Exercise - 8.1

1. Write the complement of each of the following angles:
(i) 20° (ii) 35° (iii) 90° (iv) 77° (v) 30°

Sol:

(i) Given angle is 20°

Since, the sum of an angle and its complement is 90°.
\therefore its, complement will be $\left(90-20=70^{\circ}\right)$
(ii) Given angle is 35°

Since, the sum of an angle and its complement is 90°.
\therefore its, complements will be $\left(90-35^{\circ}=55^{\circ}\right)$
(iii) The given angle is 90°

Since, the sum of an angle and its complement is 90°.
\therefore [its, complement will be $\left.\left(90-90^{\circ}=0^{\circ}\right)\right]$
(iv) The given angle is 77°

Since, the sum of an angle and its complement is 90°.
\therefore its, complement will be $\left(90-77^{\circ}=13^{\circ}\right)$
(v) The given angle is 30°.

Since, the sum of an angle and its complement is 90°.
\therefore its, complement will be $\left(90-30^{\circ}=60^{\circ}\right)$
2. Write the supplement of each of the following angles:
(i) 54° (ii) 132° (iii) 138°

Sol:

(i) The given angle is 54°

Since, the sum of an angle and its supplement is 180°.
\therefore its, supplement will be $180^{\circ}-54^{\circ}=126^{\circ}$
(ii) The given angle is 132°

Since, the sum of an angle and its supplement is 180°.
\therefore its, supplement will be $180^{\circ}-132^{\circ}=48^{\circ}$
(iii) The given angle is 138°

Since, the sum of an angle and its supplement is 180°.
\therefore its, supplement will be $180^{\circ}-138^{\circ}=42^{\circ}$
3. If an angle is 28° less than its complement, find its measure.

Sol:
Angle measured will be ' x ' say
\therefore its complement will be $(90-x)^{\circ}$
It is given that
Angle $=$ Complement -28°
$\Rightarrow x=(90-x)^{\circ}-28^{\circ}$
$\Rightarrow x^{\circ}=90^{\circ}-28^{\circ}-x^{\circ}$
$\Rightarrow 2 x^{\circ}=62^{\circ}$
$\Rightarrow x=31^{\circ}$
\therefore Angle measured is 31°
4. If an angle is 30° more than one half of its complement, find the measure of the angle.

Sol:
Angle measured will be ' x ' say.
\therefore its complement will be $(90-x)^{\circ}$
It is given that
Angle $=30^{\circ}+\frac{1}{2}$ Complement
$\Rightarrow x^{\circ}=30^{\circ}+\frac{1}{2}(90-x)$
$\Rightarrow 3 \frac{x}{2}=30^{\circ}+45^{\circ}$
$\Rightarrow 3 x=150^{\circ}$
$\Rightarrow x=\frac{150}{3}$
$\Rightarrow x=50^{\circ}$
\therefore Angle is 50°
5. Two supplementary angles are in the ratio $4: 5$. Find the angles.

Sol:

Supplementary angles are in the ratio 4:5
Let the angles be 4 x and 5 x
It is given that they are supplementary angles
$\therefore 4 x+5 x=180^{\circ} x$
$\Rightarrow 9 x=180^{\circ}$
$\Rightarrow x=20^{\circ}$
Hence, $4 x=4(20)=80^{\circ}$
$5(x)=5(20)=100^{\circ}$
\therefore Angles are 80° and 100°
6. Two supplementary angles differ by 48°. Find the angles.

Sol:

Given that two supplementary angles are differ by 48°
Let the angle measured is x°
\therefore Its supplementary angle will be $(180-x)^{\circ}$
It is given that
$(180-x)-x=98^{\circ}$
$\Rightarrow 180-48^{\circ}=2 x$
$\Rightarrow 132=2 x$
$\Rightarrow x=\frac{132}{2}$
$\Rightarrow x=66^{\circ}$
Hence, $180-x=114^{\circ}$
Therefore, angles are 66° and 114°
7. An angle is equal to 8 times its complement. Determine its measure.

Sol:

It is given that angle $=8$ times its complement
Let ' x ' be measured angle
\Rightarrow angle $=8$ complements
\Rightarrow angle $=8(90-x)^{\circ} \quad\left[\because\right.$ complement $\left.=(90-x)^{\circ}\right]$
$\Rightarrow x^{\circ}=8(90)-8 x^{\circ}$
$\Rightarrow 9 x^{\circ}=720^{\circ}$
$\Rightarrow x=\frac{720}{9}=80$
\therefore The measured angle is 80°
8. If the angles $(2 x-10)^{\circ}$ and $(x-5)^{\circ}$ are complementary angles, find x.

Sol:
Given that,
$(2 x-10)^{\circ}$ and $(x-5)^{\circ}$ are complementary angles.
Let x be the measured angle.
Since the angles are complementary
\therefore Their sum will be 90°
$\Rightarrow(2 x-10)+(x-5)=90^{\circ}$
$\Rightarrow 3 x-15=90$
$\Rightarrow 3 x=90^{\circ}+15^{\circ}$
$\Rightarrow x=\frac{105^{\circ}}{3}=\frac{105^{\circ}}{3}=35^{\circ}$
$\Rightarrow x=35^{\circ}$
9. If the complement of an angle is equal to the supplement of the thrice of it. Find the measure of the angle.

Sol:

The angle measured will be ' x 'say.
Its complementary angle is $\left(90^{\circ}-x^{\circ}\right)$ and
Its supplementary angle is $\left(180^{\circ}-3 x^{\circ}\right)$
Given that,
Supplementary of thrice of the angle $=\left(180^{\circ}-3 x^{\circ}\right)$
According to the given information
$(90-x)^{\circ}=(180-3 x)^{\circ}$
$\Rightarrow 3 x^{\circ}-x^{\circ}=180^{\circ}-90^{\circ}$
$\Rightarrow 2 x^{\circ}=90^{\circ}$
$\Rightarrow x=45^{\circ}$
The angle measured is 45°
10. If an angle differs from its complement by 10°, find the angle.

Sol:

The measured angle will be ' x ' say
Given that,
The angles measured will be differed by 10°
$x^{\circ}-(90-x)^{\circ}=10^{\circ}$
$\Rightarrow x-90+x=10$
$\Rightarrow 2 x=100$
$\Rightarrow x=50^{\circ}$
\therefore The measure of the angle will be $=50^{\circ}$
11. If the supplement of an angle is three times its complement, find the angle.

Sol:

Given that,
Supplementary of an angle $=3$ times its complementary angle.
The angles measured will be x°
Supplementary angle of x will be $180^{\circ}-x^{\circ}$ and
The complementary angle of x will be $\left(90^{\circ}-x^{\circ}\right)$.

It's given that
Supplementary of angle $=3$ times its complementary angle
$180^{\circ}-x^{\circ}=3\left(90^{\circ}-x^{\circ}\right)$
$\Rightarrow 180^{\circ}-x^{\circ}=270^{\circ}-3 x^{\circ}$
$\Rightarrow 3 x^{\circ}-x^{\circ}=270^{\circ}-180^{\circ}$
$\Rightarrow 2 x^{\circ}=90^{\circ}$
$\Rightarrow x=45^{\circ}$
\therefore Angle measured is 45°.
12. If the supplement of an angle is two-third of itself. Determine the angle and its supplement.

