. of candidates appeared from school $I I I=x$.

School	No. of candidates	Average score
I	60	75
II	48	80
III	x	55
IV	40	50

Given, average score of all school $=66$.
$\Rightarrow \frac{N_{1} \bar{x}_{1}+N_{2} \bar{x}_{2}+N_{3} \bar{x}_{3}+N_{4} \bar{x}_{4}}{N_{1}+N_{2}+N_{3}+N_{4}}=66$
$\Rightarrow \frac{60+75+48+80+x \times 55+40 \times 50}{60+48+x+40}=66$
$\Rightarrow \frac{4500+3840+55 x+2000}{148+x}=66$
$\Rightarrow \frac{10340+55 x}{148+x}=66$
$\Rightarrow 10340+55 x=66 x+9768$
$\Rightarrow 10340-9768=66 x-55 x$
$\Rightarrow 11 x=572$
$\Rightarrow x=\frac{572}{11}=52$.
\therefore No. of candidates appeared from school (3)-52.
10. Five coins were simultaneously tossed 1000 times and at each toss the number of heads were observed. The number of tosses during which $0,1,2,3,4$ and 5 heads were obtained are shown in the table below. Find the mean number of heads per toss.

No. of heads per toss	No. of tosses
0	38
1	144
2	342
3	287
4	164
5	25
Total	1000

Sol:

No. of heads per toss (x)	No. of tosses (f)	$f x$
0	38	0
1	144	144
2	342	684
3	287	861
4	164	656

5	25	125
	$\mathrm{~N}=100$	$\Sigma f x=2470$

\therefore Mean number of heads per toss $=\frac{\Sigma f x}{N}$
$=\frac{2470}{1000}$
$=2 \cdot 47$.
11. Find the missing frequencies in the following frequency distribution if its known that the mean of the distribution is 50 .

$\mathrm{x}:$	10	30	50	70	90	
$\mathrm{f}:$	17	f_{1}	32	f_{2}	19	Total 120

Sol:

x	f	$f x$
10	17	170
30	f_{1}	$30 f_{1}$
50	32	1600
70	f_{2}	$70 f_{2}$
90	19	1710
	$\mathrm{~N}=120$	$\Sigma f x=3480+30 f_{1}+70 f_{2}$

It is give that
Mean $=50$
$\Rightarrow \frac{\Sigma f x}{N}=50$
$\Rightarrow \frac{3480+30 f_{1}+70 f_{2}}{N}=50$
$\Rightarrow 3480+30 f_{1}+70 f_{2}=50(120)$
$\Rightarrow 30 f_{1}+70 f_{2}=6000-3480$
$\Rightarrow 10\left(3 f_{1}+7 f_{2}\right)=10(252)$
$\Rightarrow 3 f_{1}+7 f_{2}=252 \quad$.....(1) $[\because$ Divide by 10$]$
And $N=120$
$\Rightarrow 17+f_{1}+32+f_{2}+19=120$
$\Rightarrow 68+f_{1}+f_{2}=120$
$\Rightarrow f_{1}+f_{2}=120-68$
$\Rightarrow f_{1}+f_{2}=52$
Multiply with ' 3 ' on both sides
$\Rightarrow 3 f_{1}+3 f_{2}=156$

Subtracting equation (2) from equation (1)
$3 f_{1}+7 f_{2}-3 f_{1}-3 f_{2}=252-156$
$\Rightarrow 4 f_{2}=96$
$\Rightarrow f_{2}=\frac{96}{4}$
$\Rightarrow f_{2}=24$
Put value of f_{2} in equation (1)
$\Rightarrow 3 f_{1}+7 \times 24=250$
$\Rightarrow 3 f_{1}=252-168-84$
$\Rightarrow f_{1}=\frac{84}{3}=28$.

