Exercise – 8.1

1.	Write the complement of each of the following angles: (i) 20° (ii) 35° (iii) 90° (iv) 77° (v) 30° Sol:					
	(i)	Given angle is 20° Since, the sum of an angle and its complement is 90° . \therefore its, complement will be $(90 - 20 = 70^{\circ})$				
	(ii)	Given angle is 35° Since, the sum of an angle and its complement is 90° . \therefore its, complements will be $(90-35^{\circ}=55^{\circ})$				
	(iii) The given angle is 90° Since, the sum of an angle and its complement is 9 \therefore [its, complement will be $(90-90^\circ = 0^\circ)$]					
	(iv)	The given angle is 77° Since, the sum of an angle and its complement is 90° . \therefore its, complement will be $(90-77^{\circ}=13^{\circ})$				
	(v)	The given angle is 30° . Since, the sum of an angle and its complement is 90° . \therefore its, complement will be $(90 - 30^{\circ} = 60^{\circ})$				
 Write the supplement of each of the following angle (i) 54° (ii) 132° (iii) 138° Sol: 		e the supplement of each of the following angles: • (ii) 132° (iii) 138°				
	(i)	The given angle is 54° Since, the sum of an angle and its supplement is 180° . \therefore its, supplement will be $180^{\circ} - 54^{\circ} = 126^{\circ}$				
	(ii)	The given angle is 132° Since, the sum of an angle and its supplement is 180° . \therefore its, supplement will be $180^{\circ} - 132^{\circ} = 48^{\circ}$				
	(iii)	The given angle is 138° Since, the sum of an angle and its supplement is 180° . \therefore its, supplement will be $180^{\circ} - 138^{\circ} = 42^{\circ}$				

- 3. If an angle is 28° less than its complement, find its measure. Sol: Angle measured will be 'x' say \therefore its complement will be $(90 - x)^{\circ}$ It is given that Angle = Complement -28° $\Rightarrow x = (90 - x)^{\circ} - 28^{\circ}$ $\Rightarrow x^{\circ} = 90^{\circ} - 28^{\circ} - x^{\circ}$ $\Rightarrow 2x^{\circ} = 62^{\circ}$ $\Rightarrow x = 31^{\circ}$
 - ∴ Angle measured is 31°
- 4. If an angle is 30° more than one half of its complement, find the measure of the angle. Sol:

Angle measured will be 'x' say. \therefore its complement will be $(90 - x)^{\circ}$ It is given that Angle $= 30^{\circ} + \frac{1}{2}$ Complement $\Rightarrow x^{\circ} = 30^{\circ} + \frac{1}{2}(90 - x)$ $\Rightarrow 3\frac{x}{2} = 30^{\circ} + 45^{\circ}$ $\Rightarrow 3x = 150^{\circ}$ $\Rightarrow x = \frac{150}{3}$ $\Rightarrow x = 50^{\circ}$ \therefore Angle is 50°

5. Two supplementary angles are in the ratio 4 : 5. Find the angles. Sol:

Supplementary angles are in the ratio 4:5 Let the angles be 4x and 5x It is given that they are supplementary angles $\therefore 4x + 5x = 180^{\circ}x$ $\Rightarrow 9x = 180^{\circ}$ $\Rightarrow x = 20^{\circ}$ Hence, $4x = 4(20) = 80^{\circ}$ $5(x) = 5(20) = 100^{\circ}$ \therefore Angles are 80° and 100°

- 6. Two supplementary angles differ by 48°. Find the angles. Sol: Given that two supplementary angles are differ by 48° Let the angle measured is x° \therefore Its supplementary angle will be $(180 - x)^{\circ}$ It is given that $(180 - x) - x = 98^{\circ}$ $\Rightarrow 180 - 48^{\circ} = 2x$ $\Rightarrow 132 = 2x$ $\Rightarrow x = \frac{132}{2}$ $\Rightarrow x = 66^{\circ}$ Hence, $180 - x = 114^{\circ}$ Therefore, angles are 66° and 114°
- An angle is equal to 8 times its complement. Determine its measure.
 Sol:

It is given that angle = 8 times its complement Let 'x' be measured angle \Rightarrow angle = 8 complements \Rightarrow angle = 8(90-x)° [:: complement = (90-x)°] $\Rightarrow x^{\circ} = 8(90) - 8x^{\circ}$ $\Rightarrow 9x^{\circ} = 720^{\circ}$ $\Rightarrow x = \frac{720}{9} = 80$

- \therefore The measured angle is 80°
- 8. If the angles $(2x 10)^{\circ}$ and $(x 5)^{\circ}$ are complementary angles, find x. Sol:

```
Given that,
```

 $(2x-10)^{\circ}$ and $(x-5)^{\circ}$ are complementary angles.

Let *x* be the measured angle.

Since the angles are complementary

- \therefore Their sum will be 90°
- \Rightarrow (2x-10)+(x-5)=90°
- $\Rightarrow 3x 15 = 90$
- \Rightarrow 3x = 90° + 15°

 $\Rightarrow x = \frac{105^{\circ}}{3} = \frac{105^{\circ}}{3} = 35^{\circ}$ $\Rightarrow x = 35^{\circ}$

9. If the complement of an angle is equal to the supplement of the thrice of it. Find the measure of the angle.

Sol:

The angle measured will be 'x'say.