Sol:
Given that
Supplementary of an angle $=\frac{2}{3}$ of angle itself.
The angle measured be ' x ' say.
Supplementary angle of x will be $(180-x)^{\circ}$
It is given that
$(180-x)^{\circ}=\frac{2}{3} x^{\circ}$
$\Rightarrow 180^{\circ}-x^{\circ}=\frac{2}{3} x^{\circ}$
$\Rightarrow \frac{2}{3} x^{\circ}+x^{\circ}=180^{\circ}$
$\Rightarrow 2 x^{\circ}+3 x^{\circ}=3 \times 180^{\circ}$
$\Rightarrow 5 x^{\circ}=540^{\circ}$
$\Rightarrow x=108^{\circ}$
Hence, supplement $=180-108=72^{\circ}$
\therefore Angle will be 108° and its supplement will be 72°.
13. An angle is 14° more than its complementary angle. What is its measure?

Sol:

Given that,
An angle is 14° more than its complementary angle
The angle measured is ' x ' say
The complementary angle of ' x ' is $(90-x)$
It is given that
$x-(90-x)=14$
$\Rightarrow x-90+x=14$
$\Rightarrow 2 x^{\circ}=90^{\circ}+14^{\circ}$
$\Rightarrow x^{\circ}=\frac{104^{\circ}}{2}$
$\Rightarrow x=52^{\circ}$.
\therefore The angle measured is 52°
14. The measure of an angle is twice the measure of its supplementary angle. Find its measure.

Sol:

Given that
The angle measure of an angle is twice of the measure of the supplementary angle.
Let the angle measured will be ' x ' say
\therefore The supplementary angle of x is $180-x$ as per question
$x^{\circ}=2(180-x)^{\circ}$
$x^{\circ}=2\left(180^{\circ}\right)-2 x^{\circ}$
$\Rightarrow 3 x^{\circ}=360^{\circ}$
$\Rightarrow x^{\circ}=120^{\circ}$
\therefore The angle measured is 120°.

Exercise - 8.2

1. In the below Fig, OA and OB are opposite rays:
(i) If $x=25^{\circ}$, what is the value of y ?
(ii) If $y=35^{\circ}$, what is the value of x ?

Sol:

(i) Given that $x=25^{\circ}$

Since $\angle A O C$ and $\angle B O C$ form a linear pair
$\angle A O C+\angle B O C=180^{\circ}$
Given that
$\angle A O C=2 y+5$ and $\angle B O C=3 x$
$\therefore \angle A O C+\angle B O C=180^{\circ}$
$(2 y+5)^{\circ}+3 x=180^{\circ}$
$(2 y+5)^{\circ}+3\left(25^{\circ}\right)=180^{\circ}$

$$
\begin{aligned}
& 2 y^{\circ}+5^{\circ}+75^{\circ}=180^{\circ} \\
& 2 y^{\circ}+80^{\circ}=180^{\circ} \\
& 2 y^{\circ}=180^{\circ}-80^{\circ}=100^{\circ} \\
& y^{\circ}=\frac{100^{\circ}}{2}=50^{\circ} \\
& \Rightarrow y=50^{\circ}
\end{aligned}
$$

(ii) Given that if $y=35^{\circ}$

$$
\begin{aligned}
& \angle A O C+\angle B O C=180^{\circ} \\
& (2 y+5)+3 x=180^{\circ} \\
& (2(35)+5)+3 x=180^{\circ} \\
& (70+5)+3 x=180^{\circ} \\
& 3 x=180^{\circ}-75^{\circ} \\
& 3 x=105^{\circ} \\
& x=35^{\circ} \\
& x=35^{\circ}
\end{aligned}
$$

2. In the below fig, write all pairs of adjacent angles and all the linear pairs.

Sol:
Adjacent angles are
(i) $\angle A O C, \angle C O B$
(ii) $\angle A O D, \angle B O D$
(iii) $\angle A O D, \angle C O D$
(iv) $\angle B O C, \angle C O D$

Linear pairs : $\angle A O D, \angle B O D ; \angle A O C, \angle B O C$.
3. In the given below Fig, find x. Further find $\angle B O C, \angle C O D$ and $\angle A O D$.

Sol:

Since $\angle A O D$ and $\angle B O D$ are form a line pair

$$
\begin{aligned}
& \angle A O D+\angle B O D=180^{\circ} \\
& \angle A O D+\angle C O D+\angle B O C=180^{\circ}
\end{aligned}
$$

Given that

$$
\begin{aligned}
& \angle A O D=(x+10)^{\circ}, \angle C O D=x^{\circ}, \angle B O C=(x+20)^{\circ} \\
& \Rightarrow(x+10)^{\circ}+x^{\circ}+(x+20)^{\circ}=180^{\circ} \\
& \Rightarrow 3 x+30^{\circ}=180^{\circ} \\
& \Rightarrow 3 x=180^{\circ}-30^{\circ} \\
& \Rightarrow 3 x=150^{\circ} \\
& \Rightarrow x=50^{\circ} \\
& \therefore \angle A O D=x+10^{\circ} \\
& =50^{\circ}+10^{\circ}=60^{\circ} \\
& \angle C O D=x^{\circ}=50^{\circ} \\
& \angle B O C=x+20^{\circ}=50+20=70^{\circ}
\end{aligned}
$$

4. In the given below fig, rays $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}, \mathrm{OP}$ and 0 E have the common end point O . Show that $\angle \mathrm{AOB}+\angle \mathrm{BOC}+\angle \mathrm{COD}+\angle \mathrm{DOE}+\angle \mathrm{EOA}=360^{\circ}$.

Sol:

Given that
Rays $O A, O B, O D$ and $O E$ have the common end point O .
A ray of opposite to OA is drawn
Since $\angle A O B, \angle B O F$ are linear pairs

$$
\begin{align*}
& \angle A O B+\angle B O F=180^{\circ} \\
& \angle A O B+\angle B O C+\angle C O F=180^{\circ} \tag{1}
\end{align*}
$$

Also
$\angle A O E, \angle E O F$ are linear pairs
$\angle A O E+\angle E O F=180^{\circ}$
$\angle A O E+\angle D O F+\angle D O E=180^{\circ}$
By adding (1) and (2) equations we get

$$
\begin{aligned}
& \angle A O B+\angle B O C+\angle C O F+\angle A O E+\angle D O F+\angle D O E=360^{\circ} \\
& \angle A O B+\angle B O C+\angle C O D+\angle D O E+\angle E O A=360^{\circ}
\end{aligned}
$$

Hence proved.
5. In the below Fig, $\angle \mathrm{AOC}$ and $\angle \mathrm{BOC}$ form a linear pair. if $\mathrm{a}-2 \mathrm{~b}=30^{\circ}$, find a and b .

Sol:

Given that,
$\angle A O C$ and $\angle B O C$ form a linear pair
If $a-2 b=30^{\circ}$
$\angle A O C=a^{\circ}, \angle B O C=b^{\circ}$
$\therefore a+b=180^{\circ}$
Given $a-2 b=30^{\circ}$
By subtracting (i) and (ii)
$a+b-a+2 b=180^{\circ}-30^{\circ}$
$\Rightarrow 3 b=150^{\circ}$
$\Rightarrow b=\frac{150^{\circ}}{3}$
$\Rightarrow b=50^{\circ}$
Hence $a-2 b=30^{\circ}$
$a-2(50)^{\circ}=30^{\circ} \quad\left[\because b=50^{\circ}\right]$
$a=30^{\circ}+100^{\circ}$
$a=130^{\circ}$
$\therefore a=130^{\circ}, b=50^{\circ}$.
6. How many pairs of adjacent angles are formed when two lines intersect in a point?

