Exercise - 6.1

1. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer:
(i) $3 x^{2}-4 x+15$
(ii) $y^{2}+2 \sqrt{3}$
(iii) $3 \sqrt{x}+\sqrt{2} x$
(iv) $x-\frac{4}{x}$
(v) $\quad x^{12}+y^{3}+t^{50}$

Sol:

(i) $3 x^{2}-4 x+15$ is a polynomial of one variable x.
(ii) $y^{2}+2 \sqrt{3}$ is a polynomial of one variable y.
(iii) $3 \sqrt{x}+\sqrt{2} x$ is not a polynomial as the exponents of $3 \sqrt{x}$ is not a positive integer.
(iv) $x-\frac{4}{x}$ is not a polynomial as the exponent of $\frac{-4}{x}$ is not a positive integer.
(v) $x^{12}+y^{3}+t^{50}$ is a polynomial of three variables x, y, t.
2. Write the coefficient of x^{2} in each of the following:
(i) $17-2 x+7 x^{2}$
(ii) $9-12 x+x^{3}$
(iii) $\frac{\pi}{6} x^{2}-3 x+4$
(iv) $\sqrt{3} x-7$

Sol:
Coefficient of x^{2} in
(i) $17-2 x+7 x^{2}$ is 7
(ii) $9-12 x+x^{3}$ is 0
(iii) $\frac{\pi}{6} x^{2}-3 x+4$ is $\frac{\pi}{6}$
(iv) $\sqrt{3} x-7$ is 0
3. Write the degrees of each of the following polynomials:
(i) $7 \mathrm{x}^{3}+4 \mathrm{x}^{2}-3 \mathrm{x}+12$
(ii) $12-x+2 x^{3}$
(iii) $5 y-\sqrt{2}$
(iv) $7=7 \times x^{\circ}$
(v) 0

Sol:
Degree of polynomial
(i) $7 x^{2}+4 x^{2}-3 x+12$ is 3
(ii) $12-x+2 x^{3}$ is 3
(iii) $5 y-\sqrt{2}$ is 1
(iv) $7=7 \times x^{\circ}$ is 0
(v) 0 is un defined.
4. Classify the following polynomials as linear, quadratic, cubic and biquadratic polynomials:
(i) $x+x^{2}+4$
(ii) $3 x-2$
(iii) $2 x+x^{2}$
(iv) $3 y$
(v) $t^{2}+1$
(vi) $7 t^{4}+4 t^{3}+3 t-2$

Sol:
Given polynomial
(i) $x+x^{2}+4$ is quadratic as degree of polynomial is 2 .
(ii) $3 x-2$ is linear as degree of polynomial is 1 .
(iii) $2 x+x^{2}$ is quadratic as degree of polynomial is 2 .
(iv) $3 y$ is linear as degree of polynomial is 2 .
(v) $t^{2}+1$ is quadratic as degree of polynomial is 2 .
(vi) $7 t^{4}+4 t^{3}+3 t-2$ is bi-quadratic as degree of polynomial is 4 .
5. Classify the following polynomials as polynomials in one-variable, two variables etc:
(i) $x^{2}-x y+7 y^{2}$
(ii) $x^{2}-2 t x+7 t^{2}-x+t$
(iii) $t^{3}-3 t^{2}+4 t-5$
(iv) $x y+y z+z x$

Sol:
(i) $x^{2}-x y+7 y^{2}$ is a polynomial in two variables x, y.
(ii) $x^{2}-2 t x+7 t^{2}-x+t$ is a polynomial in 2 variables x, t.
(iii) $t^{3}-3 t^{2}+4 t-5$ is a polynomial in 1 variables t.
(iv) $x y+y z+z x$ is a polynomial in 3 variables x, y, z.
6. Identify polynomials in the following:
(i) $\quad f(x)=4 x^{3}-x^{2}-3 x+7$
(ii) $g(x)=2 x^{3}-3 x^{2}+\sqrt{x}-1$
(iii) $\quad p(x)=\frac{2}{3} x^{2}-\frac{7}{4} x+9$.
(iv) $\quad q(x)=2 x^{2}-3 x+\frac{4}{x}+2$
(v) $\quad h(x)=x^{4}-x^{\frac{3}{2}}+x-1$
(vi) $f(x)=2+\frac{3}{x}+4 x$

Sol:

(i) $\quad f(x)=4 x^{3}-x^{2}-3 x+7$ is a polynomial
(ii) $g(x)=2 x^{3}-3 x^{2}+\sqrt{x}-1$ is not a polynomial as exponent of x in \sqrt{x} is not a positive integer.
(iii) $\quad p(x)=\frac{2}{3} x^{2}-\frac{7}{4} x+9$. is a polynomial as all the exponents are positive integers.
(iv) $\quad q(x)=2 x^{2}-3 x+\frac{4}{x}+2$ is not a polynomial as exponent of x in $\frac{4}{x}$ is not a positive integer.
(v) $\quad h(x)=x^{4}-x^{\frac{3}{2}}+x-1$ is not a polynomial as exponent of x in $-x^{\frac{3}{2}}$ is not a positive integer.
(vi) $\quad f(x)=2+\frac{3}{x}+4 x$ is not a polynomial as exponent of x in $\frac{3}{x}$ is not a positive integer.
7. Identify constant, linear, quadratic and cubic polynomials from the following polynomials:
(i) $\quad f(x)=0$
(ii) $g(x)=2 x^{3}-7 x+4$
(iii) $\quad h(x)=-3 x+\frac{1}{2}$
(iv) $\quad p(x)=2 x^{2}-x+4$
(v) $\quad q(x)=4 x+3$
(vi) $\quad r(x)=3 x^{2}+4 x^{2}+5 x-7$

Sol:

Given polynomial
(i) $\quad f(x)=0$ is a constant polynomial as 0 is a constant
(ii) $g(x)=2 x^{3}-7 x+4$ is a cubic polynomial as degree of the polynomial is 3 .
(iii) $h(x)=-3 x+\frac{1}{2}$ is a linear polynomial as degree of the polynomial is 1 .
(iv) $p(x)=2 x^{2}-x+4$ is a quadratic as the degree of the polynomial is 2 .
(v) $\quad q(x)=4 x+3$ is a linear polynomial as the degree of the polynomial is 1 .
(vi) $r(x)=3 x^{2}+4 x^{2}+5 x-7$ is a cubic polynomial as the degree is 3 .
8. Give one example each of a binomial of degree 35 , and of a monomial of degree 100 .

Sol:
Example of a binomial with degree 35 is $7 x^{35}-5$
Example of a monomial with degree 100 is $2 t^{100}$

Exercise - 6.2

1. If $f(x)=2 x^{3}-13 x^{2}+17 x+12$, find (i) $f(2)$ (ii) $f(-3)$ (iii) $f(0)$

Sol:
We have
$f(x)=2 x^{3}-13 x^{2}+17 x+12$
(i) $f(2)=2 \times(2)^{3}-13 \times(2)^{2}+17 \times(2)+12$

$$
=(2 \times 8)-(13 \times 4)+(17 \times 2)+12
$$

$$
=16-52+34+12=10
$$

(ii) $f(-3)=2 \times(-3)^{3}-13 \times(-3)^{2}+17 \times(-3)+12$

$$
=2 \times(-27)-13 \times(9)+17 \times(-3)+12
$$

$$
=-54-117-51+12=-210
$$

(iii) $f(0)=2 \times(0)^{3}-13 \times(0)^{2}+17 \times(0)+12$

$$
=0-0+0+12=12
$$

2. Verify whether the indicated numbers are zeroes of the polynomials corresponding to them in the following cases:
(i) $\quad f(x)=3 x+1, x=-\frac{1}{3}$
(ii) $\quad f(x)=x^{2}-1, x=1,-1$
(iii) $g(x)=3 x^{2}-2, x=\frac{2}{\sqrt{3}},-\frac{2}{\sqrt{3}}$
(iv) $\quad p(x)=x^{3}-6 x^{2}+11 x-6, x=1,2,3$
(v) $f(x)=5 x-\pi, x=\frac{4}{5}$
(vi) $\quad f(x)=x^{2}$ and $x=0$
(vii) $f(x)=l x+m, x=-\frac{m}{l}$
(viii) $f(x)=2 x+1, x=\frac{1}{2}$

Sol:
(i) $f(x)=3 x+1, x=-\frac{1}{3}$

We have

$$
f(x)=3 x+1
$$

Put $x=-\frac{1}{3} \Rightarrow f\left(-\frac{1}{3}\right)=\not p \times\left(-\frac{1}{\not p}\right)+1=-1+1=0$
$\therefore x=-\frac{1}{3}$ is a root of $f(x)=3 x+1$
(ii) $\quad f(x)=x^{2}-1, x=1,-1$

We have $f(x), x^{2}-1$
Put $x=1$ and $x=-1$
$\Rightarrow f(1)=(1)^{2}-1$ and $f(-1)=(-1)^{2}-1$
$=1-1=0 \quad=1-1=0$
$\therefore x=1,-1$ are the roots of $f(x)=x^{2}-1$
(iii) $g(x)=3 x^{2}-2, x=\frac{2}{\sqrt{3}},-\frac{2}{\sqrt{3}}$

We have $g(x)=3 x^{2}-2$
Put $x=\frac{2}{\sqrt{3}}$ and $x=-\frac{2}{\sqrt{3}}$
$\Rightarrow g\left(\frac{2}{\sqrt{3}}\right)=3\left(\frac{2}{\sqrt{3}}\right)^{2}-2$ and $g\left(\frac{-2}{\sqrt{3}}\right)=3\left(\frac{-2}{\sqrt{3}}\right)^{2}-2$
$=\not p \times \frac{4}{\not p}-2 \quad=\nRightarrow\left(\frac{4}{\not p}\right)-2$
$=4-2=2 \neq 0 \quad=4-2=2 \neq 0$
$\therefore x=\frac{2}{\sqrt{3}}, \frac{-2}{\sqrt{3}}$ are not roots of $g(x)=3 x^{2}-2$
(iv) $p(x)=x^{3}-6 x^{2}+11 x-6, x=1,2,3$

Put $x=1 \Rightarrow p(1)=(1)^{3}-6(1)^{2}+n(1)-6=1-6+11-6=0$
$x=2 \Rightarrow p(2)=(2)^{3}-6(2)^{2}+11(2)-6=8-24+22-6=0$
$x=3 \Rightarrow p(3)=3^{3}-6\left(3^{2}\right)+11(3)-6=27-54+33-6=0$
$\therefore x=1,2,3$ are roots of $p(x)=x^{3}-6 x^{2}+11 x-6$
(v) We know $f(x)=5 x-\pi, x=\frac{4}{5}$

Put $x=\frac{4}{5} \Rightarrow f\left(\frac{4}{5}\right)=\not \equiv \times \frac{4}{\not D}-\pi=4-\pi \neq 0$
$\therefore x=\frac{4}{5}$ is not a root of $f(x)=5 x-\pi$
(vi) We have $f(x)=x^{2}$ and $x=0$

Put $x=0 \Rightarrow f(0)=(0)^{2}=0$
$\therefore x=0$ is a root of $f(x)=x^{2}$
(vii) $f(x)=l x+m$ and $x=-\frac{m}{l}$

Put $x=\frac{-m}{l} \Rightarrow f\left(\frac{-m}{l}\right)=l \times\left(\frac{-m}{l}\right)+m=-m+m=0$
$\therefore x=-\frac{m}{l}$ is a root of $f(x)=l x+m$
(viii) $f(x)=2 x+1, x=\frac{1}{2}$

Put $x=\frac{1}{2} \Rightarrow f\left(\frac{1}{x}\right)=\mathfrak{2} \times\left(\frac{1}{\not 2}\right)+1=1+1=2 \neq 0$
$\therefore x=\frac{1}{2}$ is not a root of $f(x)=2 x+1$
3. If $x=2$ is a root of the polynomial $f(x)=2 x^{2}-3 x+7 a$, find the value of a.