Its complementary angle is $(90^\circ - x^\circ)$ and

Its supplementary angle is $(180^\circ - 3x^\circ)$

Given that,

Supplementary of thrice of the angle = $(180^\circ - 3x^\circ)$

According to the given information

 $(90-x)^{\circ} = (180-3x)^{\circ}$ $\Rightarrow 3x^{\circ} - x^{\circ} = 180^{\circ} - 90^{\circ}$ $\Rightarrow 2x^{\circ} = 90^{\circ}$ $\Rightarrow x = 45^{\circ}$ The angle measured is 45°

10. If an angle differs from its complement by 10° , find the angle.

Sol:

The measured angle will be 'x' say Given that, The angles measured will be differed by 10° $x^{\circ} - (90 - x)^{\circ} = 10^{\circ}$ $\Rightarrow x - 90 + x = 10$ $\Rightarrow 2x = 100$

- $\Rightarrow x = 50^{\circ}$
- \therefore The measure of the angle will be $=50^{\circ}$
- **11.** If the supplement of an angle is three times its complement, find the angle. \tilde{a}

Sol: Given that, Supplementary of an angle = 3 times its complementary angle. The angles measured will be x° Supplementary angle of *x* will be $180^{\circ} - x^{\circ}$ and The complementary angle of *x* will be $(90^{\circ} - x^{\circ})$. It's given that Supplementary of angle = 3 times its complementary angle $180^{\circ} - x^{\circ} = 3(90^{\circ} - x^{\circ})$ $\Rightarrow 180^{\circ} - x^{\circ} = 270^{\circ} - 3x^{\circ}$ $\Rightarrow 3x^{\circ} - x^{\circ} = 270^{\circ} - 180^{\circ}$ $\Rightarrow 2x^{\circ} = 90^{\circ}$ $\Rightarrow x = 45^{\circ}$ ∴ Angle measured is 45°.

12. If the supplement of an angle is two-third of itself. Determine the angle and its supplement. Sol:

Given that

Supplementary of an angle $=\frac{2}{3}$ of angle itself.

The angle measured be 'x' say.

Supplementary angle of x will be $(180 - x)^{\circ}$

It is given that

$$(180 - x)^{\circ} = \frac{2}{3}x^{\circ}$$

$$\Rightarrow 180^{\circ} - x^{\circ} = \frac{2}{3}x^{\circ}$$

$$\Rightarrow \frac{2}{3}x^{\circ} + x^{\circ} = 180^{\circ}$$

$$\Rightarrow 2x^{\circ} + 3x^{\circ} = 3 \times 180^{\circ}$$

$$\Rightarrow 5x^{\circ} = 540^{\circ}$$

$$\Rightarrow x = 108^{\circ}$$

Hence, supplement = 180 - 108 = 72^{\circ}

$$\therefore$$
 Angle will be 108° and its supplement will be 72°.

13. An angle is 14° more than its complementary angle. What is its measure?Sol:

Given that, An angle is 14° more than its complementary angle The angle measured is 'x' say The complementary angle of 'x' is (90-x)It is given that x-(90-x)=14 $\Rightarrow x - 90 + x = 14$ $\Rightarrow 2x^{\circ} = 90^{\circ} + 14^{\circ}$ $\Rightarrow x^{\circ} = \frac{104^{\circ}}{2}$ $\Rightarrow x = 52^{\circ}.$ $\therefore \text{ The angle measured is } 52^{\circ}$

14. The measure of an angle is twice the measure of its supplementary angle. Find its measure.Sol:

Given that

The angle measure of an angle is twice of the measure of the supplementary angle.

Let the angle measured will be 'x' say

: The supplementary angle of x is 180 - x as per question

$$x^{\circ} = 2(180 - x)^{\circ}$$

$$x^{\circ} = 2(180^{\circ}) - 2x^{\circ}$$

 $\Rightarrow 3x^\circ = 360^\circ$

$$\Rightarrow x^{\circ} = 120^{\circ}$$

 \therefore The angle measured is 120°.

Exercise – 8.2

- 1. In the below Fig, OA and OB are opposite rays:
 - (i) If $x = 25^\circ$, what is the value of y?
 - (ii) If $y = 35^{\circ}$, what is the value of x?

Sol:

(i) Given that
$$x = 25^{\circ}$$

Since $\angle AOC$ and $\angle BOC$ form a linear pair $\angle AOC + \angle BOC = 180^{\circ}$ Given that $\angle AOC = 2y + 5$ and $\angle BOC = 3x$ $\therefore \angle AOC + \angle BOC = 180^{\circ}$ $(2y+5)^{\circ} + 3x = 180^{\circ}$ $(2y+5)^{\circ} + 3(25^{\circ}) = 180^{\circ}$

$$2y^{\circ} + 5^{\circ} + 75^{\circ} = 180^{\circ}$$
$$2y^{\circ} + 80^{\circ} = 180^{\circ}$$
$$2y^{\circ} = 180^{\circ} - 80^{\circ} = 100^{\circ}$$
$$y^{\circ} = \frac{100^{\circ}}{2} = 50^{\circ}$$
$$\Rightarrow \boxed{y = 50^{\circ}}$$
(ii) Given that if $y = 35^{\circ}$
$$\angle AOC + \angle BOC = 180^{\circ}$$
$$(2y + 5) + 3x = 180^{\circ}$$
$$(2(35) + 5) + 3x = 180^{\circ}$$
$$(70 + 5) + 3x = 180^{\circ}$$
$$3x = 180^{\circ} - 75^{\circ}$$
$$3x = 105^{\circ}$$
$$x = 35^{\circ}$$

2. In the below fig, write all pairs of adjacent angles and all the linear pairs.

 $x = 35^{\circ}$

Sol:

Adjacent angles are

- (i) $\angle AOC, \angle COB$
- (ii) $\angle AOD, \angle BOD$
- (iii) ∠AOD,∠COD
- (iv) $\angle BOC, \angle COD$

Linear pairs : $\angle AOD$, $\angle BOD$; $\angle AOC$, $\angle BOC$.

3. In the given below Fig, find x. Further find $\angle BOC$, $\angle COD$ and $\angle AOD$.

Sol: Since $\angle AOD$ and $\angle BOD$ are form a line pair

```
\angle AOD + \angle BOD = 180^{\circ}

\angle AOD + \angle COD + \angle BOC = 180^{\circ}

Given that

\angle AOD = (x+10)^{\circ}, \angle COD = x^{\circ}, \angle BOC = (x+20)^{\circ}

\Rightarrow (x+10)^{\circ} + x^{\circ} + (x+20)^{\circ} = 180^{\circ}

\Rightarrow 3x + 30^{\circ} = 180^{\circ}

\Rightarrow 3x = 180^{\circ} - 30^{\circ}

\Rightarrow 3x = 150^{\circ}

\therefore \angle AOD = x + 10^{\circ}

= 50^{\circ} + 10^{\circ} = 60^{\circ}

\angle COD = x^{\circ} = 50^{\circ}
```

4. In the given below fig, rays OA, OB, OC, OP and 0E have the common end point O. Show that $\angle AOB + \angle BOC + \angle COD + \angle DOE + \angle EOA = 360^{\circ}$.