Sol:
Four pairs of adjacent angle formed when two lines intersect in a point they are
$\angle A O D, \angle D O B$
$\angle D O B, \angle B O C$
$\angle C O A, \angle A O D$
$\angle B O C, \angle C O A$
Hence 4 pairs
7. How many pairs of adjacent angles, in all, can you name in below fig.?

Sol:

Pairs of adjacent angles are
$\angle E O C, \angle D O C$
$\angle E O D, \angle D O B$
$\angle D O C, \angle C O B$
$\angle E O D, \angle D O A$
$\angle D O C, \angle C O A$
$\angle B O C, \angle B O A$
$\angle B O A, \angle B O D$
$\angle B O A, \angle B O E$
$\angle E O C, \angle C O A$
$\angle E O C, \angle C O B$
\therefore Hence 10 pairs of adjacent angles
8. In below fig, determine the value of x.

Sol:

Since sum of all the angles round a point is equal to 360°. Therefore

$$
\begin{aligned}
& \Rightarrow 3 x+3 x+150+x=360^{\circ} \\
& \Rightarrow 7 x^{\circ}=360^{\circ}-150^{\circ} \\
& \Rightarrow 7 x=210^{\circ} \\
& \Rightarrow x=\frac{210}{7} \\
& \Rightarrow x=30^{\circ}
\end{aligned}
$$

9. In the below fig, AOC is a line, find x .

Sol:

Since $\angle A O B$ and $\angle B O C$ are linear pairs
$\angle A O B+\angle B O C=180^{\circ}$
$\Rightarrow 70^{\circ}+2 x^{\circ}=180^{\circ}$
$\Rightarrow 2 x^{\circ}=180^{\circ}-70^{\circ}$
$\Rightarrow 2 x=110^{\circ}$
$\Rightarrow x \frac{110}{2}$
$\Rightarrow x=55^{\circ}$
10. In the below fig, POS is a line, find x.

Sol:

Since $\angle P O Q$ and $\angle Q O S$ are linear pairs

$$
\begin{aligned}
& \angle P O Q+\angle Q O S=180^{\circ} \\
& \Rightarrow \angle P O Q+\angle Q O R+\angle S O R=180^{\circ} \\
& \Rightarrow 60^{\circ}+4 x^{\circ}+40^{\circ}=180^{\circ} \\
& \Rightarrow 4 x^{\circ}=180^{\circ}-100^{\circ} \\
& \Rightarrow 4 x^{\circ}=80^{\circ} \\
& \Rightarrow x=20^{\circ}
\end{aligned}
$$

11. In the below fig, $A C B$ is a line such that $\angle D C A=5 x$ and $\angle D C B=4 x$. Find the value of x.

Sol:
Here, $\angle A C D+\angle B C D=180^{\circ}$
[Since $\angle A C D, \angle B C D$ are linear pairs]
$\angle A C D=5 x, \angle B C D=4 x$
$\Rightarrow 5 x+4 x=180^{\circ}$
$\Rightarrow 9 x=180^{\circ}$
$\Rightarrow x=20^{\circ}$
$\therefore x=20^{\circ}$
12. Given $\angle \mathrm{POR}=3 \mathrm{x}$ and $\angle \mathrm{QOR}=2 \mathrm{x}+10$, find the value of x for which POQ will be a line. (Below fig).

Sol:

Since $\angle Q O R, \angle P O P$ are linear pairs

$$
\begin{aligned}
& \angle Q O R+\angle P O R=180^{\circ} \\
& \Rightarrow 2 x+10+3 x=180^{\circ} \quad[\because \angle Q O R=2 x+10, \angle P O R=3 x] \\
& \Rightarrow 5 x+10=180^{\circ} \\
& \Rightarrow 5 x=180^{\circ}-10 \\
& \Rightarrow 5 x=170^{\circ} \\
& \Rightarrow x=34^{\circ}
\end{aligned}
$$

13. In Fig. 8.42, a is greater than b by one third of a right-angle. Find the values of a and b.

Fig. 8.41

Fig. 8.42

Sol:

Since a, b are linear pair
$\Rightarrow a+b=180^{\circ}$
$\Rightarrow a=180-b$

Now,
$\Rightarrow a=b+\frac{1}{3} \times 90^{\circ}$
[given]
$\Rightarrow a=b+30^{\circ}$
$\Rightarrow a-b=30^{\circ}$
Equating (1) and (2) equations
$180-b=b+30^{\circ}$
$\Rightarrow 180^{\circ}-30^{\circ}=b+b$
$\Rightarrow 150^{\circ}=2 b$
$\Rightarrow b=\frac{150^{\circ}}{2}$
$\Rightarrow b=75^{\circ}$
Hence $a=180-b$
$=180-75^{\circ} \quad\left[\because b=75^{\circ}\right]$
$a=105^{\circ}$
$\therefore a=105^{\circ}, b=75^{\circ}$
14. What value of y would make AOB a line in below fig, if $\angle \mathrm{AOC}=4 \mathrm{y}$ and $\angle \mathrm{BOC}=(6 \mathrm{y}+$ 30)

Sol:
Since $\angle A O C, \angle B O C$ are linear pair
$\Rightarrow \angle A O C+\angle B O C=180^{\circ}$
$\Rightarrow 6 y+30+4 y=180^{\circ}$
$\Rightarrow 10 y+30=180^{\circ}$
$\Rightarrow 10 y=180^{\circ}-30^{\circ}$
$\Rightarrow 10 y=150^{\circ}$
$\Rightarrow y=\frac{150^{\circ}}{10}$
$\Rightarrow y=15^{\circ}$
15. If below fig, $\angle \mathrm{AOF}$ and $\angle \mathrm{FOG}$ form a linear pair.

$\angle \mathrm{EOB}=\angle \mathrm{FOC}=90^{\circ}$ and $\angle \mathrm{DOC}=\angle \mathrm{FOG}=\angle \mathrm{AOB}=30^{\circ}$
(i) Find the measures of $\angle \mathrm{FOE}, \angle \mathrm{COB}$ and $\angle \mathrm{DOE}$.
(ii) Name all the right angles.
(iii) Name three pairs of adjacent complementary angles.
(iv) Name three pairs of adjacent supplementary angles.
(v) Name three pairs of adjacent angles.