Sol:
We have $f(x)=2 x^{2}-3 x+7 a$
Put $x=2 \Rightarrow f(2)=2(2)^{2}-3(2)+7 a$
$=2 \times 4-3 \times 2+7 a=8-6+7 a$
$=2+7 a$
Given $x=2$ is a root of $f(x)=2 x^{2}-3 x+7 a$
$\Rightarrow f(2)=0$
$\therefore 2+7 a=0$
$\Rightarrow 7 a=-2 \Rightarrow a=-\frac{2}{7}$
4. If $\mathrm{x}=-\frac{1}{2}$ is a zero of the polynomial $\mathrm{p}(\mathrm{x})=8 x^{3}-a x^{2}-x+2$, find the value of a .

Sol:
We have $p(x)=8 x^{3}-a x^{2}-x+2$
Put $x=-\frac{1}{2}$
$\Rightarrow P\left(-\frac{1}{2}\right)=8 \times\left(-\frac{1}{2}\right)^{3}-a x\left(-\frac{1}{2}\right)^{2}-\left(-\frac{1}{2}\right)+2$
$=8 \times \frac{-1}{8}-a \times \frac{1}{4}+\frac{1}{2}+2$
$=-1-\frac{a}{4}+\frac{1}{2}+2$
$=\frac{3}{2}-\frac{a}{4}$
Given that $x=\frac{-1}{2}$ is a root of $p(x)$
$\Rightarrow P\left(\frac{-1}{2}\right)=0$
$\therefore \frac{3}{2}-\frac{a}{4}=0 \Rightarrow \frac{a}{4}=\frac{3}{2} \Rightarrow a=\frac{3}{2} \times \mathbb{A}^{2}$
$\Rightarrow a=6$
5. If $x=0$ and $x=-1$ are the roots of the polynomial $f(x)=2 x^{3}-3 x^{2}+a x+b$, find the value of a and b.
Sol:
We have $f(x)=2 x^{3}-3 x^{2}+a x+b$
Put
$x=0 \Rightarrow f(0)=2 \times(0)^{3}-3(0)^{2}+a(0)+b=0-0+0+b=b$
$x=-1 \Rightarrow f(-1)=2 \times(-1)^{3}-3 \times(-1)^{2}+a(-1)+b=2 \times(-1)-3 \times(1)-a+b$
$=-2-3-a+b$
$=-5-a+b$
Since $x=0$ and $x=-1$ are roots of $f(x)$
$\Rightarrow f(0)=0$ and $f(-1)=0$
$\Rightarrow b=0 \quad \Rightarrow-5-a+b=0$
$b=0$ and $a-b=-5$
$\Rightarrow a-0=-5$
$\Rightarrow a=-5$
$\therefore a=-5$ and $b=0$
6. Find the integral roots of the polynomial $f(x)=x^{3}+6 x^{2}+11 x+6$.

Sol:
We have
$f(x)=x^{3}+6 x^{2}+11 x+6$

Clearly, $f(x)$ is a polynomial with integer coefficient and the coefficient of the highest degree term i.e., the leading coefficients is 1 .
Therefore, integer roots of $f(x)$ are limited to the integer factors of 6 , which are
$\pm 1, \pm 2, \pm 3, \pm 6$
We observe that
$f(-1)=(-1)^{3}+6(-1)^{2}+11(-1)+6=-1+6-11+6=0$
$f(-2)=(-2)^{3}+6(-2)^{2}+11(-2)+6=-8+24-22+6=0$
$f(-3)=(-3)^{2}+6(-3)^{2}+11(-3)+6=-27+54-33+6=0$
\therefore Hence, integral roots of $f(x)$ are $-1,-2,-3$.
7. Find rational roots of the polynomial $f(x)=2 x^{3}+x^{2}-7 x-6$

Sol:
We have

$$
f(x)=2 x^{3}+x^{2}-7 x-6
$$

Clearly, $f(x)$ is a cubic polynomial with integer coefficient. If $\frac{b}{c}$ is a rational roots in lowest terms, then the value of b are limited to the factors of 6 which $\pm 1, \pm 2, \pm 3, \pm 6$ and values of c are limited to the factors of 2 which are $\pm 1, \pm 2$.
Hence, the possible rational roots of $f(x)$ are

$$
\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}
$$

We observe that

$$
f(-1)=2(-1)^{3}+(-1)^{2}-7(-1)-6=-2+1+7-6=0
$$

$$
f(2)=2(2)^{3}+(2)^{2}-7(2)-6=16+4-14-6=0
$$

$$
f\left(-\frac{3}{2}\right)=2\left(-\frac{3}{2}\right)^{3}+\left(-\frac{3}{2}\right)^{2}-7\left(\frac{3}{2}\right)-6=-\frac{27}{4}+\frac{9}{4}+\frac{21}{2}-6=0
$$

\therefore Hence, $-1,2, \frac{-3}{2}$ are the rational roots of $f(x)$

Exercise- 6.3

In each of the following, using the remainder theorem, find the remainder when $f(x)$ is divided by $g(x)$ and verify the result by actual division: $(1-8)$

1. $f(x)=x^{3}+4 x^{2}-3 x+10, g(x)=x+4$

Sol:

We have $f(x)=x^{3}+4 x^{2}-3 x+10$ and $g(x)=x+4$
Therefore, by remainder theorem when $f(x)$ is divided by $g(x)=x-(-4)$, the remainder is equal to $f(-4)$
Now, $f(x)=x^{3}+4 x^{2}-3 x+10$
$\Rightarrow f(-4)=(-4)^{3}+(-4)^{2}-3(-4)+10$
$=-64+4 \times 16+12+10$
$=-64+64+12+10=22$
Hence, required remainder is 22 .
2. $f(x)=4 x^{4}-3 x^{3}-2 x^{2}+x-7, g(x)=x-1$

Sol:

We have
$f(x)=4 x^{4}-3 x^{3}-2 x^{2}+x-7$ and $g(x)=x-1$
Therefore by remainder theorem when $f(x)$ is divide by $g(x)=x-1$, the remainder is equal to $f(+1)$
Now, $f(x)=4 x^{4}-3 x^{3}-2 x^{2}+x-7$
$\Rightarrow f(1)=4(+1)^{4}-3(+1)^{3}-2(+1)^{2}+(+1)-7$
$=4 \times 1-3(+1)-2(1)+1-7$
$=4-3-2+1-7=-7$
Hence, required remainder is -7
3. $f(x)=2 x^{4}-6 x^{3}+2 x^{2}-x+2, g(x)=x+2$

Sol:

We have
$f(x)=2 x^{4}-6 x^{3}+2 x^{2}-x+2$ and $g(x)=x+2$

Therefore, by remainder theorem when $f(x)$ is divide by $g(x)=x-(-2)$, the remainder is equal to $f(-2)$
Now, $f(x)=2 x^{4}-6 x^{3}+2 x^{2}-x+2$
$\Rightarrow f(-2)=2(-2)^{4}-6(-2)^{3}+2(-2)^{2}-(-2)+2$
$=2 \times 16-6 \times(-8)+2 \times 4+2+2$
$=32+48+8+4=92$
Hence, required remainder is 92 .
4. $f(x)=4 x^{3}-12 x^{2}+14 x-3, g(x)=2 x-1$

Sol:

We have
$f(x)=4 x^{3}-12 x^{2}+14 x-3$ and $g(x)=2 x-1$
Therefore, by remainder theorem when $f(x)$ is divide by $g(x)=2\left(x-\frac{1}{2}\right)$, the remainder is equal to $f\left(\frac{1}{2}\right)$
Now, $f(x)=4 x^{3}-12 x^{2}+14 x-3$
$\Rightarrow f\left(\frac{1}{2}\right)=4\left(\frac{1}{2}\right)^{3}-12\left(\frac{1}{2}\right)^{2}+14\left(\frac{1}{2}\right)-3$
$=\left(A \times \frac{1}{\not X_{2}^{\prime}}\right)-\left(\not Z^{3} \times \frac{1}{A}\right)+\left(Z^{7} A \times \frac{1}{\not Z}\right)-3$
$=\frac{1}{2}-3+7-3=\frac{1}{2}+1=\frac{3}{2}$
Hence, required remainder is $\frac{3}{2}$.
5. $f(x)=x^{3}-6 x^{2}+2 x-4, g(x)=1-2 x$

Sol:

We have
$f(x)=x^{3}-6 x^{2}+2 x-4$ and $g(x)=1-2 x$
Therefore, by remainder theorem when $f(x)$ is divided by $g(x)=-2\left(x-\frac{1}{2}\right)$, the remainder is equal to $f\left(\frac{1}{2}\right)$

Now, $f(x)=x^{3}-6 x^{2}+2 x-4$
$\Rightarrow f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{3}-6\left(\frac{1}{2}\right)^{2}+2\left(\frac{1}{2}\right)-4$
$=\frac{1}{8}-\left(\frac{3}{6}+\frac{1}{A_{2}}\right)+\not 2 \times \frac{1}{\not 2}-4$
$=\frac{1}{8}-\frac{3}{2}+1-4=-\frac{35}{8}$
Hence, the required remainder is $-\frac{35}{8}$
6. $f(x)=x^{4}-3 x^{2}+4, g(x)=x-2$

Sol:

We have
$f(x)=x^{4}-3 x^{2}+4$ and $g(x)=x-2$
Therefore, by remainder theorem when $f(x)$ is divided by $g(x)=x-2$, the remainder is equal to $f(2)$
Now, $f(x)=x^{4}-3 x^{2}+4$
$\Rightarrow f(2)=2^{4}-3(2)^{2}+4$
$=16-(3 \times 4)+4=16-12+4=20-12=8$
Hence, required remainder is 8 .
7. $f(x)=9 x^{3}-3 x^{2}+x-5, g(x)=x-\frac{2}{3}$

Sol:

We have $f(x)=9 x^{3}-3 x^{2}+x-5$ and $g(x)=x-\frac{2}{3}$
Therefore, by remainder theorem when $f(x)$ is divided by $g(x)=x-\frac{2}{3}$, the remainder is equal to $f\left(\frac{2}{3}\right)$
Now, $f(x)=9 x^{3}-3 x^{2}+x-5$
$\Rightarrow f\left(\frac{2}{3}\right)=9\left(\frac{2}{3}\right)^{3}-3\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)-5$

$=\frac{8}{3}-\frac{4}{3}+\frac{2}{3}-5=\frac{6}{3}-5=2 \cdot 5=-3$
Hence, the required remainder is -3 .
8. $f(x)=3 x^{4}+2 x^{3}-\frac{x^{2}}{3}-\frac{x}{9}+\frac{2}{27}, g(x)=x+\frac{2}{3}$

Sol:

We have
$f(x)=3 x^{4}+2 x^{3}-\frac{x^{2}}{3}-\frac{x}{9}+\frac{2}{27}$ and $g(x)=x+\frac{2}{3}$
Therefore, by remainder theorem when $f(x)$ is divided by $g(x)=x-\left(-\frac{2}{3}\right)$, the remainder is equal to $f\left(-\frac{2}{3}\right)$

Now, $f(x)=3 x^{4}+2 x^{3}-\frac{x^{2}}{3}-\frac{x}{9}+\frac{2}{27}$
$\Rightarrow f\left(-\frac{2}{3}\right)=3 \times\left(\frac{-2}{3}\right)^{4}+2\left(\frac{-2}{3}\right)^{3}-\frac{\left(\frac{-2}{3}\right)^{2}}{3}-\frac{\left(\frac{-2}{3}\right)}{9}+\frac{2}{27}$
$=\not p \times \frac{16}{81}+2 \times \frac{-8}{27}-\frac{4}{9 \times 3}-\left(\frac{-2}{3 \times 9}\right)+\frac{2}{27}$
$=\frac{16}{27}-\frac{16}{27}-\frac{4}{27}+\frac{2}{27}+\frac{2}{27}$
$=\frac{16-16-4+2+2}{27}=\frac{0}{27}=0$
Hence, required remainder is 0 .
9. If the polynomials $2 x^{3}+a x^{2}+3 x-5$ and $x^{3}+x^{2}-4 x+a$ leave the same remainder when divided by $x-2$, find the value of a.