Sol:

Given that

Rays OA, OB, OD and OE have the common end point O.

A ray of opposite to OA is drawn

Since $\angle AOB$, $\angle BOF$ are linear pairs

 $\angle AOB + \angle BOF = 180^{\circ}$

Also

 $\angle AOE, \angle EOF$ are linear pairs

 $\angle AOE + \angle EOF = 180^{\circ}$

By adding (1) and (2) equations we get $\angle AOB + \angle BOC + \angle COF + \angle AOE + \angle DOF + \angle DOE = 360^{\circ}$ $\angle AOB + \angle BOC + \angle COD + \angle DOE + \angle EOA = 360^{\circ}$ Hence proved. 5. In the below Fig, $\angle AOC$ and $\angle BOC$ form a linear pair. if $a - 2b = 30^{\circ}$, find a and b.

Sol:
Given that,

$$\angle AOC$$
 and $\angle BOC$ form a linear pair
If $a-2b=30^{\circ}$
 $\angle AOC = a^{\circ}, \angle BOC = b^{\circ}$
 $\therefore a+b=180^{\circ}$ (i)
Given $a-2b=30^{\circ}$ (ii)
By subtracting (i) and (ii)
 $a+b-a+2b=180^{\circ}-30^{\circ}$
 $\Rightarrow b=150^{\circ}$
 $\Rightarrow b=\frac{150^{\circ}}{3}$
 $\Rightarrow b=50^{\circ}$
Hence $a-2b=30^{\circ}$
 $a-2(50)^{\circ}=30^{\circ}$ [$\because b=50^{\circ}$]
 $a=30^{\circ}+100^{\circ}$
 $a=130^{\circ}, b=50^{\circ}$.

1

6. How many pairs of adjacent angles are formed when two lines intersect in a point? Sol:

Four pairs of adjacent angle formed when two lines intersect in a point they are $\angle AOD, \angle DOB$ $\angle DOB, \angle BOC$ $\angle COA, \angle AOD$ $\angle BOC, \angle COA$ Hence 4 pairs 7. How many pairs of adjacent angles, in all, can you name in below fig.?

Sol:

Pairs of adjacent angles are $\angle EOC, \angle DOC$ $\angle EOD, \angle DOB$ $\angle DOC, \angle COB$ $\angle EOD, \angle DOA$ $\angle DOC, \angle COA$ $\angle BOC, \angle BOA$ $\angle BOA, \angle BOD$ $\angle BOA, \angle BOE$ $\angle EOC, \angle COB$ \therefore Hence 10 pairs of adjacent angles

8. In below fig, determine the value of x.

Sol:

Since sum of all the angles round a point is equal to 360°. Therefore

$$\Rightarrow 3x + 3x + 150 + x = 360^{\circ}$$
$$\Rightarrow 7x^{\circ} = 360^{\circ} - 150^{\circ}$$
$$\Rightarrow 7x = 210^{\circ}$$
$$\Rightarrow x = \frac{210}{7}$$
$$\Rightarrow x = 30^{\circ}$$

9. In the below fig, AOC is a line, find x.

Sol:

Since $\angle AOB$ and $\angle BOC$ are linear pairs $\angle AOB + \angle BOC = 180^{\circ}$ $\Rightarrow 70^{\circ} + 2x^{\circ} = 180^{\circ}$ $\Rightarrow 2x^{\circ} = 180^{\circ} - 70^{\circ}$ $\Rightarrow 2x = 110^{\circ}$ $\Rightarrow x \frac{110}{2}$ $\Rightarrow x = 55^{\circ}$

10. In the below fig, POS is a line, find x.

Sol:

Since $\angle POQ$ and $\angle QOS$ are linear pairs $\angle POQ + \angle QOS = 180^{\circ}$ $\Rightarrow \angle POQ + \angle QOR + \angle SOR = 180^{\circ}$ $\Rightarrow 60^{\circ} + 4x^{\circ} + 40^{\circ} = 180^{\circ}$ $\Rightarrow 4x^{\circ} = 180^{\circ} - 100^{\circ}$ $\Rightarrow 4x^{\circ} = 80^{\circ}$ $\Rightarrow [x = 20^{\circ}]$

11. In the below fig, ACB is a line such that $\angle DCA = 5x$ and $\angle DCB = 4x$. Find the value of x.

Sol:

Here, $\angle ACD + \angle BCD = 180^{\circ}$ [Since $\angle ACD$, $\angle BCD$ are linear pairs] $\angle ACD = 5x, \angle BCD = 4x$ \Rightarrow 5x + 4x = 180° $\Rightarrow 9x = 180^{\circ}$ $\Rightarrow x = 20^{\circ}$ $\therefore x = 20^{\circ}$

12. Given $\angle POR = 3x$ and $\angle QOR = 2x + 10$, find the value of x for which POQ will be a line. (Below fig).

Sol:

Since $\angle QOR$, $\angle POP$ are linear pairs $\angle QOR + \angle POR = 180^{\circ}$ $\left[\because \angle QOR = 2x + 10, \angle POR = 3x\right]$ $\Rightarrow 2x + 10 + 3x = 180^{\circ}$ \Rightarrow 5x+10=180° \Rightarrow 5x = 180° - 10 \Rightarrow 5x = 170° $\Rightarrow x = 34^{\circ}$

13. In Fig. 8.42, a is greater than b by one third of a right-angle. Find the values of a and b.

Fig. 8.41

Sol:

Since *a*,*b* are linear pair $\Rightarrow a + b = 180^{\circ}$

 $\Rightarrow a = 180 - b$(1) Now,

$$\Rightarrow a = b + \frac{1}{3} \times 90^{\circ} \qquad [given]$$

$$\Rightarrow a = b + 30^{\circ} \qquad \dots \dots (2)$$

$$\Rightarrow a - b = 30^{\circ}$$

Equating (1) and (2) equations

$$180 - b = b + 30^{\circ}$$

$$\Rightarrow 180^{\circ} - 30^{\circ} = b + b$$

$$\Rightarrow 150^{\circ} = 2b$$

$$\Rightarrow b = \frac{150^{\circ}}{2}$$

$$\Rightarrow b = 75^{\circ}$$

Hence $a = 180 - b$

$$= 180 - 75^{\circ} \qquad [\because b = 75^{\circ}]$$

 $a = 105^{\circ}$

$$\therefore a = 105^{\circ}, b = 75^{\circ}$$

14. What value of y would make AOB a line in below fig, if $\angle AOC = 4y$ and $\angle BOC = (6y + 30)$

Sol:

Since $\angle AOC$, $\angle BOC$ are linear pair $\Rightarrow \angle AOC + \angle BOC = 180^{\circ}$ $\Rightarrow 6y + 30 + 4y = 180^{\circ}$ $\Rightarrow 10y + 30 = 180^{\circ}$ $\Rightarrow 10y = 180^{\circ} - 30^{\circ}$ $\Rightarrow 10y = 150^{\circ}$ $\Rightarrow y = \frac{150^{\circ}}{10}$ $\Rightarrow y = 15^{\circ}$ **15.** If below fig, $\angle AOF$ and $\angle FOG$ form a linear pair.

 $x + y = 60^{\circ}$ $\Rightarrow y = 60^{\circ} - x = 60^{\circ} - 30^{\circ} = 30^{\circ}$ $\angle FOE = 30^{\circ}$ (ii) Right angles are $\angle DOG, \angle COF, \angle BOF, \angle AOD$ (iii) Three pairs of adjacent complementary angles are $\angle AOB, \angle BOD;$ $\angle AOC, \angle COD;$ $\angle BOC, \angle COE.$ (iv) Three pairs of adjacent supplementary angles are $\angle AOB, \angle BOG;$ $\angle AOC, \angle COG;$ $\angle AOC, \angle COG;$ $\angle AOD, \angle DOG.$

- (v) Three pairs of adjacent angles $\angle BOC, \angle COD;$ $\angle COD, \angle DOE;$ $\angle DOE, \angle EOF,$
- 16. In below fig, OP, OQ, OR and OS arc four rays. Prove that: $\angle POQ + \angle QOR + \angle SOR + \angle POS = 360^{\circ}$

Sol:

Given that *OP,OQ,OR* and *OS* are four rays

You need to produce any of the ray OP, OQ, OR and OS backwards to a point in the figure.

Let us produce ray OQ backwards to a point

T so that *TOQ* is a line

Ray OP stands on the *TOQ*

Since $\angle TOP$, $\angle POQ$ is linear pair

 $\angle TOP + \angle POQ = 180^{\circ}$ (1)

Similarly, ray OS stands on the line *TOQ*

 But $\angle SOQ = \angle SOR + \angle QOR$ So, (2), becomes $\angle TOS + \angle SOR + \angle OQR = 180^{\circ}$ Now, adding (1) and (3) you get $\angle TOP + \angle POQ + \angle TOS + \angle SOR + \angle QOR = 360^{\circ}$ $\Rightarrow \angle TOP + \angle TOS = \angle POS$ \therefore (4) becomes $\angle POQ + \angle QOR + \angle SOR + \angle POS = 360^{\circ}$

17. In below fig, ray OS stand on a line POQ. Ray OR and ray OT are angle bisectors of $\angle POS$ and $\angle SOQ$ respectively. If $\angle POS = x$, find $\angle ROT$.

Given,

Ray OS stand on a line POQ

Ray *OR* and Ray *OT* are angle bisectors of $\angle POS$ and $\angle SOQ$ respectively

 $\angle POS = x$

 $\angle POS$ and $\angle QOS$ is linear pair

 $\angle POS + \angle QOS = 180^{\circ}$

$$x + \angle QOS = 180^{\circ}$$

 $\angle QOS = 180 - x$

Now, ray or bisector $\angle POS$

$$\therefore \angle ROS = \frac{1}{2} \angle POS$$
$$= \frac{1}{2} \times x \qquad [\because \angle POS = x]$$
$$\angle ROS = \frac{x}{2}$$

Similarly ray OT bisector $\angle QOS$

$$\therefore \angle TOS = \frac{1}{2} \angle QOS$$

 $= \frac{180 - x}{2} \qquad [\because \angle QOS = 180 - x]$ $= 90 - \frac{x}{2}$ $\therefore \angle ROT = \angle ROS + \angle ROT$ $= \frac{x}{2} + 90 - \frac{x}{2}$ $= 90^{\circ}$ $\therefore \angle ROT = 90^{\circ}$

18. In the below fig, lines PQ and RS intersect each other at point O. If $\angle POR$: $\angle ROQ - 5 : 7$, find all the angles.

Sol:

Given $\angle POR$ and $\angle ROP$ is linear pair $\angle POR + \angle ROP = 180^{\circ}$ Given that $\angle POR : \angle ROP = 5:7$ $\therefore \angle POR = \frac{5}{12} \times 180 = 75^{\circ}$ Similarly $\angle ROQ = \frac{7}{5+7} \times 180^{\circ} = 105^{\circ}$ Now, $\angle POS = \angle ROQ = 105^{\circ}$ [:: Vertically opposite angles] $\therefore \angle SOQ = \angle POR = 75^{\circ}$ [:: Vertically opposite angles]

19. In the below fig, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that $\angle ROS = \frac{1}{2} (\angle QOS - \angle POS)$.