Exercise - 24.3

Find the median of the following data (1-8)

1. $83,37,70,29,45,63,41,70,34,54$

Sol:

Given numbers are
$83,37,70,29,45,63,41,70,34,54$
Arrange the numbers is ascending order
29, 34, 37, 41, 45, 54, 63, 70, 70, 83
$\mathrm{n}=10$ (even)
\therefore Median $=\frac{\frac{n^{\text {th }}}{2} \text { value }+\left(\frac{n}{2}+1\right)^{\text {th }} \text { value }}{2}$
$=\frac{\frac{10}{2}^{\text {th }} \text { value }+\left(\frac{10}{2}+1\right)^{\text {th }} \text { value }}{2}$
$=\frac{5^{\text {th }} \text { value }+6^{\text {th }} \text { value }}{2}$
$=\frac{45+54}{2}=\frac{99}{2}=49 \cdot 5$
2. $133,73,89,108,94,104,94,85,100,120$

Sol:

Given numbers are $133,73,89,108,94,104,94,85,100,120$
Arrange in ascending order
$73,85,89,94,94,100,104,105,120,133$
$n=10$ (even)
\therefore Median $=\frac{\frac{n}{2}^{\text {th }} \text { value }+\left(\frac{n}{2}+1\right)^{\text {th }} \text { value }}{2}$
$=\frac{\frac{10}{2}^{\text {th }} \text { value }+\left(\frac{10}{2}+1\right)^{\text {th }} \text { value }}{2}$
$=\frac{5^{\text {th }} \text { value }+6^{\text {th }} \text { value }}{2}$
$=\frac{90+104}{2}=97$
3. $31,38,27,28,36,25,35,40$

Sol:

Given numbers are 31, 38, 27, 28, 36, 35, 40
Arranging in increasing order
25, 27, 28, 31, 35, 36, 38, 40
$n=8$ (even)
\therefore Median $=\frac{\frac{n}{2}^{\text {th }} \text { value }+\left(\frac{n}{2}+1\right)^{\text {th }} \text { value }}{2}$
$=\frac{\frac{8}{2}^{\text {th }} \text { value }+\left(\frac{8}{2}+1\right)^{\text {th }} \text { value }}{2}$
$=\frac{4^{\text {th }} \text { value }+5^{\text {th }} \text { value }}{2}=\frac{31+35}{2}$
$=\frac{66}{2}=33$
4. $15,6,16,8,22,21,9,18,25$

Sol:

Given numbers are $15,6,16,8,22,21,9,18,25$
Arrange in increasing order
$6,8,9,15,16,18,21,22,25$
$n=9$ (odd)
\therefore Median $=\left(\frac{n+1}{2}\right)^{\text {th }}$ value $=\left(\frac{9+1}{2}\right)^{\text {th }}$ value
$=5^{\text {th }}$ value
$=16$
5. $41,43,127,99,71,92,71,58,57$

Sol:
Given numbers are $41,43,127,99,71,92,71,58,57$
Arrange in increasing order
41, 43, 57, 58, 71, 71, 92, 99, 127
$n=9$ (odd)
\therefore Median $=\left(\frac{n+1}{2}\right)^{\text {th }}$ value
$=\left(\frac{9+1}{2}\right)^{\text {th }}$ value
$=5^{\text {th }}$ value
$=71$
6. $25,34,31,23,22,26,35,29,20,32$

Sol:

Given number are 25, 34, 31, 23, 22, 26, 35, 29, 20, 32
Arranging in increasing order
20, 22, 23, 25, 26, 29, 31, 32, 34, 35
$n=10$ (even)
\therefore Median $=\frac{\frac{n}{2}^{\text {th }} \text { value }+\left(\frac{n}{2}+1\right)^{\text {th }} \text { value }}{2}$
$=\frac{\frac{10^{\text {th }}}{2} \text { value }+\left(\frac{10}{2}+1\right)^{\text {th }} \text { value }}{2}$
$=\frac{5^{\text {th }} \text { value }+6^{\text {th }} \text { value }}{2}$
$=\frac{26+29}{2}=\frac{55}{2}$.
7. $12,17,3,14,5,8,7,15$