Sol:

Let $p(x)=2 x^{3}+a x^{2}+3 x-5$ and $q(x)=x^{3}+x^{2}-4 x+a$ be the given polynomials The remainders when $p(x)$ and $q(x)$ are divided by $(x-2)$ are $p(2)$ and $q(2)$ respectively.

By the given condition we have
$p(2)=q(2)$
$\Rightarrow 2(2)^{3}+a(2)^{2}+3(2)-5=2^{3}+2^{2}-4(2)+a$
$\Rightarrow 16+4 a+6-5=8+4-8+a$
$\Rightarrow 3 a+13=0 \Rightarrow 3 a=-13 \Rightarrow a=\frac{-13}{3}$
10. The polynomials $a x^{3}+3 x^{2}-3$ and $2 x^{3}-5 x+a$ when divided by ($x-4$) leave the remainders R_{1} and R_{2} respectively. Find the values of a in each of the following cases, if (i) $\mathrm{R}_{1}=\mathrm{R}_{2}$ (ii) $\mathrm{R}_{1}+\mathrm{R}_{2}=0$ (iii) $2 \mathrm{R}_{1}-\mathrm{R}_{2}=0$.

Sol:
Let $p(x)=a x^{3}+3 x^{2}-3$ and $q(x)=2 x^{3}-5 x+a$ be the given polynomials.
Now,
$R_{1}=$ Remainder when $p(x)$ is divided by $x-4$
$\Rightarrow R_{1}=p(4)$
$\Rightarrow R_{1}=a(4)^{3}+3(4)^{2}-3 \quad\left[\because p(x)=a x^{3}+3 x^{2}-3\right]$
$\Rightarrow R_{1}=64 a+48-3$
$\Rightarrow R_{1}=64 a+45$
And,
$R_{2}=$ Remainder when $q(x)$ is divided by $x-4$
$\Rightarrow R_{2}=q(4)$
$\Rightarrow R_{2}=q(4)^{3}-5(4)+a \quad\left[\because q(x)=2 x^{3}-5 x+a\right]$
$\Rightarrow R_{2}=128-20+a$
$\Rightarrow R_{2}=108+a$
(i) Given condition is $R_{1}=R_{2}$
$\Rightarrow 64 a+45=108+a$
$\Rightarrow 63 a-63=0 \Rightarrow 63 a=63 \Rightarrow a=1$
(ii) Given condition is $R_{1}+R_{2}=0$
$\Rightarrow 64 a+45+108+a=0$
$\Rightarrow 65 a+153=0 \Rightarrow 65 a=-153 \Rightarrow a=\frac{-153}{65}$
(iii) Given condition is $2 R_{1}-R_{2}=0$

$$
\begin{aligned}
& \Rightarrow 2(64 a+45)-(108+a)=0 \\
& \Rightarrow 128 a+90-108-a=0 \\
& \Rightarrow 127 a-18=0 \Rightarrow 127 a=18 \Rightarrow a=\frac{18}{127}
\end{aligned}
$$

11. If the polynomials $a x^{3}+3 x^{2}-13$ and $2 x^{3}-5 x+a$, when divided by $(x-2)$ leave the same remainder, find the value of a.

Sol:

Let $p(x)=a x^{3}+3 x^{2}-13$ and $q(x)=2 x^{3}-5 x+a$ be the given polynomials
The remainders when $p(x)$ and $q(x)$ are divided by $(x-2)$ are $p(2)$ and $q(2)$.
By the given condition we have
$p(2)=q(2)$
$\Rightarrow a(2)^{3}+3(2)^{2}-13=2(2)^{3}-5(2)+a$
$\Rightarrow 8 a+12-13=16-10+a$
$\Rightarrow 7 a-7=0 \Rightarrow 7 a=7 \Rightarrow a=\frac{7}{7} \Rightarrow a=1$
(i) $x \Rightarrow x-0$

By remainder theorem, required remainder is equal to $f(0)$
Now, $f(x)=x^{3}+3 x^{2}+3 x+1$
$\Rightarrow f(0)=0^{3}+3 \times 0^{2}+3 \times 0+1=0+0+0+1=1$
Hence, required remainder is 1 .
(ii) $x+\pi \Rightarrow x-(-\pi)$

By remainder theorem, required remainder is equal to $f(-\pi)$
Now, $f(x)=x^{3}+3 x^{2}+3 x+1$
$\Rightarrow f(-\pi)=(-\pi)^{3}+3(-\pi)^{2}+3(-\pi)+1$
$=-\pi^{3}+3 \pi^{2}-3 \pi+1$
Hence, required remainder is $-\pi^{3}+3 \pi^{2}-3 \pi+1$.
(iii) $5+2 x \Rightarrow 2\left(x-\left(-\frac{5}{2}\right)\right)$

By remainder theorem, required remainder is equal to $f\left(-\frac{5}{2}\right)$.
Now, $f(x)=x^{3}+3 x^{2}+3 x+1$

$$
\begin{aligned}
& \Rightarrow f\left(-\frac{5}{2}\right)=\left(-\frac{5}{2}\right)^{3}+3\left(-\frac{5}{2}\right)^{2}+3\left(-\frac{5}{2}\right)+1 \\
& =\frac{-125}{8}+\frac{3 \times 25}{4}+\frac{3 \times-5}{2}+1 \\
& =\frac{-128}{8}+\frac{75}{4}-\frac{15}{2}+1 \\
& =\frac{-27}{8}
\end{aligned}
$$

Hence, required remainder is $\frac{-27}{8}$.

Exercise - 6.4

In each of the following, use factor theorem to find whether polynomial $g(x)$ is a factor of polynomial $f(x)$ or, not: $(1-7)$

1. $f(x)=x^{3}-6 x^{2}+11 x-6 ; g(x)=x-3$

Sol:

We have $f(x)=x^{3}-6 x^{2}+11 x-6$ and $g(x)=x-3$
In order to find whether polynomial $g(x)=x-3$ is a factor of $f(x)$, it is sufficient to show that $f(3)=0$
Now, $f(x)=x^{3}-6 x^{2}+11 x-6$
$\Rightarrow f(3)=3^{3}-6(3)^{2}+11(3)-6$
$=27-54+33-6=60-60=0$
Hence, $g(x)$ is a factor of $f(x)$
2. $f(x)=3 x^{4}+17 x^{3}+9 x^{2}-7 x-10 ; g(x)=x+5$

Sol:

We have $f(x)=3 x^{4}+17 x^{3}+9 x^{2}-7 x-10$ and $g(x)=x+5$
In order to find whether $g(x)=x-(-5)$ is a factor of $f(x)$ or not, it is sufficient to show
that $f(-5)=0$
Now, $f(x)=3 x^{4}+17 x^{3}+9 x^{2}-7 x-10$
$\Rightarrow f(-5)=3(-5)^{4}+17(-5)^{3}+9(-5)^{2}-7(-5)-10$
$=3 \times 625+17 \times(-125)+9 \times 25+35-10$
$=1875-2125+225+35-10$
$=0$
Hence, $g(x)$ is a factor of $f(x)$
3. $f(x)=x^{5}+3 x^{4}-x^{3}-3 x^{2}+5 x+15, g(x)=x+3$

Sol:

We have $f(x)=x^{5}+3 x^{4}-x^{3}-3 x^{2}+5 x+15$ and $g(x)=x+3$
In order to find whether $g(x)=x-(-3)$ is a factor of $f(x)$ or not, it is sufficient to prove that $f(-3)=0$
Now, $f(x)=x^{5}+3 x^{4}-x^{3}-3 x^{2}+5 x+15$
$\Rightarrow f(-3)=(-3)^{5}+3(-3)^{4}-3(-3)^{2}+5(-3)+15$
$=-243+243-(-27)-3(9)+5(-3)+15$
$=-243+243+27-27-15+15$
$=0$
Hence, $g(x)$ is a factor of $f(x)$
4. $f(x)=x^{3}-6 x^{2}-19 x+84, g(x)=x-7$

Sol:

We have $f(x)=x^{3}-6 x^{2}-19 x+84$ and $g(x)=x-7$
In order to find whether $g(x)=x-7$ is a factor of $f(x)$ or not, it is sufficient to show that $f(7)=0$
Now, $f(x)=x^{3}-6 x^{2}-19 x+84$
$\Rightarrow f(7)=7^{3}-6(7)^{2}-19(7)+84$
$=343-294-133+84=427-427$
$=0$
Hence $g(x)$ is a factor $f(x)$
5. $f(x)=3 x^{3}+x^{2}-20 x+12$ and $g(x)=3 x-2$

Sol:

We have

$$
f(x)=3 x^{3}+x^{2}-20 x+12 \text { and } g(x)=3 x-2
$$

In order to find whether $g(x)=3\left(x-\frac{2}{3}\right)$ is a factor of $f(x)$ or not, it is sufficient to prove that $f\left(\frac{2}{3}\right)=0$
Now, $f(x)=3 x^{3}+x^{2}-20 x+12$
$\Rightarrow f\left(\frac{2}{3}\right)=3\left(\frac{2}{3}\right)^{3}+\left(\frac{2}{3}\right)^{2}-20\left(\frac{2}{3}\right)+12$
$=3 \times \frac{8}{27}+\frac{4}{9}=\frac{40}{3}+12$
$=\frac{12}{9}-\frac{40}{3}+12=\frac{12-20+108}{9}=\frac{120-120}{9}=0$
Hence $g(x)=3 x-2$ is a factor of $f(x)$
6. $f(x)=2 x^{3}-9 x^{2}+x+12, g(x)=3-2 x$

Sol:

We have $f(x)=2 x^{3}-9 x^{2}+x+12$ and $g(x)=3-2 x$
In order to find whether $g(x)=3-2 x=-2\left(x-\frac{3}{2}\right)$ is a factor of $f(x)$ or not, it is sufficient to prove that $f\left(\frac{3}{2}\right)=0$
Now, $f(x)=2 x^{3}-9 x^{2}+x+12$
$\Rightarrow f\left(\frac{3}{2}\right)=2\left(\frac{3}{2}\right)^{3}-9\left(\frac{3}{2}\right)^{2}+\left(\frac{3}{2}\right)+12$
$=\not 2 \times \frac{27}{\not 8}-9 \times \frac{9}{4}+\frac{3}{2}+12$
$=\frac{27}{4}-\frac{81}{4}+\frac{3}{2}+12=\frac{27-81+6+48}{4}=\frac{81-81}{4}$
$=0$
Hence $g(x)=3-2 x$ is a factor of $f(x)$
7. $f(x)=x^{3}-6 x^{2}+11 x-6, g(x)=x^{2}-3 x+2$

Sol:

We have
$f(x)=x^{3}-6 x^{2}+11 x-6$ and $g(x)=x^{2}-3 x+2$
$\Rightarrow g(x)=x^{2}-3 x+2=(x-1)(x-2)$
Clearly, $(x-1)$ and $(x-2)$ are factors of $g(x)$
In order to find whether $g(x)=(x-1)(x-2)$ is a factor of $f(x)$ or not, it is sufficient to prove that $(x-1)$ and $(x-2)$ are factors of $f(x)$.
i.e., we should prove that $f(1)=0$ and $f(2)=0$

Now, $f(x)=x^{3}-6 x^{2}+11 x-6$
$\Rightarrow f(1)=1^{3}-6(1)^{2}+11(1)-6=1-6+11-6=12-12=0$
$\Rightarrow f(2)=2^{3}-6(2)^{2}+11(2)-6=8-24+22-6=30-30=0$
$\therefore(x-1)$ and $(x-2)$ are factors of $f(x)$
$\Rightarrow g(x)=(x-1)(x-2)$ is factor of $f(x)$
8. Show that $(x-2),(x+3)$ and $(x-4)$ are factors of $x^{3}-3 x^{2}-10 x+24$.