Sol:

(i) $\angle F O E=x, \angle D O E=y$ and $\angle B O C=z$ sat

Since $\angle A O F, \angle F O G$ is Linear pair
$\Rightarrow \angle A O F+30^{\circ}=180^{\circ} \quad\left[\angle A O F+\angle F O G=180^{\circ}\right.$ and $\left.\angle F O G=30^{\circ}\right]$
$\Rightarrow \angle A O F=180^{\circ}-30^{\circ}$
$\Rightarrow \angle A O F=150^{\circ}$
$\Rightarrow \angle A O B+\angle B O C+\angle C O D+\angle D O E+\angle E O F=150^{\circ}$
$\Rightarrow 30^{\circ}+z+30^{\circ}+y+x=150^{\circ}$
$\Rightarrow x+y+z=150^{\circ}-30^{\circ}-30^{\circ}$
$\Rightarrow x+y+z=90^{\circ}$
Now $\angle F O C=90^{\circ}$
$\Rightarrow \angle F O E+\angle E O D+\angle D O C=90^{\circ}$
$\Rightarrow x+y+30^{\circ}=90^{\circ}$
$\Rightarrow x+y=90^{\circ}-30^{\circ}$
$\Rightarrow x+y=60^{\circ}$
Substituting (2) in (1)
$x+y+z=90^{\circ}$
$\Rightarrow 60+z=90^{\circ} \Rightarrow z=90^{\circ}-60^{\circ}=30^{\circ}$
i.e., $\angle B O C=30^{\circ}$

Given $\angle B O E=90^{\circ}$
$\Rightarrow \angle B O C+\angle C O D+\angle D O E=90^{\circ}$
$\Rightarrow 30^{\circ}+30^{\circ}+\angle D O E=90^{\circ}$
$\Rightarrow \angle D O E=90^{\circ}-60^{\circ}=30^{\circ}$
$\therefore \angle D O E=x=30^{\circ}$
Now, also we have

$$
\begin{aligned}
& x+y=60^{\circ} \\
& \Rightarrow y=60^{\circ}-x=60^{\circ}-30^{\circ}=30^{\circ} \\
& \angle F O E=30^{\circ}
\end{aligned}
$$

(ii) Right angles are
$\angle D O G, \angle C O F, \angle B O F, \angle A O D$
(iii) Three pairs of adjacent complementary angles are
$\angle A O B, \angle B O D$;
$\angle A O C, \angle C O D$;
$\angle B O C, \angle C O E$.
(iv) Three pairs of adjacent supplementary angles are
$\angle A O B, \angle B O G$;
$\angle A O C, \angle C O G$;
$\angle A O D, \angle D O G$.
(v) Three pairs of adjacent angles

$$
\begin{aligned}
& \angle B O C, \angle C O D \\
& \angle C O D, \angle D O E \\
& \angle D O E, \angle E O F
\end{aligned}
$$

16. In below fig, $O P, O Q, O R$ and $O S$ arc four rays. Prove that:
$\angle \mathrm{POQ}+\angle \mathrm{QOR}+\angle \mathrm{SOR}+\angle \mathrm{POS}=360^{\circ}$

Sol:

Given that
$O P, O Q, O R$ and $O S$ are four rays
You need to produce any of the ray $O P, O Q, O R$ and $O S$ backwards to a point in the figure.
Let us produce ray $O Q$ backwards to a point
T so that $T O Q$ is a line
Ray OP stands on the $T O Q$
Since $\angle T O P, \angle P O Q$ is linear pair
$\angle T O P+\angle P O Q=180^{\circ}$
Similarly, ray OS stands on the line $T O Q$
$\therefore \angle T O S+\angle S O Q=180^{\circ}$

But $\angle S O Q=\angle S O R+\angle Q O R$
So, (2), becomes
$\angle T O S+\angle S O R+\angle O Q R=180^{\circ}$
Now, adding (1) and (3) you get
$\angle T O P+\angle P O Q+\angle T O S+\angle S O R+\angle Q O R=360^{\circ}$
$\Rightarrow \angle T O P+\angle T O S=\angle P O S$
$\therefore(4)$ becomes
$\angle P O Q+\angle Q O R+\angle S O R+\angle P O S=360^{\circ}$
17. In below fig, ray OS stand on a line POQ. Ray OR and ray OT are angle bisectors of $\angle \mathrm{POS}$ and $\angle \mathrm{SOQ}$ respectively. If $\angle \mathrm{POS}=\mathrm{x}$, find $\angle \mathrm{ROT}$.

Sol:

Given,
Ray $O S$ stand on a line $P O Q$
Ray $O R$ and Ray $O T$ are angle bisectors of $\angle P O S$ and $\angle S O Q$ respectively
$\angle P O S=x$
$\angle P O S$ and $\angle Q O S$ is linear pair
$\angle P O S+\angle Q O S=180^{\circ}$
$x+\angle Q O S=180^{\circ}$
$\angle Q O S=180-x$
Now, ray or bisector $\angle P O S$
$\therefore \angle R O S=\frac{1}{2} \angle P O S$
$=\frac{1}{2} \times x \quad[\because \angle P O S=x]$
$\angle R O S=\frac{x}{2}$
Similarly ray OT bisector $\angle Q O S$
$\therefore \angle T O S=\frac{1}{2} \angle Q O S$
$=\frac{180-x}{2} \quad[\because \angle Q O S=180-x]$
$=90-\frac{x}{2}$
$\therefore \angle R O T=\angle R O S+\angle R O T$
$=\frac{x}{2}+90-\frac{x}{2}$
$=90^{\circ}$
$\therefore \angle R O T=90^{\circ}$
18. In the below fig, lines $P Q$ and $R S$ intersect each other at point O. If $\angle P O R: \angle R O Q-5: 7$, find all the angles.

Sol:

Given $\angle P O R$ and $\angle R O P$ is linear pair
$\angle P O R+\angle R O P=180^{\circ}$
Given that
$\angle P O R: \angle R O P=5: 7$
$\therefore \angle P O R=\frac{5}{12} \times 180=75^{\circ}$
Similarly $\angle R O Q=\frac{7}{5+7} \times 180^{\circ}=105^{\circ}$
Now, $\angle P O S=\angle R O Q=105^{\circ} \quad[\because$ Vertically opposite angles $]$
$\therefore \angle S O Q=\angle P O R=75^{\circ} \quad[\because$ Vertically opposite angles $]$
19. In the below fig, $P O Q$ is a line. Ray $O R$ is perpendicular to line $P Q$. $O S$ is another ray lying between rays OP and OR. Prove that $\angle \mathrm{ROS}=\frac{1}{2}(\angle \mathrm{QOS}-\angle \mathrm{POS})$.

Sol:
Given that, OR perpendicular
$\therefore \angle P O R=90^{\circ}$

$$
\begin{align*}
& \angle P O S+\angle S O R=90^{\circ} \quad[\because \angle P O R=\angle P O S+\angle S O R] \\
& \angle R O S=90^{\circ}-\angle P O S \quad \ldots \ldots \ldots .(1) \tag{1}\\
& \angle Q O R=90^{\circ} \quad(\because O R \perp P Q) \\
& \angle Q O S-\angle R O S=90^{\circ} \\
& \angle R O S=\angle Q O S-90^{\circ} \quad \ldots \ldots . .(2) \tag{2}
\end{align*}
$$

By adding (1) and (2) equations, we get
$2 \angle R O S=\angle Q O S-\angle P O S$
$\angle R O S=\frac{1}{2}(\angle Q O S-\angle P O S)$

Exercise - 8.3

1. In the below fig, lines l_{1} and l_{2} intersect at O , forming angles as shown in the figure. If $\mathrm{x}=$ 45 , Find the values of x, y, z and u.

Sol:

Given that
$x=45^{\circ}, y=?, z=?, u=$?
Vertically opposite sides are equal
$\therefore z=x=45^{\circ}$
z and u angles are linear pair of angles
$\therefore z+u=180^{\circ}$
$z=180^{\circ}-4$
$\Rightarrow u=180^{\circ}-x$
$\Rightarrow u=180^{\circ}-45^{\circ} \quad\left[\because x=45^{\circ}\right]$
$\Rightarrow u=135^{\circ}$
x and y angles are linear pair of angles
$\therefore x+y=180^{\circ}$
$y=180^{\circ}-x$
$y=180^{\circ}-45^{\circ}$
$y=135^{\circ}$
$\therefore x=45^{\circ}, y=135^{\circ}, z=135^{\circ}$ and $u=45^{\circ}$
2. In the below fig, three coplanar lines intersect at a point O , forming angles as shown in the figure. Find the values of x, y, z and u.