Sol:
Given numbers are $12,17,3,14,5,8,7,15$
Arranging in increasing order 3, 5, 7, 8, 12, 14, 15, 17
$n=8$ (even)
\therefore Median $=\frac{\frac{n^{t h}}{2} \text { value }+\left(\frac{n}{2}+1\right)^{\text {th }} \text { value }}{2}$
$=\frac{\frac{8}{2}^{\text {th }} \text { value }+\left(\frac{8}{2}+1\right)^{\text {th }} \text { value }}{2}$
$=\frac{4^{\text {th }} \text { value }+5^{\text {th }} \text { value }}{2}$
$=\frac{8+12}{2}=\frac{20}{2}$
\therefore Median $=10$
8. $92,35,67,85,72,81,56,51,42,69$

Sol:

Given number are
92, 35, 67, 85, 72, 81, 56, 51, 42, 69
Arranging in increasing order
35, 42, 51, 56, 67, 69, 72, 81, 85, 92
$n=10$ (even)
\therefore Median $=\frac{\frac{n}{2}^{\text {th }} \text { value }+\left(\frac{n}{2}+1\right)^{\text {th }} \text { value }}{2}$
$=\frac{5^{\text {th }} \text { value }+6^{\text {th }} \text { value }}{2}$
$=\frac{67+69}{2}=68$.
9. Numbers $50,42,35,2 \mathrm{x}+10,2 \mathrm{x}-8,12,11,8$ are written in descending order and their median is 25 , find x .

Sol:

Given number of observation, $n=8$
Median $=\frac{\left(\frac{n}{2}\right)^{\text {th }} \text { observation }+\left(\frac{n}{2}+1\right)^{\text {th }} \text { observation }}{2}$
$=\frac{2 x+10+2 x-8}{2}$
$=2 x+1$
Given median $=25$
$\therefore 2 x+1=25$
$\Rightarrow 2 x=24$
$\Rightarrow x=12$
10. Find the median of the following observations: $46,64,87,41,58,77,35,90,55,92,33$. If 92 is replaced by 99 and 41 by 43 in the above data, find the new median?
Sol:
Given numbers are
$46,64,87,41,58,77,35,90,55,92,33$
Arrange in increasing order
$33,35,41,46,55,58,64,77,87,90,92$
$n=1$ (odd)
\therefore Median $=\left(\frac{n+1}{2}\right)^{\text {th }}$ value
$=\left(\frac{11+1}{2}\right)^{\text {th }}$ value
$=6^{\text {th }}$ value $=58$
If 92 is replaced by 99 and 41 by 43
Then, the new values are
$33,35,43,46,55,58,64,77,87,90,99$
$\therefore n=11$ (odd)
New median $=\left(\frac{n+1}{2}\right)^{\text {th }}$ value
$=\left(\frac{11+1}{2}\right)^{\text {th }}$ value
$=6{ }^{\text {th }}$ value
$=58$.
11. Find the median of the following data : $41,43,127,99,61,92,71,58,57$ If 58 is replaced by 85 , what will be the new median.

Sol:

Given numbers are
$41,43,127,99,61,92,71,58$ and 57
Arrange in ascending order
$41,43,57,58,61,71,92,99,127$
$n=9($ odd $)$
\therefore Median $=\left(\frac{n+1}{2}\right)^{\text {th }}$ value
$=\left(\frac{9+1}{2}\right)^{\text {th }}$ value
$=5^{\text {th }}$ value
$=61$
If 58 is replaced by 85
Then new values be in order are
$41,43,57,61,71,85,92,99,27$
$n=9($ odd $)$
\therefore Median $=\left(\frac{n+1}{2}\right)^{t h}$ value
$=\left(\frac{9+1}{2}\right)^{\text {th }}$ value
$=5^{\text {th }}$ value
$=71$
12. The weights (in kg) of 15 students are: $31,35,27,29,32,43,37,41,34,28,36,44,45,42$, 30 . Find the median. If the weight 44 kg is replaced by 46 kg and 27 kg by 25 kg , find the new median.