Sol:

Let $f(x)=x^{3}-3 x^{2}-10 x+24$ be the given polynomial.
In order to prove that $(x-2),(x+3),(x-4)$ are factors of $f(x)$, it is sufficient to prove that $f(2)=0, f(-3)=0$ and $f(4)=0$ respectively.
Now $f(x)=x^{3}-3 x^{2}-10 x+24$
$\Rightarrow f(2)=2^{3}-3(2)^{2}-10(2)+24=8-12-20+24=0$
$\Rightarrow f(-3)=(-3)^{3}-3(-3)^{2}-10(-3)+24=-27-27+30+24=0$
$\Rightarrow f(4)=4^{3}-3(4)^{2}-10(4)+24=64-48-40+24=0$
Hence, $(x-2),(x+3)$ and $(x-4)$ are factors of the given polynomial.
9. Show that $(x+4),(x-3)$ and $(x-7)$ are factors $x^{3}-6 x^{2}-19 x+84$

Sol:

Let $f(x)=x^{3}-6 x^{2}-19 x+84$ be the given polynomial
In order to prove that $(x+4),(x-3)$ and $(x-7)$ are factors of $f(x)$, it is sufficient to prove that $f(-4)=0, f(3)=0$ and $f(7)=0$ respectively
Now, $f(x)=x^{3}-6 x^{2}-19 x+84$
$\Rightarrow f(-4)=(-4)^{3}-6(-4)^{2}-19(-4)+84=-64-96+76+84=0$
$\Rightarrow f(3)=(3)^{3}-6(3)^{2}-19(3)+84=27-54-57+84=0$
$\Rightarrow f(7)=7^{3}-6(7)^{2}-19(7)+84=343-294-133+84=0$
Hence, $(x+4),(x-3)$ and $(x-7)$ are factors of the given polynomial $x^{3}-6 x^{2}-19 x+84$.
10. For what value of a is $(x-5)$ a factor of $x^{3}-3 x^{2}+a x-10$?

Sol:
Let $f(x)=x^{3}-3 x^{2}+a x-10$ be the given polynomial
From factor theorem,
If $(x-5)$ is a factor of $f(x)$ then $f(5)=0$
Now, $f(x)=x^{3}-3 x^{2}+a x-10$
$\Rightarrow f(5)=5^{3}-3(5)^{2}+a(5)-10=0$
$\Rightarrow 125-3(25)+5 a-10=0$
$\Rightarrow 5 a+40=0$
$\Rightarrow 5 a=-40$
$\Rightarrow a=-8$
Hence $(x-5)$ is a factor of $f(x)$ if $a=-8$
11. Find the value of a such that $(x-4)$ is a factor of $5 x^{3}-7 x^{2}-a x-28$.

Sol:
Let $f(x)=5 x^{3}-7 x^{2}-a x-28$ be the given polynomial from factor theorem, if $(x-4)$ is a factor of $f(x)$ then $f(4)=0$
$\Rightarrow f(4)=0$
$\Rightarrow 5(4)^{3}-7(4)^{2}-a(4)-28=0$
$\Rightarrow 5 \times 64-7 \times 16-4 a-28=0$
$\Rightarrow 320-112-4 a-28=0$
$\Rightarrow 180-4 a=0$
$\Rightarrow 4 a=180$
$\Rightarrow a=\frac{180}{4}=45$
Hence $(x-4)$ is a factor of $f(x)$ when $a=45$
12. For what value of a , if $\mathrm{x}+2$ is a factor of factor of $4 x^{4}+2 x^{3}-3 x^{2}+8 x+5 a$.

Sol:

Let $f(x)=4 x^{4}+2 x^{3}-3 x^{2}+8 x+5 a$ be the given polynomial
From factor theorem if $(x+2)$ is a factor of $f(x)$ then $f(-2)=0$
Now, $f(x)=4 x^{4}+2 x^{3}-3 x^{2}+8 x+5 a$
$\Rightarrow f(-2)=0$
$\Rightarrow 4(-2)^{4}+2(-2)^{3}-3(-2)^{2}+8(-2)+5 a=0$
$\Rightarrow 64-16-12-16+5 a=0 \Rightarrow 5 a+20=0$
$\Rightarrow 5 a=20$
$\Rightarrow a=-4$
Hence $(x+2)$ is a factor of $f(x)$ when $a=-4$
13. Find the value of k if $\mathrm{x}-3$ is a factor of $k^{2} x^{3}-k x^{2}+3 k x-k$.

Sol:

Let $f(x)=k^{2} x^{3}-k x^{2}+3 k x-k$ be the given polynomial from factor theorem if $(x-3)$ is a factor of $f(x)$ then $f(3)=0$
$\Rightarrow k^{2}(3)^{3}-k(3)^{2}+3 k(3)-k=0$
$\Rightarrow 27 k^{2}-9 k+9 k-k=0$
$\Rightarrow 27 k^{2}-k=0 \Rightarrow k(27 k-1)=0$
$\Rightarrow k=0$ and $27 k-1=0 \Rightarrow k=\frac{1}{27}$
Hence, $(x-3)$ is a factor of $f(x)$ when $k=0$ or $k=\frac{1}{27}$
14. Find the values of a and b , if $x^{2}-4$ is a factor of $a x^{4}+2 x^{3}-3 x^{2}+b x-4$.

Sol:

Let $f(x)=a x^{4}+2 x^{3}-3 x^{2}+b x-4$ and $g(x)=x^{2}-4$
We have $g(x)=x^{2}-4=(x-2)(x+2)$
Given $g(x)$ is a factor of $f(x)$.
$\Rightarrow(x-2)$ and $(x+2)$ are factors of $f(x)$
From factor theorem,
If $(x-2)$ and $(x+2)$ are factors of $f(x)$ then $f(2)=0$ and $f(-2)=0$ respectively
$\Rightarrow f(2)=0 \Rightarrow a(2)^{4}+2(2)^{3}-3(2)^{2}+b(2)-4=0$
$\Rightarrow 16 a+16-12+2 b-4=0$
$\Rightarrow 16 a+2 b=0 \Rightarrow 2(8 a+b)=0$
$\Rightarrow 8 a+b=0$
Similarly $f(-2)=0 \Rightarrow a(-2)^{4}+2(-2)^{3}-3(-2)^{2}+b(-2)-4=0$
$\Rightarrow 16 a-16-12-2 b-4=0$
$\Rightarrow 16 a-2 b-32=0 \Rightarrow 2(8 a+b)=32$
$\Rightarrow 8 a-b=16$
Adding equation (1) and (2)
$8 a+b+8 a-b=16 \Rightarrow 16 a=16 \Rightarrow a=1$
Put $a=1$ in equation (1)
$\Rightarrow 8 \times 1+b=0 \Rightarrow b=-8$
Hence, $a=1$ and $b=-8$
15. Find α and β, if $x+1$ and $x+2$ are factors of $x^{3}+3 x^{2}-2 \alpha x+\beta$.

Sol:
Let $f(x)=x^{3}+3 x^{2}-2 \alpha x+\beta$ be the given polynomial from factor theorem, if $(x+1)$ and $(x+2)$ are factors of $f(x)$ then $f(-1)=0$ and $f(-2)=0$
$\Rightarrow f(-1)=0 \Rightarrow(-1)^{3}+3(-1)^{2}-2 \alpha(-1)+\beta=0$
$\Rightarrow-1+3+2 \alpha+\beta=0 \Rightarrow 2 \alpha+\beta+2=0$
Similarly,
$f(-2)=0 \Rightarrow(-2)^{3}+3(-2)^{2}-2 \alpha(-2)+\beta=0$
$\Rightarrow-8+12+4 \alpha+\beta=0 \Rightarrow 4 \alpha+\beta+4=0$
Subtract equation (1) from (2)
$\Rightarrow 4 \alpha+\beta+4-(2 \alpha+\beta+2)=0-0$
$\Rightarrow 4 \alpha+\beta+4-2 \alpha-\beta-2=0$
$\Rightarrow 2 \alpha+2=0 \Rightarrow 2 \alpha=-2 \Rightarrow \alpha=-1$
Put $\alpha=-1$ in equation (1)
$\Rightarrow 2(-1)+\beta+2=0 \Rightarrow-2+\beta+2=0 \Rightarrow \beta=0$
Hence, $\alpha=-1$ and $\beta=0$
16. Find the values of p and q so that $x^{4}+p x^{3}+2 x^{2}-3 x+q$ is divisible by $\left(\mathrm{x}^{2}-1\right)$

Sol:

Let $f(x)=x^{4}+p x^{3}+2 x^{2}-3 x+q$ be the given polynomial.
and let $g(x)=x^{2}-1=(x-1)(x+1)$
Clearly, $(x-1)$ and $(x+1)$ are factors of $g(x)$
Given $g(x)$ is a factor of $f(x)$
$\Rightarrow(x-1)$ and $(x+1)$ are factors of $f(x)$
From factor theorem,
If $(x-1)$ and $(x+1)$ are factors of $f(x)$ then $f(1)=0$ and $f(-1)=0$ respectively
$\Rightarrow f(1)=0 \Rightarrow 1^{4}+p(1)^{3}+2(1)^{2}-3(1)+q=0$
$\Rightarrow 1+p+2-3+q=0 \Rightarrow p+q=0$
$\Rightarrow f(-1)=0 \Rightarrow(-1)^{4}+p(-1)^{3}+2(-1)^{2}-3(-1)+q=0$
$\Rightarrow 1+(-p)+2+3+q=0 \Rightarrow q-p+6=0$
Adding equation (1) and (2)
$\Rightarrow p+q+q-p+6=0 \Rightarrow 2 q+6=0 \Rightarrow 2 q=-6 \Rightarrow q=-3$
Put $q=-3$ in equation (1)
$\Rightarrow p-3=0 \Rightarrow p=3$
Hence $x^{2}-1$ is divisible by $f(x)$ when $p=3, q=-3$
17. Find the values of a and b so that $(x+1)$ and $(x-1)$ are factors of $x^{4}+a x^{3}-3 x^{2}+2 x+$ b.