Given that, OR perpendicular $\therefore \angle POR = 90^{\circ}$ $\angle POS + \angle SOR = 90^{\circ} \qquad [\because \angle POR = \angle POS + \angle SOR]$ $\angle ROS = 90^{\circ} - \angle POS \qquad \dots \dots (1)$ $\angle QOR = 90^{\circ} \qquad (\because OR \perp PQ)$ $\angle QOS - \angle ROS = 90^{\circ}$ $\angle ROS = \angle QOS - 90^{\circ} \qquad \dots \dots (2)$ By adding (1) and (2) equations, we get $2\angle ROS = \angle QOS - \angle POS$ $\angle ROS = \frac{1}{2} (\angle QOS - \angle POS)$

Exercise – 8.3

1. In the below fig, lines l_1 and l_2 intersect at O, forming angles as shown in the figure. If x = 45, Find the values of x, y, z and u.

2. In the below fig, three coplanar lines intersect at a point O, forming angles as shown in the figure. Find the values of x, y, z and u.

Sol:

Vertically opposite angles are equal So $\angle BOD = z = 90^{\circ}$ $\angle DOF = y = 50^{\circ}$ Now, $x + y + z = 180^{\circ}$ [Linear pair] $\Rightarrow x + y + z = 180^{\circ}$ $\Rightarrow 90^{\circ} + 50^{\circ} + x = 180^{\circ}$ $\Rightarrow x = 180^{\circ} - 140^{\circ}$ $\Rightarrow x = 40^{\circ}$

3. In the given fig, find the values of x, y and z.

Sol: From the given figure

 $\angle y = 25^{\circ}$ [:: Vertically opposite angles are equal]Now $\angle x + \angle y = 180^{\circ}$ $\Rightarrow \angle x = 180^{\circ} - 25^{\circ}$ $\Rightarrow \angle x = 155^{\circ}$ Also $\angle z = \angle x = 155^{\circ}$ $\angle y = 25^{\circ}$ $\angle z = \angle z = 155^{\circ}$

4. In the below fig, find the value of x.

Sol:

Vertically opposite angles are equal $\angle AOE = \angle BOF = 5x$ Linear pair $\angle COA + \angle AOE + \angle EOD = 180^{\circ}$ $\Rightarrow 3x + 5x + 2x = 180^{\circ}$ $\Rightarrow 10x = 180^{\circ}$ $\Rightarrow x = 18^{\circ}$

5. Prove that the bisectors of a pair of vertically opposite angles are in the same straight line. Sol:

Given,

Lines AOB and COD intersect at point O such that

 $\angle AOC = \angle BOD$

Also OE is the bisector $\angle ADC$ and OF is the bisector $\angle BOD$

To prove: EOF is a straight line vertically opposite angles is equal

 $\angle AOD = \angle BOC = 5x$ (1)

Also $\angle AOC + \angle BOD$

 $\Rightarrow 2 \angle AOE = 2 \angle DOF \qquad \dots \dots (2)$

Sum of the angles around a point is 360°

 $\Rightarrow 2 \angle AOD + 2 \angle AOE + 2 \angle DOF = 360^{\circ}$

 $\Rightarrow \angle AOD + \angle AOF + \angle DOF = 180^{\circ}$

From this we conclude that *EOF* is a straight line.

Given that :- AB and CD intersect each other at O OE bisects $\angle COB$ To prove: $\angle AOF = \angle DOF$ Proof: *OE* bisects $\angle COB$ $\angle COE = \angle EOB = x$ Vertically opposite angles are equal $\angle BOE = \angle AOF = x$ (1) $\angle COE = \angle DOF = x$ (2) From (1) and (2) $\angle AOF = \angle DOF = x$

6. If one of the four angles formed by two intersecting lines is a right angle, then show that each of the four angles is a right angle.

Sol:

Given,

AB and CD are two lines intersecting at O such that

 $\angle BOC = 90^{\circ}$

$$\angle AOC = 90^{\circ}, \angle AOD = 90^{\circ} \text{ and } \angle BOD = 90^{\circ}$$

Proof:

Given that $\angle BOC = 90^{\circ}$

Vertically opposite angles are equal

 $\angle BOC = \angle AOD = 90^{\circ}$ $\angle AOC, \angle BOC \text{ are Linear pair of angles}$ $\angle AOC + \angle BOC = 180^{\circ} \qquad [LinearPair]$ $\Rightarrow \angle AOC + 90^{\circ} = 180^{\circ}$ $\Rightarrow \angle AOC = 90^{\circ}$ Vertically opposite angles

 $\therefore \angle AOC = \angle BOD = 90^{\circ}$

Hence, $\angle AOC = \angle BOC = \angle BOD = \angle AOD = 90^{\circ}$

7. In the below fig, rays AB and CD intersect at O.

1

- (i) Determine y when $x = 60^{\circ}$
- (ii) Determine x when y = 40

Sol:

(i) Given
$$x = 60^{\circ}$$

 $y = ?$
 $\angle AOC, \angle BOC$ are linear pair of angles
 $\angle AOC + \angle BOC = 180^{\circ}$
 $\Rightarrow 2x + y = 180^{\circ}$
 $\Rightarrow 2 \times 60 + y = 180^{\circ}$ [$\because x = 60^{\circ}$]
 $\Rightarrow y = 180^{\circ} - 120^{\circ}$
 $\Rightarrow y = 60^{\circ}$

(ii) Given $y = 40^{\circ}, x = ?$ $\angle AOC$ and $\angle BOC$ are linear pair of angles $\angle AOC + \angle BOC = 180^{\circ}$ $\Rightarrow 2x + y = 180^{\circ}$ $\Rightarrow 2x + 40 = 180^{\circ}$ $\Rightarrow 2x = 140^{\circ}$ $\Rightarrow x = \frac{140^{\circ}}{2}$ $\Rightarrow y = 70^{\circ}$

8. In the below fig, lines AB, CD and EF intersect at O. Find the measures of $\angle AOC$, $\angle COF$, $\angle DOE$ and $\angle BOF$.