Sol:

Given numbers are
$31,35,27,29,32,43,37,41,34,28,36,44,45,42,30$
Arranging increasing order
$27,28,29,30,31,32,34,35,36,37,41,42,43,44,45$
$n=15$ (odd)
\therefore Median $=\left(\frac{n+1}{2}\right)^{t h}$ value
$=\left(\frac{15+1}{2}\right)^{\text {th }}$ value
$=8^{\text {th }}$ value
$=35 \mathrm{~kg}$
If the weight 44 kg is replaced by 46 kg and 27 kg is replaced by 25 kg Then, new values in order be
$25,28,29,30,31,32,34,35,36,37,41,42,43,45,46$
$n=15$ (odd)
\therefore Median $=\left(\frac{n+1}{2}\right)^{t h}$ value
$=\left(\frac{15+1}{2}\right)^{\text {th }}$ value
$=8^{\text {th }}$ value
$=35 \mathrm{~kg}$
13. The following observations have been arranged in ascending order. If the median of the data is 63 , find the value of $\mathrm{x}: 29,32,48,50, \mathrm{x}, \mathrm{x}+2,72,78,84,95$
Sol:
Total number of observation in the given data is 10 (even number). So median of this data will be mean of $\frac{10}{2}$ i.e., $5^{\text {th }}$ and $\frac{10}{2}+1$ i.e., $6^{\text {th }}$ observations.
So, median of data $=\frac{5^{\text {th }} \text { observation }+6^{\text {th }} \text { observation }}{2}$
$\Rightarrow 63=\frac{x+x+2}{2}$
$\Rightarrow 63=\frac{2 x+2}{2}$
$\Rightarrow 63=x+1$
$\Rightarrow x=62$

Exercise - 24.4

1. Find out the mode of the following marks obtained by 15 students in a class:

Marks : 4, 6, 5, 7, 9, 8, 10, 4, 7, 6, 5, 9, 8, 7, 7.
Sol:

Marks	4	5	6	7	8	9	10
No. of students	2	2	2	4	2	2	1

Since, the maximum frequency corresponds to the value 7 then mode $=7$ marks.
2. Find the mode from the following data:
$125,175,225,125,225,175,325,125,375,225,125$
Sol:

Values	125	175	225	325	375
Frequency	4	2	3	1	1

Since, maximum frequency 4 corresponds value 125 then mode $=125$
3. Find the mode for the following series :
$7.5,7.3,7.2,7.2,7.4,7.7,7.7,7.5,7.3,7.2,7.6,7.2$
Sol:

Values	$7 \cdot 2$	$7 \cdot 3$	$7 \cdot 4$	$7 \cdot 5$	$7 \cdot 6$	$7 \cdot 7$
Frequency	4	2	1	2	1	2

Since, maximum frequency 4 corresponds to value $7 \cdot 2$ then $\operatorname{mode}=7 \cdot 2$
4. Find the mode of the following data in each case:
(i) $14,25,14,28,18,17,18,14,23,22,14,18$
(ii) $7,9,12,13,7,12,15,7,12,7,25,18,7$

Sol:
(i) Arranging the data in an ascending order

$$
14,14,14,14,17,18,18,18,22,23,25,28
$$

Here observation 14 is having the highest frequency
i.e., 4 in given data, so mode of given data is 14 .
(ii)

Values	7	9	12	13	15	18	25
Frequency	5	1	3	1	1	1	1

Since, maximum frequency 5 corresponds to value 7 then the mode $=7$
5. The demand of different shirt sizes, as obtained by a survey, is given below:

Size:	38	39	40	41	42	43	44
No of persons (wearing it)26	39	20	15	13	7	5	125

Find the modal shirt sizes, as observed from the survey.
Sol:

Size	38	39	40	41	42	43	44	Total
No. of persons	26	39	20	15	13	7	5	125

Since, maximum frequency 39 corresponds to value -39 then mode size $=39$.