Sol:

Let $f(x)=x^{4}+a x^{3}-3 x^{2}+2 x+b$ be the given polynomial.
From factor theorem; if $(x+1)$ and $(x-1)$ are factors of $f(x)$ then $f(-1)=0$ and $f(1)=0$ respectively.
$\Rightarrow f(-1)=0 \Rightarrow(-1)^{4}+a(-1)^{3}-3(-1)^{2}+2(-1)+b=0$
$\Rightarrow 1-a-3-2+b=0 \Rightarrow b-a-4=0$
$\Rightarrow f(1)=0 \Rightarrow(1)^{4}+a(1)^{3}-3(1)^{2}+2(1)+b=0$
$\Rightarrow 1+a-3+2+b=0 \Rightarrow a+b=0$
Adding equation (1) and (2)
$\Rightarrow b-a-4+a+b=0+0$
$\Rightarrow 2 b-4=0 \Rightarrow 2 b=4 \Rightarrow b=\frac{A^{2}}{\not 2} \Rightarrow b=2$
Substitute $b=2$ in equation (2)
$\Rightarrow a+2=0 \Rightarrow a=-2$
Hence, $a=-2$ and $b=2$
18. If $x^{3}+a x^{2}-b x+10$ is divisible by $x^{2}-3 x+2$, find the values of a and b.

Sol:

Let $f(x)=x^{3}+a x^{2}-b x+10$ and $g(x)=x^{2}-3 x+2$ be the given polynomials.
We have $g(x)=x^{2}-3 x+2=(x-2)(x-1)$
\Rightarrow Clearly, $(x-1)$ and $(x-2)$ are factors of $g(x)$
Given that $f(x)$, is divisible by $g(x)$
$\Rightarrow g(x)$ is a factor of $f(x)$
$\Rightarrow(x-2)$ and $(x-1)$ are factors of $f(x)$
From factor theorem,
If $(x-1)$ and $(x-2)$ are factors of $f(x)$ then $f(1)=0$ and $f(2)=0$ respectively.
$\Rightarrow f(1)=0 \Rightarrow(1)^{3}+a(1)^{2}-b(1)+10=0$
$\Rightarrow 1+a-b+10=0 \Rightarrow a-b+11=0$
$\Rightarrow f(2)=0 \Rightarrow(2)^{3}+a(2)^{2}-b(2)+10=0$
$\Rightarrow 8+4 a-2 b+10=0$
$\Rightarrow 4 a-2 b+18=0$
$\Rightarrow 2(2 a-b+9)=0$
$\Rightarrow 2 a-b+9=0$
Subtract equation (1) from (2)
$\Rightarrow 2 a-b+9-(a-b+11)=0-0$
$\Rightarrow 2 a-b+9-a+b-11=0 \Rightarrow a-2=0 \Rightarrow a=2$
Put $a=2$ in equation (1)
$\Rightarrow a-b+11=0 \Rightarrow 2-b+11=0 \Rightarrow 13-b=0 \Rightarrow b=13$
Hence, $a=2$ and $b=13$
$\therefore x^{3}+a x^{2}-b x+10$ is divisible by $x^{2}-3 x+2$ when $a=2$ and $b=13$
19. If both $\mathrm{x}+1$ and $\mathrm{x}-1$ are factors of $a x^{3}+x^{2}-2 x+b$, find the values of a and b .

Sol:

Let $f(x)=a x^{3}+x^{2}-2 x+b$ be the given polynomial.
Given $(x+1)$ and $(x-1)$ are factor of $f(x)$.
From factor theorem,
If $(x+1)$ and $(x-1)$ are factors of $f(x)$ then $f(-1)=0$ and $f(1)=0$ respectively.
$\Rightarrow f(-1)=0 \Rightarrow a(-1)^{3}+(-1)^{2}-2(-1)+b=0$
$\Rightarrow-a+1+2+b=0 \Rightarrow b-a+3=0$
$\Rightarrow f(1)=0 \Rightarrow a(1)^{3}+(1)^{2}-2(1)+b=0$
$\Rightarrow a+1-2+b=0 \Rightarrow b+a-1=0$
Adding equation (1) and (2)
$\Rightarrow b-a+3+b+a-1=0+0$
$\Rightarrow 2 b+2=0 \Rightarrow 2 b=-2 \Rightarrow b=-1$
Put $b=-1$ in equation (1)
$\Rightarrow-1-a+3=0 \Rightarrow 2-a=0 \Rightarrow a=2$
Hence the values of a, b are $2,-1$ respectively.
20. What must be added to $x^{3}-3 x^{2}-12 x+19$ so that the result is exactly divisibly by $x^{2}+$ $x-6$?
Sol:
Let $p(x)=x^{3}-3 x^{2}-12 x+19$ and $q(x)=x^{2}+x-6$.
By division algorithm, when $p(x)$ is divided by $q(x)$, the remainder is a linear expression in x.
So, let $r(x)=a x+b$ is added to $p(x)$ so that $p(x)+r(x)$ is divisible by $q(x)$.
Let $f(x)=p(x)+r(x)$
$\Rightarrow f(x)=x^{3}-3 x^{2}-12 x+19+a x+b$
$\Rightarrow f(x)=x^{3}-3 x^{2}+x(a-12)+b+19$
We have,
$q(x)=x^{2}+x-6=(x+3)(x-3)$
Clearly, $q(x)$ is divisible by $(x-2)$ and $(x+3)$
i.e., $(x-2)$ and $(x+3)$ are factors of $q(x)$

We have,
$f(x)$ is divisible by $q(x)$
$\Rightarrow(x-2)$ and $(x+3)$ are factors of $f(x)$
From factors theorem,
If $(x-2)$ and $(x+3)$ are factors of $f(x)$ then $f(2)=0$ and $f(-3)=0$ respectively.
$\Rightarrow f(2)=0 \Rightarrow 2^{3}-3(2)^{2}+2(a-12)+b+19=0$
$\Rightarrow 8-12+2 a-24+b+19=0$
$\Rightarrow 2 a+b-9=0$
Similarly
$f(-3)=0 \Rightarrow(-3)^{3}-3(-3)^{2}+(-3)(a-12)+b+19=0$
$\Rightarrow-27-27-3 a+36+b+19=0$
$\Rightarrow b-3 a+1=0$
Subtract equation (1) from (2)
$b-3 a+1-(2 a+b-9)=0-0$
$\Rightarrow b-3 a+1-2 a-6+9=0$
$\Rightarrow-5 a+10=0 \Rightarrow 5 a=10 \Rightarrow a=2$
Put $a=2$ in equation (2)
$\Rightarrow b-3 \times 2+1=0 \Rightarrow b-6+1=0 \Rightarrow b-5=0 \Rightarrow b=5$
$\therefore r(x)=a x+b \Rightarrow r(x)=2 x+5$
Hence, $x^{3}-3 x^{2}-12 x+19$ is divisible by $x^{2}+x-6$ when $2 x+5$ is added to it.
21. What must be subtracted from $x^{3}-6 x^{2}-15 x+80$ so that the result is exactly divisible by $x^{2}+x-12$?
Sol:
Let $p(x)=x^{3}-6 x^{2}-15 x+80$ and $q(x)=x^{2}+x-12$
By division algorithm, when $p(x)$ is divided by $q(x)$ the remainder is a linear expression in x.
So, let $r(x)=a x+b$ is subtracted from $p(x)$, So that $p(x)-r(x)$ is divisible by $q(x)$
Let $f(x)=p(x)-r(x)$
Clearly, $(3 x-2)$ and $(x+3)$ are factors of $q(x)$
Therefore, $f(x)$ will be divisible by $q(x)$ if $(3 x-2)$ and $(x+3)$ are factors of $f(x)$
i.e., from factor theorem,
$f\left(\frac{2}{3}\right)=0$ and $f(-3)=0 \quad\left[\because 3 x-2=0 \Rightarrow x=\frac{2}{3}\right.$ and $\left.x+3=0 \Rightarrow x=-3\right]$
$\Rightarrow f\left(\frac{2}{3}\right)=3\left(\frac{2}{3}\right)^{3}+\left(\frac{2}{3}\right)^{2}+\frac{2}{3}(a-22)+b+9=0$
$\Rightarrow 3 \times \frac{8}{27}+\frac{4}{9}+\frac{2}{3} a-\frac{44}{3}+b+9=0$
$\Rightarrow \frac{12}{9}+\frac{2}{3} a-\frac{44}{3}+b+9=0$
$\Rightarrow \frac{12+6 a-132+9 b+81}{9}=0$
$\Rightarrow 6 a+9 b-39=0$
$\Rightarrow 3(2 a+3 b-13)=0 \Rightarrow 2 a+3 b-13=0$
Similarly,
$f(-3)=0 \Rightarrow 3(-3)^{3}+(-3)^{2}+(-3)(a-22)+b+9=0$
$\Rightarrow-81+9-3 a+66+b+9=0$
$\Rightarrow b-3 a+3=0$
$\Rightarrow 3(b-3 a+3)=0 \Rightarrow 3 b-9 a+9=0$
Subtract equation (1) from (2)
$\Rightarrow 3 b-9 a+9-(2 a+3 b-13)=0-0$
$\Rightarrow 3 b-9 a+9-2 a-3 b+13=0$
Put $a=4$ in equation (2)
$\Rightarrow 4 \times 4-b-20=0$
$\Rightarrow 16-b-20=0 \Rightarrow-b-4=0 \Rightarrow b=-4$
Putting the value of a and b in $r(x)=a x+b$,
We get $r(x)=4 x-4$
Hence, $p(x)$ is divisible by $q(x)$, if $r(x)=4 x-4$ is subtracted from it.
22. What must be added to $3 x^{3}+x^{2}-22 x+9$ so that the result is exactly divisible by $3 x^{2}+$ $7 x-6$?
Sol:
Let $p(x)=3 x^{3}+x^{2}-22 x+9$ and $q(x)=3 x^{2}+7 x-6$
By division algorithm,
When $p(x)$ is divided by $q(x)$, the remainder is a linear equation in x.
So, let $r(x)=a x+b$ is added to $p(x)$, so that $p(x)+r(x)$ is divisible by $q(x)$
Let $f(x)=p(x)+r(x)$
$\Rightarrow f(x)=3 x^{3}+x^{2}-22 x+9+(a x+b)$
$\Rightarrow f(x)=3 x^{3}+x^{2}+x(a-22)+b+9$
We have,
$q(x)=3 x^{2}+7 x-6=3 x^{2}+9 x-2 x-6=3 x(x+3)-2(x+3)$
$=(3 x-2)(x+3)$
$=f(x)=x^{3}-6 x^{2}-15 x+80-(a x+b)$
$\Rightarrow f(x)=x^{3}-6 x^{2}-x(a+15)+80-b$
We have,
$q(x)=x^{2}+x-12=x^{2}+4 x-3 x-18=x(x+4)-3(x+4)$
$=(x-3)(x+4)$
Clearly, $(x-3)$ and $(x+4)$ are factors of $q(x)$.
Therefore, $f(x)$ will be divisible by $q(x)$ if $(x-3)$ and $(x+4)$ are factor of $f(x)$.
i.e., from factors theorem,

$$
\begin{align*}
& f(3)=0 \text { and } f(-4)=0 \quad[\because x-3=0 \Rightarrow x=3 \text { and } x+4=0 \Rightarrow x=-4] \\
& \Rightarrow f(3)=0 \Rightarrow(3)^{3}-6(3)^{2}-3(a+15)+80-b=0 \\
& \Rightarrow 27-54-3 a-45+80-b=0 \\
& \Rightarrow 8-3 a-b=0 \tag{1}\\
& \Rightarrow f(-4)=0 \Rightarrow(-4)^{3}-6(-4)^{2}-(4)(a+15)+80-b=0 \\
& \Rightarrow-64-96-4 a+60+80-b=0 \\
& \Rightarrow 4 a-b-20=0 \tag{2}
\end{align*}
$$

Subtract equation (1) from (2)

$$
\begin{aligned}
& \Rightarrow 4 a-b-20-(8-3 a-b)=0-0 \\
& \Rightarrow 4 a-b-20-8+3 a+b=0 \\
& \Rightarrow 7 a-28=0 \Rightarrow 7 a=28 \Rightarrow a=4 \\
& \Rightarrow-11 a+22=0 \Rightarrow 11 a=22 \Rightarrow a=2
\end{aligned}
$$

Put $a=2$ in equation (1)
$\Rightarrow 2 \times 2+3 b-13=0$
$\Rightarrow 4+3 b-13=0 \Rightarrow 3 b-9=0 \Rightarrow 3 b=9 \Rightarrow b=3$
Putting the value of a and b in $r(x)=a x+b$,
We get, $r(x)=2 x+3$
Hence, $3 x^{3}+x^{2}-22 x+9$ will be divisible by $3 x^{2}+7 x-6$, if $2 x+3$ is added to it.
23. If $x-2$ is a factor of each of the following two polynomials, find the values of a in each case:
(i) $\quad x^{3}-2 a x^{2}+a x-1$
(ii) $x^{5}-3 x^{4}-a x^{3}+3 a x^{2}+2 a x+4$

Sol:

(i) Let $f(x)=x^{3}-2 a x^{2}+a x-1$ be the given polynomial.