Sol:
Vertically opposite angles are equal
So $\angle B O D=z=90^{\circ}$
$\angle D O F=y=50^{\circ}$
Now, $x+y+z=180^{\circ} \quad$ [Linear pair]
$\Rightarrow x+y+z=180^{\circ}$
$\Rightarrow 90^{\circ}+50^{\circ}+x=180^{\circ}$
$\Rightarrow x=180^{\circ}-140^{\circ}$
$\Rightarrow x=40^{\circ}$
3. In the given fig, find the values of x, y and z.

Sol:
From the given figure
$\angle y=25^{\circ} \quad[\because$ Vertically opposite angles are equal $]$
Now
$\angle x+\angle y=180^{\circ} \quad$ [Linear pair of angles are x and y]
$\Rightarrow \angle x=180^{\circ}-25^{\circ}$
$\Rightarrow \angle x=155^{\circ}$
Also
$\angle z=\angle x=155^{\circ} \quad$ [Vertically opposite angle]
$\angle y=25^{\circ}$
$\angle z=\angle z=155^{\circ}$
4. In the below fig, find the value of x.

Sol:

Vertically opposite angles are equal
$\angle A O E=\angle B O F=5 x$
Linear pair

$$
\begin{aligned}
& \angle C O A+\angle A O E+\angle E O D=180^{\circ} \\
& \Rightarrow 3 x+5 x+2 x=180^{\circ} \\
& \Rightarrow 10 x=180^{\circ} \\
& \Rightarrow x=18^{\circ}
\end{aligned}
$$

5. Prove that the bisectors of a pair of vertically opposite angles are in the same straight line.

Sol:
Given,
Lines $A O B$ and $C O D$ intersect at point O such that

$$
\angle A O C=\angle B O D
$$

Also OE is the bisector $\angle A D C$ and OF is the bisector $\angle B O D$
To prove: EOF is a straight line vertically opposite angles is equal

$$
\begin{equation*}
\angle A O D=\angle B O C=5 x \tag{1}
\end{equation*}
$$

Also $\angle A O C+\angle B O D$

$$
\begin{equation*}
\Rightarrow 2 \angle A O E=2 \angle D O F \tag{2}
\end{equation*}
$$

Sum of the angles around a point is 360°
$\Rightarrow 2 \angle A O D+2 \angle A O E+2 \angle D O F=360^{\circ}$
$\Rightarrow \angle A O D+\angle A O F+\angle D O F=180^{\circ}$
From this we conclude that $E O F$ is a straight line.

Given that :- AB and CD intersect each other at O
OE bisects $\angle C O B$
To prove: $\angle A O F=\angle D O F$
Proof: $O E$ bisects $\angle C O B$
$\angle C O E=\angle E O B=x$
Vertically opposite angles are equal

$$
\begin{align*}
& \angle B O E=\angle A O F=x \tag{1}\\
& \angle C O E=\angle D O F=x \tag{2}
\end{align*}
$$

From (1) and (2)

$$
\angle A O F=\angle D O F=x
$$

6. If one of the four angles formed by two intersecting lines is a right angle, then show that each of the four angles is a right angle.
Sol:
Given,
$A B$ and $C D$ are two lines intersecting at O such that
$\angle B O C=90^{\circ}$
$\angle A O C=90^{\circ}, \angle A O D=90^{\circ}$ and $\angle B O D=90^{\circ}$
Proof:
Given that $\angle B O C=90^{\circ}$
Vertically opposite angles are equal

$\angle B O C=\angle A O D=90^{\circ}$
$\angle A O C, \angle B O C$ are Linear pair of angles
$\angle A O C+\angle B O C=180^{\circ} \quad$ [LinearPair]
$\Rightarrow \angle A O C+90^{\circ}=180^{\circ}$
$\Rightarrow \angle A O C=90^{\circ}$
Vertically opposite angles
$\therefore \angle A O C=\angle B O D=90^{\circ}$
Hence, $\angle A O C=\angle B O C=\angle B O D=\angle A O D=90^{\circ}$
7. In the below fig, rays AB and CD intersect at O .
(i) Determine y when $x=60^{\circ}$
(ii) Determine x when $\mathrm{y}=40$

Sol:

(i) Given $x=60^{\circ}$

$$
y=?
$$

$\angle A O C, \angle B O C$ are linear pair of angles
$\angle A O C+\angle B O C=180^{\circ}$
$\Rightarrow 2 x+y=180^{\circ}$
$\Rightarrow 2 \times 60+y=180^{\circ} \quad\left[\because x=60^{\circ}\right]$
$\Rightarrow y=180^{\circ}-120^{\circ}$
$\Rightarrow y=60^{\circ}$
(ii) Given $y=40^{\circ}, x=$?
$\angle A O C$ and $\angle B O C$ are linear pair of angles
$\angle A O C+\angle B O C=180^{\circ}$
$\Rightarrow 2 x+y=180^{\circ}$
$\Rightarrow 2 x+40=180^{\circ}$
$\Rightarrow 2 x=140^{\circ}$
$\Rightarrow x=\frac{140^{\circ}}{2}$
$\Rightarrow y=70^{\circ}$
8. In the below fig, lines AB, CD and EF intersect at O . Find the measures of $\angle \mathrm{AOC}, \angle \mathrm{COF}$, $\angle \mathrm{DOE}$ and $\angle \mathrm{BOF}$.

Sol:

$\angle A O E$ and $\angle E O B$ are linear pair of angles
$\angle A O E+\angle E O B=180^{\circ}$
$\angle A O E+\angle D O E+\angle B O D=180^{\circ}$
$\Rightarrow \angle D O E=180^{\circ}-40^{\circ}-35^{\circ}=105^{\circ}$
Vertically opposite side angles are equal
$\angle D O E=\angle C O F=105^{\circ}$
Now, $\angle A O E+\angle A O F=180^{\circ} \quad[\because$ Linear pair $]$
$\Rightarrow \angle A O E+\angle A O C+\angle C O F=180^{\circ}$
$\Rightarrow 40^{\circ}+\angle A O C+105^{\circ}=180^{\circ}$
$\Rightarrow \angle A O C=180^{\circ}-145^{\circ}$
$\Rightarrow \angle A O C=35^{\circ}$
Also, $\angle B O F=\angle A O E=40^{\circ} \quad[\because$ Vertically opposite angle are equal $]$
9. AB, CD and EF are three concurrent lines passing through the point O such that OF bisects $\angle \mathrm{BOD}$. If $\angle \mathrm{BOF}=35^{\circ}$, find $\angle \mathrm{BOC}$ and $\angle \mathrm{AOD}$.
Sol:

Given
OF bisects $\angle B O D$
OF bisects $\angle B O D$
$\angle B O F=35^{\circ}$
$\angle B O C=$?
$\angle A O D=$?
$\therefore \angle B O D=2 \angle B O F=70^{\circ} \quad[\because$ of bisects $\angle B O D]$
$\angle B O D=\angle A O C=70^{\circ} \quad[\angle B O D$ and $\angle A O C$ are vertically opposite angles]
Now,
$\angle B O C+\angle A O C=180^{\circ}$
$\Rightarrow \angle B O C+70^{\circ}=180^{\circ}$
$\Rightarrow \angle B O C=110^{\circ}$
$\therefore \angle A O D=\angle B O C=110^{\circ} \quad$ [Vertically opposite angles]
10. In below figure, lines AB and CD intersect at O . If $\angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ}$ and $\angle \mathrm{BOD}=$ 40°, find $\angle \mathrm{BOE}$ and reflex $\angle \mathrm{COE}$.