Sol: $\angle AOE$ and $\angle EOB$ are linear pair of angles

 $\angle AOE + \angle EOB = 180^{\circ}$ $\angle AOE + \angle DOE + \angle BOD = 180^{\circ}$ $\Rightarrow \angle DOE = 180^{\circ} - 40^{\circ} - 35^{\circ} = 105^{\circ}$ Vertically opposite side angles are equal $\angle DOE = \angle COF = 105^{\circ}$ $Now, \angle AOE + \angle AOF = 180^{\circ}$ [:: Linear pair] $\Rightarrow \angle AOE + \angle AOC + \angle COF = 180^{\circ}$ $\Rightarrow 40^{\circ} + \angle AOC + 105^{\circ} = 180^{\circ}$ $\Rightarrow \angle AOC = 180^{\circ} - 145^{\circ}$ $\Rightarrow \angle AOC = 35^{\circ}$ Also, $\angle BOF = \angle AOE = 40^{\circ}$ [:: Vertically opposite angle are equal]

AB, CD and EF are three concurrent lines passing through the point O such that OF bisects ∠BOD. If ∠BOF = 35°, find ∠BOC and ∠AOD.
 Sol:

Given
OF bisects
$$\angle BOD$$

OF bisects $\angle BOD$
 $\angle BOF = 35^{\circ}$
 $\angle BOC = ?$
 $\angle AOD = ?$
 $\therefore \angle BOD = 2\angle BOF = 70^{\circ}$ [:: of bisects $\angle BOD$]
 $\angle BOD = 2\angle BOF = 70^{\circ}$ [:: of bisects $\angle BOD$]
 $\angle BOD = \angle AOC = 70^{\circ}$ [:: of bisects $\angle BOD$]
 $\angle BOD = \angle AOC = 70^{\circ}$ [$\angle BOD$ and $\angle AOC$ are vertically opposite angles]
Now,
 $\angle BOC + \angle AOC = 180^{\circ}$
 $\Rightarrow \angle BOC + 70^{\circ} = 180^{\circ}$
 $\Rightarrow \angle BOC = 110^{\circ}$ [Vertically opposite angles]

10. In below figure, lines AB and CD intersect at O. If $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD =$ 40°, find \angle BOE and reflex \angle COE.

Sol:

Given that

 $\angle AOC + \angle BOE = 70^{\circ} \text{ and } \angle BOD = 40^{\circ}$ $\angle BOE = ?$ Here, $\angle BOD$ and $\angle AOC$ are vertically opposite angles $\angle BOD = \angle AOC = 40^{\circ}$ Given $\angle AOC + \angle BOE = 70^{\circ}$ $40^\circ + \angle BOF = 70^\circ$ $\angle BOF = 70^{\circ} - 40^{\circ}$ $\angle BOE = 30^{\circ}$ $\angle AOC$ and $\angle BOC$ are linear pair of angles $\Rightarrow \angle AOC + \angle COF + \angle BOE = 180^{\circ}$ $\Rightarrow \angle COE = 180^\circ - 30^\circ - 40^\circ$ $\Rightarrow \angle COE = 110^{\circ}$ \therefore Reflex $\angle COE = 360^{\circ} - 110^{\circ} = 250^{\circ}$.

- 11. Which of the following statements are true (T) and which are false (F)?
 - (i) Angles forming a linear pair are supplementary.
 - (ii) If two adjacent angles are equal, and then each angle measures 90° .
 - (iii) Angles forming a linear pair can both the acute angles.

(iv) If angles forming a linear pair are equal, then each of these angles is of measure 90° . Sol:

- True (i)
- (ii) False
- (iii) False
- (iv) true

12. Fill in the blanks so as to make the following statements true:

- If one angle of a linear pair is acute, then its other angle will be (i)
- (ii) A ray stands on a line, then the sum of the two adjacent angles so formed is _____
- (iii) If the sum of two adjacent angles is 180° , then the arms of the two angles are opposite rays.

Sol:

- Obtuse angle (i)
- 180° (ii)
- (iii) uncommon

Exercise – 8.4

1. In below fig, AB CD and $\angle 1$ and $\angle 2$ are in the ratio 3 : 2. Determine all angles from 1 to 8.

Sol:

Let $\angle 1 = 3x$ and $\angle 2 = 2x$ $\angle 1$ and $\angle 2$ are linear pair of angle Now, $\angle 1 + \angle 2 = 180^{\circ}$ \Rightarrow 3x + 2x = 180° \Rightarrow 5*x* = 180° $\Rightarrow x = \frac{180^{\circ}}{5}$ $\Rightarrow x = 36^{\circ}$ $\therefore \angle 1 = 3x = 108^{\circ}, \angle 2 = 2x = 72^{\circ}$ Vertically opposite angles are equal $\angle 1 = \angle 3 = 108^{\circ}$ $\angle 2 = \angle 4 = 72^{\circ}$ $\angle 6 = \angle 7 = 108^{\circ}$ $\angle 5 = \angle 8 = 72^{\circ}$ Corresponding angles $\angle 1 = \angle 5 = 108^{\circ}$ $\angle 2 = \angle 6 = 72^{\circ}$

2. In the below fig, *l*, m and n are parallel lines intersected by transversal p at X, Y and Z respectively. Find $\angle 1$, $\angle 2$ and $\angle 3$.

 $\angle 3 + \angle m \ YZ = 180^{\circ} \qquad \text{[Linear pair]}$ $\Rightarrow \angle 3 = 180^{\circ} - 120^{\circ}$ $\Rightarrow \angle 3 = 60^{\circ}$ Now line *l* parallel to *m* $\angle 1 = \angle 3 \qquad \text{[Corresponding angles]}$ $\Rightarrow \angle 1 = 60^{\circ}$ Also *m* || *n* $\Rightarrow \angle 2 = 120^{\circ} \qquad \text{[Alternative interior angle]}$ $\therefore \angle 1 = \angle 3 = 60^{\circ}$ $\angle 2 = 120^{\circ}$

3. In the below fig, AB \parallel CD \parallel EF and GH \parallel KL. Find \angle HKL

Sol:

Produce LK to meet GF at N. Now, alternative angles are equal $\angle CHG = \angle HGN = 60^{\circ}$ $\angle HGN = \angle KNF = 60^{\circ}$ [Corresponding angles] $\therefore \angle KNG = 180^{\circ} - 60^{\circ} = 120^{\circ}$ $\angle GNK = \angle AKL = 120^{\circ}$ [Corresponding angles] $\angle AKH = \angle KHD = 25^{\circ}$ [Alternative angles] $\therefore \angle HKL = \angle AKH + \angle AKL = 25^{\circ} + 120^{\circ} = 145^{\circ}.$

4. In the below fig, show that AB || EF.

Sol:

Produce *EF* to intersect AC at K. Now, $\angle DCE + \angle CEF = 35^{\circ} + 145^{\circ} = 180^{\circ}$ $\therefore EF \parallel CD$ [::Sum of Co-interior angles is 180°](1) Now, $\angle BAC = \angle ACD = 57^{\circ}$ $\Rightarrow BA \parallel CD$ [:: Alternative angles are equal](2) From (1) and (2) $AB \parallel EF$ [Lines parallel to the same line are parallel to each other] Hence proved.