From factor theorem,
If $(x-2)$ is a factor of $f(x)$ then $f(2)=0$
$[\because x-2=0 \Rightarrow x=2]$
$\Rightarrow f(2)=0 \Rightarrow 2^{3}-2 a(2)^{2}+a(2)-1=0$
$\Rightarrow 8-8 a+2 a-1=0$
$\Rightarrow 7-6 a=0 \Rightarrow 6 a=7 \Rightarrow a=\frac{7}{6}$
Hence, $(x-2)$ is a factor of $f(x)$ when $a=\frac{7}{6}$
(ii) Let $f(x)=x^{5}-3 x^{4}-a x^{3}+3 a x^{2}+2 a x+4$ be the given polynomial.

From factor theorem
If $x-2$ is a factor of $f(x)$ then $f(2)=0 \quad[\because x-2=0 \Rightarrow x=2]$
$\Rightarrow f(2)=0 \Rightarrow 2^{5}-3(2)^{4}-a(2)^{3}+3 a(2)^{2}+2 a(2)+4=0$
$\Rightarrow 32-48-8 a+12 a+4 a+4=0$
$\Rightarrow 8 a-12=0 \Rightarrow 8 a=12 \Rightarrow a=\frac{3}{2}$
Hence, $(x-2)$ is a factor of $f(x)$ when $a=\frac{3}{2}$
24. In each of the following two polynomials, find the value of a , if $\mathrm{x}-\mathrm{a}$ is a factor:
(i) $x^{6}-a x^{5}+x^{4}-a x^{3}+3 x-a+2$
(ii) $x^{5}-a^{2} x^{3}+2 x+a+1$

Sol:
(i) Let $f(x)=x^{6}-a x^{5}+x^{4}-a x^{3}+3 x-a+2$ be the given polynomial.

From factor theorem,
If $(x-a)$ is a factor of $f(x)$ then $f(a)=0$
$[\because x-a=0 \Rightarrow x=a]$
$\Rightarrow f(a)=0 \Rightarrow a^{6}-a(a)^{5}+a^{4}-a(a)^{3}+3(a)-a+2=0$
$\Rightarrow a^{6}-a^{6}+a^{4}-a^{4}+3 a-a+2=0$
$\Rightarrow 2 a+2=0 \Rightarrow 2 a=-2 \Rightarrow a=-1$
Hence, $(x-a)$ is a factor of $f(x)$, if $a=-1$
(ii) Let $f(x)=x^{5}-a^{2} x^{3}+2 x+a+1$ be the given polynomial.

From factor theorem,
If $(x-a)$ is a factor of $f(x)$ then $f(a)=0[\because x-a=0 \Rightarrow x=a]$
$\Rightarrow f(a)=0 \Rightarrow a^{5}-a^{2}(a)^{3}+2(a)+a+1=0$
$\Rightarrow a^{5}-a^{5}+2 a+a+1=0$
$\Rightarrow 3 a+1=0 \Rightarrow 3 a=-1 \Rightarrow a=-\frac{1}{3}$
Hence, $(x-a)$ is a factor of $f(x)$, if $a=-\frac{1}{3}$
25. In each of the following two polynomials, find the value of a , if $\mathrm{x}+\mathrm{a}$ is a factor:
(i) $x^{3}+a x^{2}-2 x+a+4$
(ii) $x^{4}-a^{2} x^{2}+3 x-a$

Sol:
(i) Let $f(x)=x^{3}+a x^{2}-2 x+a+4$ be the given polynomial.

From factor theorem,
If $(x+a)$ is a factor of $f(x)$ then $f(-a)=0$ $[\because x+a=0 \Rightarrow x=-a]$
$\Rightarrow f(-a)=0 \Rightarrow(-a)^{3}+a(-a)^{2}-2(-a)+a+4=0$
$\Rightarrow-a^{3}+a^{3}+2 a+a+4=0$
$\Rightarrow 3 a+4=0 \Rightarrow 3 a=-4 \Rightarrow a=-\frac{4}{3}$
Hence, $(x+a)$ is a factor of $f(x)$, if $a=-\frac{4}{3}$
(ii) Let $f(x)=x^{4}-a^{2} x^{2}+3 x-a$ be the given polynomial

From factor theorem,
If $(x+a)$ is a factor of $f(x)$ then $f(-a)=0 \quad[\because x+a=0 \Rightarrow x=-a]$
$\Rightarrow f(-a)=0 \Rightarrow(-a)^{4}-a^{2}(-a)^{2}+3(-a)-a=0$
$\Rightarrow a^{4}-a^{4}-3 a-a=0$
$\Rightarrow-3 a-a=0 \Rightarrow-4 a=0 \Rightarrow a=0$
Hence, $(x+a)$ is a factor of $f(x)$, if $a=0$

Exercise - 6.5

Using factor theorem, factorize each of the following polynomials:

1. $x^{3}+6 x^{2}+11 x+6$

Sol:

Let $f(x)=x^{3}+6 x^{2}+11 x+6$ be the given polynomial.
The constant term in $f(x)$ is 6 and factors of 6 are $\pm 1, \pm 2, \pm 3$ and ± 6
Putting $x=-1$ in $f(x)$, we have
$f(-1)=(-1)^{3}+6(-1)^{2}+11(-1)+6=-1+6-11+6=0$
$\therefore(x+1)$ is a factor of $f(x)$
Similarly, $(x+2)$ and $(x+3)$ are factors of $f(x)$.
Since $f(x)$ is a polynomial of degree 3 . So, it cannot have more than three linear factors.

$$
\begin{aligned}
& \therefore f(x)=k(x+1)(x+2)(x+3) \\
& \Rightarrow x^{3}+6 x^{2}+11 x+6=k(x+1)(x+2)(x+3)
\end{aligned}
$$

Putting $x=0$ on both sides, we get
$0+0+0+6=k(0+1)(0+2)(0+3)$
$6=k(1)(2)(3)$
$\Rightarrow 6=6 k \Rightarrow k=1$
Putting $k=1$ in $f(x)=k(x+1)(x+2)(x+3)$, we get
$f(x)=(x+1)(x+2)(x+3)$
Hence, $x^{3}+6 x^{2}+11 x+6=(x+1)(x+2)(x+3)$
2. $x^{3}+2 x^{2}-x-2$

Sol:

Let $f(x)=x^{3}+2 x^{2}-x-2$
The constant term in $f(x)$ is equal to -2 and factors of -2 and $\pm 1, \pm 2$.
Putting $x=1$ in $f(x)$, we have
$f(1)=1^{3}+2(1)^{2}-1-2=0$
$\therefore(x-1)$ is a factor of $f(x)$
Similarly, $(x+1),(x+2)$ are factors of $f(x)$.

Since $f(x)$ is a polynomial of degree 3 . So, it cannot have more than three linear factors.

$$
\begin{aligned}
& \therefore f(x)=k(x-1)(x+1)(x+2) \\
& \Rightarrow x^{3}+2 x^{2}-x-2=k(x-1)(x+1)(x+2)
\end{aligned}
$$

Putting $x=0$ on both sides, we get $0+0-0-2=k(-1)(+1)(+2)$
$-2=-2 k \Rightarrow k=1$
Putting $k=1$ in $f(x)=k(x-1)(x+1)(x+2)$, we get

$$
f(x)=(x-1)(x+1)(x+2)
$$

Hence, $x^{3}+2 x^{2}-x-2=(x-1)(x+1)(x+2)$
3. $x^{3}-6 x^{2}+3 x+10$

Sol:

Let $f(x)=x^{3}-6 x^{2}+3 x+10$
The constant term in $f(x)$ is equal to 10 and factors of 10 are $\pm 1, \pm 2, \pm 5$ and ± 10
Putting $x=-1$ in $f(x)$, we have
$f(-1)=(-1)^{3}-6(-1)^{2}+3(-1)+10=-1-6-3+10=0$
$\therefore(x+1)$ is a factor of $f(x)$
Similarly, $(x-2)$ and $(x-5)$ are factors of $f(x)$
Since $f(x)$ is a polynomial of degree 3 . So, it cannot have more than three linear factors.
$\therefore f(x)=k(x+1)(x-2)(x-5)$
Putting $x=0$ on both sides, we get
$\Rightarrow x^{3}-6 x^{2}+3 x+10=k(x+1)(x-2)(x-5)$
$0-0+0+10=k(1)(-2)(-5)$
$\Rightarrow 10=10 k \Rightarrow k=1$
Putting $k=1$ in $f(x)=k(x+1)(x-2)(x-5)$, we get

$$
f(x)=(x+1)(x-2)(x-5)
$$

Hence, $x^{3}-6 x^{2}+3 x+10=(x+1)(x+2)(x-5)$
4. $x^{4}-7 x^{3}+9 x^{2}+7 x-10$

Sol:

Let $f(x)=x^{4}-7 x^{3}+9 x^{2}+7 x-10$
The constant term in $f(x)$ is equal to -10 and factors of -10 are $\pm 1, \pm 2, \pm 5$ and ± 10
Putting $x=1$ in $f(x)$, we have
$f(1)=1^{4}-7(1)^{3}+9(1)^{2}+7(1)-10=1-7+9+7-10=0$
$\therefore(x-1)$ is a factor of $f(x)$
Similarly $(x+1),(x-2),(x-5)$ are also factors of $f(x)$
Since $f(x)$ is a polynomial of degree 4 . So, it cannot have more than four linear factors
$\therefore f(x)=k(x-1)(x+1)(x-2)(x-5)$
$\Rightarrow x^{4}-7 x^{3}+9 x^{2}+7 x-10=k(x-1)(x+1)(x-2)(x-5)$
Putting $x=0$ on both sides, we get
$\Rightarrow 0-0+0+0-10=k(-1)(1)(-2)(-5)$
$\Rightarrow-10=k(-10)$
$\Rightarrow k=1$
Putting $k=1$ in $f(x)=k(x-1)(x+1)(x-2)(x-5)$, we get
$f(x)=(x+1)(x-1)(x-2)(x-5)$
Hence, $x^{4}-7 x^{3}+9 x^{2}+7 x-10=(x+1)(x-1)(x-2)(x-5)$
5. $x^{4}-2 x^{3}-7 x^{2}+8 x+12$

Sol:

Let $f(x)=x^{4}-2 x^{3}-7 x^{2}+8 x+12$
The constant term in $f(x)$ is equal to +12 and factors of +12 are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6$ and ± 12
Putting $x=-1$ in $f(x)$, we have
$f(-1)=(-1)^{4}-2(-1)^{3}-7(-1)^{2}+8(-1)+12$
$=1+2-7-8+12=0$
$\therefore(x+1)$ is a factor of $f(x)$
Similarly $(x+2),(x-2),(x-3)$ are also factors of $f(x)$
Since $f(x)$ is a polynomial of degree 4 . So, it cannot have more than four linear factors.
$\therefore f(x)=k(x+1)(x+2)(x-2)(x-3)$
$\Rightarrow x^{4}-2 x^{3}-7 x^{2}+8 x+12=k(x+1)(x+2)(x-2)(x-3)$
Putting $x=0$ on both sides, we get
$\Rightarrow 0-0-0+0+12=k(1)(2)(-2)(-3)$
$\Rightarrow \not 22=k(\not 22)$
$=k=1$
Putting $k=1$ in $f(x)=k(x+1)(x+2)(x-2)(x-3)$, we get

$$
f(x)=(x+1)(x+2)(x-2)(x-3)
$$

Hence, $x^{4}-2 x^{3}-7 x^{2}+8 x+12=(x+1)(x+2)(x-2)(x-3)$
6. $x^{4}+10 x^{3}+35 x^{2}+50 x+24$

Sol:

Let $f(x)=x^{4}+10 x^{3}+35 x^{2}+50 x+24$
The constant term in $f(x)$ is equal to +24 and factors of +24 are

$$
\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24
$$

Putting $x=-1$ in $f(x)$, we have
$f(-1)=(-1)^{4}+10(-1)^{3}+35(-1)^{2}+50(-1)+24$
$=1-10+35-50+24=0$
$\therefore(x+1)$ is a factor of $f(x)$
Similarly, $(x+2),(x+3)$ and $(x+4)$ are also factors of $f(x)$.
Since $f(x)$ is polynomial of degree 4 . So, it cannot have more than four linear factors.

$$
\begin{aligned}
& \therefore f(x)=k(x+1)(x+2)(x+3)(x+4) \\
& \Rightarrow x^{4}+10 x^{3}+35 x^{2}+50 x+24=k(x+1)(x+2)(x+3)(x+4)
\end{aligned}
$$

Putting $x=0$ on both sides, we get

$$
\begin{aligned}
& \Rightarrow 0+0+0+0+24=k(1)(2)(3)(4) \\
& \Rightarrow 24=24 k \Rightarrow k=1
\end{aligned}
$$

Putting $k=1$ in $f(x)=k(x+1)(x+2)(x+3)(x+4)$, we get

$$
f(x)=(x+1)(x+2)(x+3)(x+4)
$$

Hence, $x^{4}+10 x^{3}+35 x^{2}+50 x+24=(x+1)(x+2)(x+3)(x+4)$
7. $2 x^{4}-7 x^{3}-13 x^{2}+63 x-45$

Sol:

Let $f(x)=2 x^{4}-7 x^{3}-13 x^{2}+63 x-45$
The factors of the constant term - 45 are $\pm 1, \pm 3, \pm 5, \pm 9, \pm 15$ and ± 45
The factor of the coefficient of x^{4} is 2 . Hence possible rational roots of $f(x)$ are $\pm 1, \pm 3, \pm 5, \pm 9, \pm 15, \pm 45, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{9}{2}, \pm \frac{15}{2}, \pm \frac{45}{2}$
We have,
$f(1)=2(1)^{4}-7(1)^{3}-13(1)^{2}+63(1)-45$
$=2-7-13+63-45=0$
And $f(3)=2(3)^{4}-7(3)^{3}-13(3)^{2}+63(3)-45$
$=162-189-117+189-45=0$
And $f(3)=2(3)^{4}-7(3)^{3}-13(3)^{2}+63(3)-45$
$=162-189-117+189-45=0$
So, $(x-1)$ and $(x-3)$ are factors of $f(x)$
$\Rightarrow(x-1)(x-3)$ is also a factor of $f(x)$
$\Rightarrow\left(x^{2}-4 x+3\right)$ is a factor of $f(x)$
Let us now divide
$f(x)=2 x^{4}-7 x^{3}-13 x^{2}+63 x-45$ by $\left(x^{2}-4 x+3\right)$ to get thee other factors of $f(x)$.
By long division, we have

$$
\begin{gathered}
x ^ { 2 } - 4 x + 3 \longdiv { 2 x ^ { 4 } - 7 x ^ { 3 } - 1 3 x ^ { 2 } + 6 3 x - 4 5 } (2 x ^ { 2 } + x - 1 5 \\
\frac{2 x^{4}-8 x^{3}+6 x}{-+\quad-} \begin{array}{c}
x^{3}-19 x^{2}+63 x \\
x^{3}-4 x^{2}+3 x \\
-+\quad- \\
\frac{-15 x^{2}+60 x-45}{-15 x^{2}+60 x-45} \\
+\quad-\quad+ \\
0
\end{array}
\end{gathered}
$$

$\therefore 2 x^{4}-7 x^{3}-13 x^{2}+63 x-45=\left(x^{2}-4 x+3\right)\left(2 x^{2}+x-15\right)$
$\Rightarrow 2 x^{4}-7 x^{3}-13 x^{2}+63 x-45=(x-1)(x-3)\left(2 x^{2}+x-15\right)$
Now,
$2 x^{2}+x-15=2 x^{2}+6 x-5 x-15=2 x(x+3)-5(x+3)$
$=(2 x-5)(x+3)$
Hence $2 x^{4}-7 x^{3}-13 x^{2}+63 x-45=(x-1)(x-3)(x+3)(2 x-5)$
8. $3 x^{3}-x^{2}-3 x+1$

Sol:
Let $f(x)=3 x^{3}-x^{2}-3 x+1$
The factors of the constant term +1 is ± 1.
The factors of the coefficient of x^{3} is 3 .
Hence possible rational roots of $f(x)$ are $\pm 1, \pm \frac{1}{3}$
We have,
$f(1)+3(1)^{3}-(1)^{2}-3(1)+1=3-1-3+1=0$
So, $(x-1)$ is a factor of $f(x)$.
Let us now divide $f(x)=3 x^{3}-x^{2}-3 x+1$ by $(x-1)$ to get the other factors.
By long division method, we have

$$
\begin{aligned}
& x - 1 \longdiv { 3 x ^ { 3 } - x ^ { 2 } - 3 x + 1 } (3 x ^ { 2 } + 2 x - 1 \\
& 3 x^{3}-3 x^{2} \\
& \frac{-+}{2 x^{2}-3 x} \\
& 2 x^{2}-2 x \\
& \frac{-+}{-x+1} \\
& \quad-x+1 \\
& \quad \frac{+}{0} \\
& \therefore 3 x^{4}-x^{2}-3 x+1=(x-1)\left(3 x^{2}+2 x-1\right)
\end{aligned}
$$

Now,
$3 x^{2}+2 x-1=3 x^{2}+3 x-x-1=3 x(x+1)-1(x+1)=(3 x-1)(x+1)$
Hence, $3 x^{3}-x^{2}-3 x+1=(x-1)(x+1)(3 x-1)$
9. $x^{3}-23 x^{2}+142 x-120$

Sol:

Let $f(x)=x^{3}-23 x^{2}+142 x-120$
The constant term in $f(x)$ is equal to -120 and factors of -120 are
$\pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 8, \pm 10, \pm 12, \pm 15, \pm 20, \pm 24, \pm 30, \pm 40, \pm 60, \pm 120$.
Putting $x=1$ we have
$f(1)=1^{3}-23(1)^{2}+142(1)-120=1-23+142-120=0$
So, $(x-1)$ is a factor of $f(x)$.
Let us now divide $f(x)=x^{3}-23 x^{2}+142 x-120$ by $(x-1)$ to get the other factors.
By long division, we have

$$
\begin{aligned}
& x - 1 \longdiv { x ^ { 3 } - 2 3 x ^ { 2 } + 1 4 2 x - 1 2 0 } (x ^ { 2 } - 2 2 x + 1 2 0 \\
& \quad x^{3}-x^{2} \\
& \frac{-+}{-22 x^{2}+142 x} \\
& -22 x^{2}+22 x \\
& +\frac{-}{120 x-120} \\
& 120 x-120 \\
& \\
& \frac{-\quad+}{0} \\
& \therefore x^{3}-23 x^{2}+142 x-120=(x-1)\left(x^{2}-22 x+120\right)
\end{aligned}
$$

Now,
$x^{2}-22 x+120=x^{2}-10 x-12 x+120=x(x-10)-12(x-10)$
$=(x-12)(x-10)$
Hence, $x^{3}-23 x^{2}+142 x-120=(x-1)(x-10)(x-12)$
10. $y^{3}-7 y+6$

Sol:

Let $f(y)=y^{3}-7 y+6$
The constant term in $f(y)$ is +6 and factors of +6 are $\pm 1, \pm 2, \pm 3$ and ± 6
Putting $y=1$ we have

$$
f(1)=1^{3}-7(1)+6=1-7+6=0
$$

$\therefore(y-1)$ is a factor of $f(y)$
Similarly it can be verified that $(y-2)$ and $(y+3)$ are also factors of $f(y)$
Since $f(y)$ is a polynomial of degree 3 . So, it cannot have more than 3 linear factors.
$\therefore f(y)=k(y-1)(y-2)(y+3)$
$\Rightarrow y^{3}+7 y+6=k(y-1)(y-2)(y+3)$
Putting $y=0$ on both sides, we get
$\Rightarrow 0-0+6=k(-1)(-2)(3)$
$\Rightarrow 6=6 k \Rightarrow k=1$
Putting $k=1$ in $f(y)=k(y-1)(y-2)(y+3)$, we get
$f(y)=(y-1)(y-2)(y+3)$
Hence, $y^{3}-7 y+6=(y-1)(y-2)(y+3)$
11. $x^{3}-10 x^{2}-53 x-42$

Sol:

Let $f(x)=x^{3}-10 x^{2}-53 x-42$
The constant term in $f(x)$ is -42 and factors of -42 are $\pm 1, \pm 2, \pm 3, \pm 6, \pm 7, \pm 14, \pm 21, \pm 42$
Putting $x=-1$, we get
$f(-1)=(-1)^{3}-10(1)^{2}-53(-1)-42=-1-10+53-42=0$
So, $(x+1)$ is a factor of $f(x)$
Let us now divide $f(x)=x^{3}-10 x^{2}-53 x-42$ by $(x+1)$ to get the other factors.
By long division, we have

$$
\begin{aligned}
& x + 1 \longdiv { x ^ { 3 } - 1 0 x ^ { 2 } - 5 3 x - 4 2 } (x ^ { 2 } - 1 1 x - 4 2 \\
& \\
& \frac{x^{3}+x^{2}}{--} \begin{array}{l}
-11 x^{2}-53 x \\
-11 x^{2}-11 x \\
+\frac{+}{-42 x-42} \\
\\
\quad \frac{-42 x-42}{} \\
\therefore x^{3}-10 x^{2}-53 x-42=(x+1)\left(x^{2}-11 x-42\right)
\end{array}
\end{aligned}
$$

Now, $x^{2}-11 x-42=x^{2}-14 x+3 x-42=x(x-14)+3(x-14)$
$=(x+3)(x-14)$
Hence, $x^{3}-10 x^{2}-53 x-42=(x+1)(x+3)(x-14)$
12. $y^{3}-2 y^{2}-29 y-42$