Sol:

Given that
$\angle A O C+\angle B O E=70^{\circ}$ and $\angle B O D=40^{\circ}$
$\angle B O E=$?
Here, $\angle B O D$ and $\angle A O C$ are vertically opposite angles
$\angle B O D=\angle A O C=40^{\circ}$
Given $\angle A O C+\angle B O E=70^{\circ}$
$40^{\circ}+\angle B O F=70^{\circ}$
$\angle B O F=70^{\circ}-40^{\circ}$
$\angle B O E=30^{\circ}$
$\angle A O C$ and $\angle B O C$ are linear pair of angles
$\Rightarrow \angle A O C+\angle C O F+\angle B O E=180^{\circ}$
$\Rightarrow \angle C O E=180^{\circ}-30^{\circ}-40^{\circ}$
$\Rightarrow \angle C O E=110^{\circ}$
\therefore Reflex $\angle C O E=360^{\circ}-110^{\circ}=250^{\circ}$.
11. Which of the following statements are true (T) and which are false (F)?
(i) Angles forming a linear pair are supplementary.
(ii) If two adjacent angles are equal, and then each angle measures 90°.
(iii) Angles forming a linear pair can both the acute angles.
(iv) If angles forming a linear pair are equal, then each of these angles is of measure 90°.

Sol:
(i) True
(ii) False
(iii) False
(iv) true
12. Fill in the blanks so as to make the following statements true:
(i) If one angle of a linear pair is acute, then its other angle will be \qquad
(ii) A ray stands on a line, then the sum of the two adjacent angles so formed is \qquad
(iii) If the sum of two adjacent angles is 180°, then the \qquad arms of the two angles are opposite rays.
Sol:
(i) Obtuse angle
(ii) 180°
(iii) uncommon

Exercise - 8.4

1. In below fig, AB CD and $\angle 1$ and $\angle 2$ are in the ratio $3: 2$. Determine all angles from 1 to 8 .

Sol:
Let $\angle 1=3 x$ and $\angle 2=2 x$
$\angle 1$ and $\angle 2$ are linear pair of angle
Now, $\angle 1+\angle 2=180^{\circ}$
$\Rightarrow 3 x+2 x=180^{\circ}$
$\Rightarrow 5 x=180^{\circ}$
$\Rightarrow x=\frac{180^{\circ}}{5}$
$\Rightarrow x=36^{\circ}$
$\therefore \angle 1=3 x=108^{\circ}, \angle 2=2 x=72^{\circ}$
Vertically opposite angles are equal
$\angle 1=\angle 3=108^{\circ}$
$\angle 2=\angle 4=72^{\circ}$
$\angle 6=\angle 7=108^{\circ}$
$\angle 5=\angle 8=72^{\circ}$
Corresponding angles
$\angle 1=\angle 5=108^{\circ}$
$\angle 2=\angle 6=72^{\circ}$
2. In the below fig, $l, \mathrm{~m}$ and n are parallel lines intersected by transversal p at X, Y and Z respectively. Find $\angle 1, \angle 2$ and $\angle 3$.

Sol:

From the given figure:
$\angle 3+\angle m Y Z=180^{\circ} \quad$ [Linear pair]
$\Rightarrow \angle 3=180^{\circ}-120^{\circ}$
$\Rightarrow \angle 3=60^{\circ}$
Now line l parallel to m
$\angle 1=\angle 3$
[Corresponding angles]
$\Rightarrow \angle 1=60^{\circ}$
Also $m \| n$
$\Rightarrow \angle 2=120^{\circ}$
[Alternative interior angle]
$\therefore \angle 1=\angle 3=60^{\circ}$
$\angle 2=120^{\circ}$
3. In the below fig, $\mathrm{AB}\|\mathrm{CD}\| \mathrm{EF}$ and $\mathrm{GH} \| \mathrm{KL}$. Find $\angle \mathrm{HKL}$

Sol:

Produce LK to meet GF at N.
Now, alternative angles are equal

$$
\begin{aligned}
& \angle C H G=\angle H G N=60^{\circ} \\
& \angle H G N=\angle K N F=60^{\circ}[\text { Corresponding angles] } \\
& \therefore \angle K N G=180^{\circ}-60^{\circ}=120^{\circ} \quad \\
& \angle G N K=\angle A K L=120^{\circ} \quad \text { [Corresponding angles] } \\
& \angle A K H=\angle K H D=25^{\circ} \quad \text { [Alternative angles] } \\
& \therefore \angle H K L=\angle A K H+\angle A K L=25^{\circ}+120^{\circ}=145^{\circ} .
\end{aligned}
$$

4. In the below fig, show that $\mathrm{AB} \| \mathrm{EF}$.

Sol:

Produce $E F$ to intersect AC at K .
Now, $\angle D C E+\angle C E F=35^{\circ}+145^{\circ}=180^{\circ}$
$\therefore E F \| C D \quad\left[\because\right.$ Sum of Co-interior angles is $\left.180^{\circ}\right]$

Now, $\angle B A C=\angle A C D=57^{\circ}$
$\Rightarrow B A \| C D \quad[\because$ Alternative angles are equal $]$
From (1) and (2)
$A B \| E F \quad$ [Lines parallel to the same line are parallel to each other]
Hence proved.
5. If below fig, if $A B \| C D$ and $C D \| E F$, find $\angle A C E$.

Sol:
Since $E F \| C D$
$\therefore E F C+\angle E C D=180^{\circ} \quad$ [co-interior angles are supplementary]
$\Rightarrow \angle E C D=180^{\circ}-130^{\circ}=50^{\circ}$
Also $B A \| C D$
$\Rightarrow \angle B A C=\angle A C D=70^{\circ} \quad$ [alternative angles]
But
$\angle A C E+\angle E C D=70^{\circ}$
$\Rightarrow \angle A C E=70^{\circ}-50^{\circ}=20^{\circ}$
6. In the below fig, $\mathrm{PQ} \| \mathrm{AB}$ and $\mathrm{PR} \| \mathrm{BC}$. If $\angle \mathrm{QPR}=102^{\circ}$, determine $\angle \mathrm{ABC}$. Give reasons.

Sol:

AB is produce to meet $P R$ at K
Since $P Q \| A B$
$\angle Q P R=\angle B K R=102^{\circ} \quad$ [corresponding angles]
Since $P R \| B C$
$\therefore \angle R K B+\angle C B K=180^{\circ} \quad[\because$ Corresponding angles are supplementary]
$\Rightarrow \angle C K B=108-102=78^{\circ}$
$\therefore \angle C K B=78^{\circ}$.
7. In the below fig, state which lines are parallel and why?

Sol:

Vertically opposite angles are equal
$\angle E O C=\angle D O K=100^{\circ}$
Angle $\angle D O K=\angle A C O=100^{\circ}$
Here two lines EK and CA cut by a third line ' l ' and the corresponding angles to it are equal $\therefore E K \| A C$.
8. In the below fig, if $l\|\mathrm{~m}, \mathrm{n}\| \mathrm{p}$ and $\angle 1=85^{\circ}$, find $\angle 2$.