5. If below fig, if AB \parallel CD and CD \parallel EF, find \angle ACE.

Sol:

Since $EF \parallel CD$

 $\therefore EFC + \angle ECD = 180^{\circ} \qquad [\text{co-interior angles are supplementary}]$ $\Rightarrow \angle ECD = 180^{\circ} - 130^{\circ} = 50^{\circ}$ Also $BA \parallel CD$ $\Rightarrow \angle BAC = \angle ACD = 70^{\circ} \qquad [\text{alternative angles}]$ But $\angle ACE + \angle ECD = 70^{\circ}$ $\Rightarrow \angle ACE = 70^{\circ} - 50^{\circ} = 20^{\circ}$

6. In the below fig, PQ || AB and PR || BC. If $\angle QPR = 102^\circ$, determine $\angle ABC$. Give reasons.

Sol:

AB is produce to meet *PR* at K Since *PQ* || *AB* $\angle QPR = \angle BKR = 102^{\circ}$ [corresponding angles] Since *PR* || *BC* $\therefore \angle RKB + \angle CBK = 180^{\circ}$ [:: Corresponding angles are supplementary] $\Rightarrow \angle CKB = 108 - 102 = 78^{\circ}$ $\therefore \angle CKB = 78^{\circ}$. 7. In the below fig, state which lines are parallel and why?

Sol:

Vertically opposite angles are equal $\angle EOC = \angle DOK = 100^{\circ}$ Angle $\angle DOK = \angle ACO = 100^{\circ}$ Here two lines EK and CA cut by a third line '*l*' and the corresponding angles to it are equal $\therefore EK \parallel AC$.

8. In the below fig, if $l \parallel m$, $n \parallel p$ and $\angle 1 = 85^{\circ}$, find $\angle 2$.

Sol: Corresponding angles are equal $\angle 1 = \angle 3 = 85^{\circ}$

By using the property of co-interior angles are supplementary

$$\angle 2 + \angle 3 = 180^{\circ}$$
$$\angle 2 + 55^{\circ} = 180^{\circ}$$
$$\angle 2 = 180^{\circ} - 55^{\circ}$$
$$\angle 2 = 95^{\circ}$$
$$\therefore \angle 2 = 95^{\circ}$$

9. If two straight lines are perpendicular to the same line, prove that they are parallel to each other.Sol:

Given *m* perpendicular *t* and $l \perp t$ $\angle 1 = \angle 2 = 90^{\circ}$

:: l and m are two lines and it is transversal and the corresponding angles are equal

 $\therefore l \parallel m$

Hence proved

10. Prove that if the two arms of an angle are perpendicular to the two arms of another angle, then the angles are either equal or supplementary.

Sol:

Consider be angles AOB and ACB


```
Given OA \perp AO, OB \perp BO
To prove: \angle AOB = \angle ACB (or)
\angle AOB + \angle ACB = 180^{\circ}
Proof:- In a quadrilateral
                                                             [Sum of angles of quadrilateral]
\Rightarrow \angle A + \angle O + \angle B + \angle C = 360^{\circ}
\Rightarrow 180 + \angle O + \angle C = 360°
\Rightarrow \angle O + \angle C = 360 - 180 = 180^{\circ}
Hence, \angle AOB + \angle ACB = 180^{\circ}
                                                                      .....(i)
Also,
                                                                      .....(i)
\angle B + \angle ACB = 180^{\circ}
Also,
                                                                       .....(i)
\angle B + \angle ACB = 180^{\circ}
Also,
\angle B + \angle ACB = 180^{\circ}
\Rightarrow \angle ACB = 180^{\circ} - 90^{\circ}
\Rightarrow \angle ACB = 90^{\circ}
                                                                      .....(ii)
```

From (i) and (ii) $\therefore \angle ACB = \angle AOB = 90^{\circ}$ Hence, the angles are equal as well as supplementary.

11. In the below fig, lines AB and CD are parallel and P is any point as shown in the figure. Show that $\angle ABP + \angle CDP = \angle DPB$.

Given that $AB \parallel CD$

Let *EF* be the parallel line to AB and CD which passes through P. It can be seen from the figure Alternative angles are equal $\angle ABP = \angle BPF$ Alternative angles are equal $\angle CDP = \angle DPF$ $\Rightarrow \angle ABP + \angle CDP = \angle BPF + \angle DPF$ $\Rightarrow \angle ABP + \angle CDP = \angle DPB$ Hence proved AB parallel to CD, P is any point To prove: $\angle ABP + \angle BPD + \angle CDP = 360^{\circ}$ Construction: Draw EF || AB passing through P Proof: Since $AB \parallel EF$ and $AB \parallel CD$ $\therefore EF \parallel CD$ [Lines parallel to the same line are parallel to each other] $\angle ABP + \angle EPB = 180^{\circ}$ [Sum of co-interior angles is 180° AB || EF and BP is the transversal] $\angle EPD + \angle COP = 180^{\circ}$ [Sum of co-interior angles is $180^{\circ} EF \parallel CD$ and DP is transversal](1) $\angle EPD + \angle CDP = 180^{\circ}$