Sol:
Let $f(y)=y^{3}-2 y^{2}-29 y-42$
The constant term in $f(y)$ is -42 and factors of -42 are $\pm 1, \pm 2, \pm 3, \pm 6, \pm 7, \pm 14, \pm 21, \pm 42$
Putting $y=-2$ we get

$$
\begin{aligned}
& f(-2)=(-2)^{3}-2(-2)^{2}-29(-2)-42 \\
& =-8-8+58-42=0
\end{aligned}
$$

So, $(y+2)$ is a factor of $f(y)$
Let us now divide $f(y)=y^{3}-2 y^{2}-29 y-42$ by $(y+2)$ to get the other factors
By long division, we get

$$
\begin{gathered}
y + 2 \longdiv { y ^ { 3 } - 2 y ^ { 2 } - 2 9 y - 4 2 } (y ^ { 2 } - 4 y - 2 1 \\
\frac{y^{3}+2 y^{2}}{-+} \begin{array}{c}
-4 y^{2}-29 y \\
-4 y^{2}-8 y \\
+\quad+ \\
\frac{-21 y-42}{-21 y-42} \\
+\quad+ \\
0
\end{array}
\end{gathered}
$$

$\therefore y^{3}-2 y^{2}-29 y-42=(y+2)\left(y^{2}-4 y-21\right)$
Now,
$y^{2}-4 y-21=y^{2}-7 y+3 y-21=y(y-7)+3(y-7)$
$=(y+3)(y-7)$
Hence, $y^{3}-2 y^{2}-29 y-42=(y+2)(y+3)(y-7)$
$(y-2)$ to get the other factors.
By long division, we have

$$
\begin{aligned}
& y - 2 \longdiv { 2 y ^ { 3 } - 5 y ^ { 2 } - 1 9 y + 4 2 } (2 y ^ { 2 } - y - 2 1 \\
& \begin{array}{c}
2 y^{3}-4 y^{2} \\
\frac{-y^{2}-19 y}{} \\
\frac{-y^{2}-2 y}{}+\quad- \\
-21 y+42 \\
-21 y+42 \\
+\quad- \\
0
\end{array} \\
& \therefore 2 y^{3}-5 y^{2}-19 y+42=(y-2)\left(2 y^{2}-y-21\right) \\
& =(y-2)(y+3)(2 y-7)
\end{aligned}
$$

13. $2 y^{3}-5 y^{2}-19 y+42$

Sol:
$(y-2)(y+3)(2 y-7)$
14. $x^{3}+13 x^{2}+32 x+20$

Sol:
Let $f(x)=x^{3}+13 x^{2}+32 x+20$
The constant term in $f(x)$ is 20 and factors of +20 are $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$.
Putting $x=-1$, we get

$$
f(-1)=(-1)^{3}+13(-1)^{2}+32(-1)+20
$$

$=-1+13-32+20=0$
So, $(x+1)$ is a factor of $f(x)$.
Let us now divide $f(x)=x^{3}+13 x^{2}+32 x+20$ by $(x+1)$ to get the remaining factors.
By long division, we have

$$
\begin{gathered}
x + 1 \longdiv { x ^ { 3 } + 1 3 x ^ { 2 } + 3 2 x + 2 0 } (x ^ { 2 } + 1 2 x + 2 0 \\
x^{3}+x^{2} \\
-- \\
\hline 12 x^{2}+32 x \\
\frac{12 x^{2}+32 x}{-\quad-} \begin{array}{c}
20 x+20 \\
20 x+20 \\
-\quad- \\
0
\end{array}
\end{gathered}
$$

$\therefore x^{3}+13 x^{2}+32 x+20=(x+1)\left(x^{2}+12 x+20\right)$
Now,
$x^{2}+12 x+20=x^{2}+10 x+2 x+20=x(x+10)+2(x+10)$
$=(x+2)(x+10)$
Hence, $x^{3}+13 x^{2}+32 x+20=(x+1)(x+2)(x+10)$
15. $x^{3}-3 x^{2}-9 x-5$

Sol:

Let $f(x)=x^{3}-3 x^{2}-9 x-5$
The constant term in $f(x)$ is -5 and factors of -5 are $\pm 1, \pm 5$.
Putting $x=-1$, we get

$$
f(-1)=(-1)^{3}-3(-1)^{2}-9(-1)-5=-1-3+9-5=0
$$

So, $(x+1)$ is a factor of $f(x)$.
Let us now divide $f(x)=x^{3}-3 x^{2}-9 x-5$ by $(x+1)$ to get the other factors.
By long division, we have

$$
\begin{gathered}
x + 1 \longdiv { x ^ { 3 } - 3 x ^ { 2 } - 9 x - 5 } (x ^ { 2 } - 4 x - 5 \\
\begin{array}{l}
x^{3}+x^{2} \\
-\quad- \\
-4 x^{2}-9 x \\
-4 x^{2}-4 x \\
+\quad+
\end{array} \\
\hline \begin{array}{l}
-5 x-5 \\
-5 x-5 \\
+\quad+
\end{array} \\
\hline 0 \quad
\end{gathered}
$$

$\therefore x^{3}-3 x^{2}-9 x-5=(x+1)\left(x^{2}-4 x-5\right)$
Now,
$\left(x^{2}-4 x-5\right)=x^{2}-5 x+x-5=x(x-5)+1(x-5)$
$=(x+1)(x-5)$
Hence, $x^{3}-3 x^{2}-9 x-5=(x+1)(x+1)(x-5)$
$=(x+1)^{2}(x-5)$
16. $2 y^{3}+y^{2}-2 y-1$

Sol:
Let $f(y)=2 y^{3}+y^{2}-2 y-1$
The factors of the constant term of y^{3} is 2 . Hence possible rational roots are $\pm 1, \pm \frac{1}{2}$.
We have,
$f(1)=2(1)^{3}+(1)^{2}-2(1)-1=2+1-2-1=0$
So, $(y-1)$ is a factor of $f(y)$
Let us now divide $f(y)=2 y^{3}+y^{2}-2 y-1$ by $(y-1)$ to get the other factors.
By long division, we have

$$
\begin{gathered}
y - 1 \longdiv { 2 y ^ { 3 } + y ^ { 2 } - 2 y - 1 } (2 y ^ { 2 } + 3 y + 1 \\
\begin{array}{c}
2 y^{3}-2 y^{2} \\
-\quad+\quad 3 y^{2}-2 y \\
3 y^{2}-2 y \\
-\quad+ \\
y-1 \\
y-1 \\
-\quad+ \\
0
\end{array}
\end{gathered}
$$

$\therefore 2 y^{3}-y^{2}-2 y-1=(y-1)\left(2 y^{2}+3 y+1\right)$
Now,
$2 y^{2}+3 y+1=2 y^{2}+2 y+y+1=2 y(y+1)+1(y+1)$
$=(2 y+1)(y+1)$
Hence, $2 y^{3}+y^{2}-2 y-1=(y-1)(y+1)(2 y+1)$
17. $x^{3}-2 x^{2}-x+2$

Sol:
Let $f(x)=x^{3}-2 x^{2}-x+2$
The constant term in $f(x)$ is 2 and factors of 2 are $\pm 1, \pm 2$.
Putting $x=1$, we have

$$
f(1)=1^{3}-2(1)^{2}-1+2=1-2-1+2=0
$$

So, $(x-1)$ is a factor of $f(x)$
Let us now divide $f(x)=x^{3}-2 x^{2}-x+2$ by $(x-1)$ to get the remaining factors.

By long division, we have

$$
\begin{gathered}
x - 1 \longdiv { x ^ { 3 } - 2 x ^ { 2 } - x + 2 } (x ^ { 2 } - x - 2 \\
x^{3}-x^{2} \\
-+\begin{array}{l}
-x^{2}-x \\
-x^{2}+x \\
+\quad- \\
-2 x+2 \\
-2 x+2 \\
+\quad- \\
0
\end{array}
\end{gathered}
$$

$\therefore x^{3}-2 x^{2}-x+2=(x-1)\left(x^{2}-x-2\right)$
Now,
$x^{2}-x-2=x^{2}-2 x+x-2=x(x-2)+1(x-2)$
$=(x+1)(x-2)$
Hence $x^{3}-2 x^{2}-x+2=(x-1)(x+2)(x-2)$
18. Factorize each of the following polynomials:
(i) $x^{3}+13 x^{2}+31 x-45$ given that $x+9$ is a factor
(ii) $4 x^{3}+20 x^{2}+33 x+18$ given that $2 x+3$ is a factor

Sol:
(i) Let $f(x)=x^{3}+13 x^{2}+31 x-45$

Given that $(x+9)$ is a factor of $f(x)$
Let us divide $f(x)$ by $(x+9)$ to get the other factors. By long division, we have

$$
\begin{aligned}
& x + 9 \longdiv { x ^ { 3 } + 1 2 x ^ { 2 } + 3 1 x - 4 5 } (x ^ { 2 } + 4 x - 5 \\
& \\
& \frac{x^{3}+9 x^{2}}{-\quad-} \begin{array}{c}
4 x^{2}+31 x
\end{array} \\
& \frac{4 x^{2}+36 x}{-\quad-} \begin{array}{l}
-5 x-45 \\
-5 x-45 \\
+\quad+
\end{array} \\
& \therefore f(x)=x^{3}+13 x^{2}+31 x-45 \\
& \Rightarrow f(x)=(x+9)\left(x^{2}+4 x-5\right)
\end{aligned}
$$

Now,

$$
\begin{aligned}
& x^{2}+4 x-5=x^{2}+5 x-x-5=x(x+5)-1(x+5) \\
& =(x-1)(x+5) \\
& \Rightarrow f(x)=(x+9)(x+5)(x-1) \\
& \therefore x^{3}+13 x^{2}+31 x-45=(x-1)(x+5)(x+9)
\end{aligned}
$$

(ii) Let $f(x)=4 x^{3}+20 x^{2}+33 x+18$

Given that $2 x+3$ is a factor of $f(x)$
Let us divide $f(x)$ by $(2 x+3)$ to get the other factors. By long division, we have

$$
\begin{gathered}
2 x + 3 \longdiv { 4 x ^ { 3 } + 2 0 x ^ { 2 } + 3 3 x + 1 8 } (2 x ^ { 2 } + 7 x + 6 \\
4 x^{3}+6 x^{2} \\
-\quad- \\
14 x^{2}+33 x \\
14 x^{2}+21 x \\
+\quad- \\
\frac{12 x+18}{12 x+18} \\
-\quad- \\
0
\end{gathered}
$$

Now,
$4 x^{3}+20 x^{2}+33 x+18=(2 x+3)\left(2 x^{2}+7 x+6\right)$
We have,
$2 x^{2}+7 x+6=2 x^{2}+4 x^{2}+3 x+6=2 x(x+2)+3(x+2)$
$=(2 x+3)(x+2)$
$\Rightarrow 4 x^{2}+20 x^{2}+33 x+18=(2 x+3)(2 x+3)(x+2)$
$=(2 x+3)^{2}(x+2)$
Hence, $4 x^{3}+20 x^{2}+33 x+18=(x+2)(2 x+3)^{2}$
We have,
$2 x^{2}+7 x+6=2 x^{2}+4 x+3 x+6=2 x(x+2)+3(x+2)$
$=(2 x+3)(x+2)$
$\Rightarrow 4 x^{3}+20 x^{2}+33 x+18=(2 x+3)(2 x+3)(x+2)$
$=(2 x+3)^{2}(x+2)$
Hence, $4 x^{3}+20 x^{2}+33 x+18=(x+2)(2 x+3)^{2}$