Sol:

Corresponding angles are equal
$\angle 1=\angle 3=85^{\circ}$
By using the property of co-interior angles are supplementary
$\angle 2+\angle 3=180^{\circ}$
$\angle 2+55^{\circ}=180^{\circ}$
$\angle 2=180^{\circ}-55^{\circ}$
$\angle 2=95^{\circ}$
$\therefore \angle 2=95^{\circ}$
9. If two straight lines are perpendicular to the same line, prove that they are parallel to each other.

Sol:

Given m perpendicular t and $l \perp t$
$\angle 1=\angle 2=90^{\circ}$
$\because l$ and m are two lines and it is transversal and the corresponding angles are equal
$\therefore l \| m$
Hence proved
10. Prove that if the two arms of an angle are perpendicular to the two arms of another angle, then the angles are either equal or supplementary.
Sol:
Consider be angles AOB and ACB

Given $O A \perp A O, O B \perp B O$
To prove: $\angle A O B=\angle A C B$ (or)
$\angle A O B+\angle A C B=180^{\circ}$
Proof:- In a quadrilateral
$\Rightarrow \angle A+\angle O+\angle B+\angle C=360^{\circ}$
$\Rightarrow 180+\angle O+\angle C=360^{\circ}$
$\Rightarrow \angle O+\angle C=360-180=180^{\circ}$
Hence, $\angle A O B+\angle A C B=180^{\circ}$
Also,
$\angle B+\angle A C B=180^{\circ}$
Also,
$\angle B+\angle A C B=180^{\circ}$
Also,
$\angle B+\angle A C B=180^{\circ}$
$\Rightarrow \angle A C B=180^{\circ}-90^{\circ}$
$\Rightarrow \angle A C B=90^{\circ}$

From (i) and (ii)
$\therefore \angle A C B=\angle A O B=90^{\circ}$
Hence, the angles are equal as well as supplementary.
11. In the below fig, lines $A B$ and $C D$ are parallel and P is any point as shown in the figure.

Show that $\angle \mathrm{ABP}+\angle \mathrm{CDP}=\angle \mathrm{DPB}$.

Sol:

Given that $A B \| C D$
Let $E F$ be the parallel line to AB and CD which passes through P .
It can be seen from the figure
Alternative angles are equal
$\angle A B P=\angle B P F$
Alternative angles are equal
$\angle C D P=\angle D P F$
$\Rightarrow \angle A B P+\angle C D P=\angle B P F+\angle D P F$
$\Rightarrow \angle A B P+\angle C D P=\angle D P B$
Hence proved
AB parallel to CD, P is any point
To prove: $\angle A B P+\angle B P D+\angle C D P=360^{\circ}$
Construction: Draw $E F \| A B$ passing through P
Proof:
Since $A B \| E F$ and $A B \| C D$
$\therefore E F \| C D \quad$ [Lines parallel to the same line are parallel to each other]
$\angle A B P+\angle E P B=180^{\circ}$ [Sum of co-interior angles is $180^{\circ} A B \| E F$ and BP is the transversal]
$\angle E P D+\angle C O P=180^{\circ}$
[Sum of co-interior angles is $180^{\circ} E F \| C D$ and DP is transversal]
$\angle E P D+\angle C D P=180^{\circ}$
[Sum of Co-interior angles is $180^{\circ} E F \| C D$ and DP is the transversal]
By adding (1) and (2)
$\angle A B P+\angle E P B+\angle E P D+\angle C D P=180^{\circ}+180^{\circ}$
$\angle A B P+\angle E P B+\angle C O P=360^{\circ}$
12. In the below fig, $A B \| C D$ and P is any point shown in the figure. Prove that:
$\angle \mathrm{ABP}+\angle \mathrm{BPD}+\angle \mathrm{CDP}=360^{\circ}$

Sol:

Through P , draw a line PM parallel to AB or CD .
Now,
$A B \| P M \Rightarrow \angle A B P+\angle B P M=180^{\circ}$
And
$C D \| P M \Rightarrow \angle M P D+\angle C D P=180^{\circ}$
Adding (i) and (ii), we get
$\angle A B P+(\angle B P M+\angle M P D) \angle C D P=360^{\circ}$
$\Rightarrow \angle A B P+\angle B P D+\angle C D P=360^{\circ}$
13. Two unequal angles of a parallelogram are in the ratio $2: 3$. Find all its angles in degrees.

Sol:

Let $\angle A=2 x$ and $\angle B=3 x$
Now,

$$
\begin{array}{ll}
\angle A+\angle B=180^{\circ} & \text { [Co-interior angles are supplementary }] \\
2 x+3 x-180^{\circ} & {[A D \| B C \text { and } A B \text { is the transversal }]} \\
\Rightarrow 5 x=180^{\circ} &
\end{array}
$$

$\Rightarrow x=\frac{180^{\circ}}{5}=36^{\circ}$
$\therefore \angle A=2 \times 36^{\circ}=72^{\circ}$
$\angle B=3 \times 36^{\circ}=108^{\circ}$
Now,
$\angle A=\angle C=72^{\circ} \quad$ [Opposite side angles of a parallelogram are equal]
$\angle B=\angle D=108^{\circ}$
14. If each of the two lines is perpendicular to the same line, what kind of lines are they to each other?
Sol:

Let AB and CD be perpendicular to MN
$\angle A B D=90^{\circ} \quad[A B \perp M N]$
$\angle C O N=90^{\circ} \quad[C D \perp M N]$
Now,
$\angle A B D=\angle C D N=90^{\circ} \quad[$ From (i) and (ii)]
$\therefore A B$ parallel to $C D$,
Since corresponding angle are equal
15. In the below fig, $\angle 1=60^{\circ}$ and $\angle 2=\left(\frac{2}{3}\right)^{r d}$ of a right angle. Prove that $l \| \mathrm{m}$.

Sol:
Given:
$\angle 1=60^{\circ}, \angle 2=\left(\frac{2}{3}\right)^{\mathrm{rd}}$ to right angle
To prove: parallel to m
Proof $\angle 1=60^{\circ}$
$\angle 2=\frac{2}{3} \times 90^{\circ}=60^{\circ}$
Since, $\angle 1=\angle 2=60^{\circ}$
\therefore Parallel to m as pair of corresponding angles are equal
16. In the below fig, if $l\|\mathrm{~m}\| \mathrm{n}$ and $\angle 1=60^{\circ}$, find $\angle 2$.

Sol:

Since l parallel to m and p is the transversal
\therefore Given: $l\|m\| n, \angle 1=60^{\circ}$
To find $\angle 2$
$\angle 1=\angle 3=60^{\circ} \quad$ [Corresponding angles]
Now,
$\angle 3$ and $\angle 4$ are linear pair of angles
$\angle 3+\angle 4=180^{\circ}$
$60^{\circ}+\angle 4=180^{\circ}$
$\angle 4=180^{\circ}-60^{\circ}$
$\angle 4=120^{\circ}$
Also, $m \| n$ and P is the transversal
$\therefore \angle 4=\angle 2=120^{\circ}$
[Alternative interior angle]
Hence $\angle 2=120^{\circ}$
17. Prove that the straight lines perpendicular to the same straight line are parallel to one another.

Sol:

Let $A B$ and $C D$ perpendicular to the Line MN

$\angle A B D=90^{\circ} \quad[\because A B \perp M N]$
$\angle C O N=90^{\circ} \quad[\because C D \perp M N]$
Now,
$\angle A B D=\angle C D N=90^{\circ} \quad$ [From (i) and (ii)]
$\therefore A B \| C D$, Since corresponding angles are equal.
18. The opposite sides of a quadrilateral are parallel. If one angle of the quadrilateral is 60°, find the other angles.
Sol:

Given $A B \| C D$
$A D \| B C$
Since $A B \| C D$ and $A D$ is the transversal
$\therefore \angle A+\angle D=180^{\circ} \quad$ [Co-interior angles are supplementary]
$60^{\circ}+\angle D=180^{\circ}$
$\angle D=180^{\circ}-60^{\circ}$
$\angle D=120^{\circ}$
Now, $A D \| B C$ and $A B$ is the transversal
$\angle A+\angle B=180^{\circ} \quad$ [Co-interior angles are supplementary]
$60^{\circ}+\angle B=180^{\circ}$
$\angle B=180^{\circ}-60^{\circ}=120^{\circ}$
Hence $\angle A=\angle C=60^{\circ}$
$\angle B=\angle D=120^{\circ}$
19. Two lines AB and CD intersect at O . If $\angle \mathrm{AOC}+\angle \mathrm{COB}+\angle \mathrm{BOD}=270^{\circ}$, find the measures of $\angle \mathrm{AOC}, \angle \mathrm{COB}, \angle \mathrm{BOD}$ and $\angle \mathrm{DOA}$.
Sol:

Given: $\angle A O C+\angle C O B+\angle B O P=270^{\circ}$
To find: $\angle A O C, \angle C O B, \angle B O D$ and $\angle D O A$

Here, $\angle A O C+\angle C O B+\angle B O D+\angle A O D=360^{\circ} \quad$ [Complete angle]
$\Rightarrow 270+\angle A O D=360^{\circ}$
$\Rightarrow \angle A O D=360^{\circ}-270^{\circ}$
$\Rightarrow \angle A O D=90^{\circ}$
Now,
$\angle A O D+\angle B O D=180^{\circ} \quad$ [Linear pair]
$90+\angle B O D=180^{\circ}$
$\Rightarrow \angle B O D=180^{\circ}-90^{\circ}$
$\therefore \angle B O D=90^{\circ}$
$\angle A O D=\angle B O C=90^{\circ}$ [Vertically opposite angles]
$\angle B O D=\angle A O C=90^{\circ} \quad$ [Vertically opposite angles]
20. In the below fig, p is a transversal to lines m and $\mathrm{n}, \angle 2=120^{\circ}$ and $\angle 5=60^{\circ}$. Prove that $\mathrm{m} \| \mathrm{n}$.

Sol:

Given that
$\angle 2=120^{\circ}, \angle 5=60^{\circ}$
To prove
$\angle 2+\angle 1=180^{\circ} \quad[\because$ Linear pair $]$
$120^{\circ}+\angle 1=180^{\circ}$
$\angle 1=180^{\circ}-120^{\circ}$
$\angle 1=60^{\circ}$
Since $\angle 1=\angle 5=60^{\circ}$
$\therefore m \| n \quad$ [As pair of corresponding angles are equal]
21. In the below fig, transversal l intersects two lines m and $\mathrm{n}, \angle 4=110^{\circ}$ and $\angle 7=65^{\circ}$. Is $\mathrm{m} \| \mathrm{n}$?

Sol:

Given:
$\angle 4=110^{\circ}, \angle 7=65^{\circ}$
To find: Is $m \| n$
Here, $\angle 7=\angle 5=65^{\circ} \quad$ [Vertically opposite angle]
Now,
$\angle 4+\angle 5=110+65^{\circ}=175^{\circ}$
$\therefore m$ is not parallel to n as the pair of co-interior angles is not supplementary.
22. Which pair of lines in the below fig, is parallel? Given reasons.

Sol:
$\angle A+\angle B=115+65=180^{\circ}$
$\therefore A B \| B C \quad$ [As sum of co-interior angles we supplementary]
$\angle B+\angle C=65+115=180^{\circ}$
$\therefore A B \| C D \quad$ [As sum of interior angles are supplementary]
23. If $l, \mathrm{~m}, \mathrm{n}$ are three lines such that $l \| \mathrm{m}$ and $\mathrm{n} \perp l$, prove that $\mathrm{n} \perp \mathrm{m}$.

Sol:

Given $l \| m, n$ perpendicular l
To prove: $n \perp m$
Since $l \| m$ and n intersects them at G and H respectively
$\therefore \angle 1=\angle 2 \quad$ [Corresponding angles]
But, $U=90^{\circ}$
$[n \perp l]$
$\Rightarrow \angle 2=90^{\circ}$
Hence n perpendicular m
24. In the below fig, arms BA and BC of $\angle \mathrm{ABC}$ are respectively parallel to arms ED and EF of $\angle D E F$. Prove that $\angle \mathrm{ABC}=\angle \mathrm{DEF}$.

(i)

(ii)

Sol:

Given $A B \| D E$ and $B C \|^{\text {ry }} E F$
To prove: $\angle A B C=\angle D E F$
Construction: Produce BC to x such that it intersects DE at M.
Proof: Since $A B \| D E$ and $B X$ is the transversal
$\therefore \angle A B C=\angle D M X \quad$ [Corresponding angle]
Also,
$B X \| E F$ and $D E$ is the transversal
$\therefore \angle D M X=\angle D E F$
[Corresponding angles]
From (i) and (ii)
$\therefore \angle A B C=\angle D E F$
25. In the below fig, arms BA and BC of $\angle \mathrm{ABC}$ are respectively parallel to arms ED and EF of $\angle D E F$. Prove that $\angle A B C+\angle D E F=180^{\circ}$.

(i)

(ii)

Given $A B\|D E, B C\| E F$
To prove: $\angle A B C+\angle D E F=180^{\circ}$
Construction: produce BC to intersect DE at M
Proof: Since $A B \| E M$ and $B L$ is the transversal
$\angle A B C=\angle E M L \quad$ [Corresponding angle]
Also,
$E F \| M L$ and $E M$ is the transversal
By the property of co-interior angles are supplementary
$\angle D E F+\angle E M L=180^{\circ}$
From (i) and (ii) we have
$\therefore \angle D E F+\angle A B C=180^{\circ}$
26. Which of the following statements are true (T) and which are false (F)? Give reasons.
(i) If two lines are intersected by a transversal, then corresponding angles are equal.
(ii) If two parallel lines are intersected by a transversal, then alternate interior angles are equal.
(iii) Two lines perpendicular to the same line are perpendicular to each other.
(iv) Two lines parallel to the same line are parallel to each other.
(v) If two parallel lines are intersected by a transversal, then the interior angles on the same side of the transversal are equal.
Sol:
(i) False
(iii) False
(v) False
(ii) True
(iv) True
27. Fill in the blanks in each of the following to make the statement true:
(i) If two parallel lines are intersected by a transversal, then each pair of corresponding angles are \qquad
(ii) If two parallel lines are intersected by a transversal, then interior angles on the same side of the transversal are \qquad
(iii) Two lines perpendicular to the same line are \qquad to each other.
(iv) Two lines parallel to the same line are \qquad to each other.
(v) If a transversal intersects a pair of lines in such a way that a pair of alternate angles are equal, then the lines are \qquad
(vi) If a transversal intersects a pair of lines in such a way that the sum of interior angles on the same side of transversal is 180°, then the lines are \qquad —.

Sol:

(i) Equal
(ii) Supplementary
(iii) Parallel
(iv) Parallel
(v) Parallel
(vi) Parallel