[Sum of Co-interior angles is 180° $EF \parallel CD$ and DP is the transversal] ...(2) By adding (1) and (2) $\angle ABP + \angle EPB + \angle EPD + \angle CDP = 180^{\circ} + 180^{\circ}$ $\angle ABP + \angle EPB + \angle COP = 360^{\circ}$

12. In the below fig, AB || CD and P is any point shown in the figure. Prove that: $\angle ABP+\angle BPD+\angle CDP = 360^{\circ}$

Sol:

Through P, draw a line PM parallel to AB or CD. Now, $AB \parallel PM \Rightarrow \angle ABP + \angle BPM = 180^{\circ}$ And $CD \parallel PM \Rightarrow \angle MPD + \angle CDP = 180^{\circ}$ Adding (i) and (ii), we get $\angle ABP + (\angle BPM + \angle MPD) \angle CDP = 360^{\circ}$ $\Rightarrow \angle ABP + \angle BPD + \angle CDP = 360^{\circ}$

13. Two unequal angles of a parallelogram are in the ratio 2 : 3. Find all its angles in degrees.Sol:

Let $\angle A = 2x$ and $\angle B = 3x$ Now, $\angle A + \angle B = 180^{\circ}$ $2x + 3x - 180^{\circ}$ $\Rightarrow 5x = 180^{\circ}$

[Co-interior angles are supplementary] $[AD \parallel BC \text{ and } AB \text{ is the transversal}]$

$$\Rightarrow x = \frac{180^{\circ}}{5} = 36^{\circ}$$

$$\therefore \angle A = 2 \times 36^{\circ} = 72^{\circ}$$

$$\angle B = 3 \times 36^{\circ} = 108^{\circ}$$

Now,

$$\angle A = \angle C = 72^{\circ}$$

$$\angle B = \angle D = 108^{\circ}$$

[Opposite side angles of a parallelogram are equal]

14. If each of the two lines is perpendicular to the same line, what kind of lines are they to each other?Sol:

Let AB and CD be perpendicular to MN

$\angle ABD = 90^{\circ}$	$\begin{bmatrix} AB \perp MN \end{bmatrix}$	(i)
$\angle CON = 90^{\circ}$	$\begin{bmatrix} CD \perp MN \end{bmatrix}$	(<i>ii</i>)

Now,

 $\angle ABD = \angle CDN = 90^{\circ}$ [From (i) and (ii)]

 $\therefore AB$ parallel to *CD*,

Since corresponding angle are equal

15. In the below fig, $\angle 1 = 60^\circ$ and $\angle 2 = \left(\frac{2}{3}\right)^{rd}$ of a right angle. Prove that $l \parallel m$.

Sol: Given:

$$\angle 1 = 60^\circ, \angle 2 = \left(\frac{2}{3}\right)^{rd}$$
 to right angle

To prove: parallel to *m* Proof $\angle 1 = 60^{\circ}$

- $\angle 2 = \frac{2}{3} \times 90^\circ = 60^\circ$ Since, $\angle 1 = \angle 2 = 60^\circ$ \therefore Parallel to *m* as pair of corresponding angles are equal
- 16. In the below fig, if $l \parallel m \parallel n$ and $\angle 1 = 60^\circ$, find $\angle 2$.

Sol:

Since *l* parallel to *m* and *p* is the transversal \therefore Given: $l \parallel m \parallel n, \angle 1 = 60^{\circ}$ To find $\angle 2$ $\angle 1 = \angle 3 = 60^{\circ}$ [Corresponding angles] Now, $\angle 3$ and $\angle 4$ are linear pair of angles $\angle 3 + \angle 4 = 180^{\circ}$ $60^{\circ} + \angle 4 = 180^{\circ}$ $\angle 4 = 180^{\circ} - 60^{\circ}$ $\angle 4 = 120^{\circ}$ Also, *m* || *n* and *P* is the transversal $\therefore \angle 4 = \angle 2 = 120^{\circ}$ [Alternative interior angle] Hence $\angle 2 = 120^{\circ}$

17. Prove that the straight lines perpendicular to the same straight line are parallel to one another.

Sol:

Let AB and CD perpendicular to the Line MN

 $\angle CON = 90^{\circ} [\because CD \perp MN] \qquad \dots (ii)$ Now, $\angle ABD = \angle CDN = 90^{\circ} \qquad [From (i) and (ii)]$ $\therefore AB \parallel CD$, Since corresponding angles are equal.

18. The opposite sides of a quadrilateral are parallel. If one angle of the quadrilateral is 60°, find the other angles.

Sol:

19. Two lines AB and CD intersect at O. If ∠AOC + ∠COB + ∠BOD = 270°, find the measures of ∠AOC, ∠COB, ∠BOD and ∠DOA.
Sol:

Given: $\angle AOC + \angle COB + \angle BOP = 270^{\circ}$ To find: $\angle AOC, \angle COB, \angle BOD$ and $\angle DOA$

Here, $\angle AOC + \angle COB + \angle BOD + \angle AOD = 360^{\circ}$ [Complete angle] $\Rightarrow 270 + \angle AOD = 360^{\circ}$ $\Rightarrow \angle AOD = 360^{\circ} - 270^{\circ}$ $\Rightarrow \angle AOD = 90^{\circ}$ Now, $\angle AOD + \angle BOD = 180^{\circ}$ [Linear pair] $90 + \angle BOD = 180^{\circ}$ $\Rightarrow \angle BOD = 180^{\circ} - 90^{\circ}$ $\therefore \angle BOD = 90^{\circ}$ $\angle AOD = \angle BOC = 90^{\circ}$ [Vertically opposite angles] $\angle BOD = \angle AOC = 90^{\circ}$ [Vertically opposite angles]

20. In the below fig, p is a transversal to lines m and n, $\angle 2 = 120^{\circ}$ and $\angle 5 = 60^{\circ}$. Prove that m || n.

Sol:

Given that $\angle 2 = 120^{\circ}, \angle 5 = 60^{\circ}$ To prove $\angle 2 + \angle 1 = 180^{\circ}$ [:: Linear pair] $120^{\circ} + \angle 1 = 180^{\circ}$ $\angle 1 = 180^{\circ} - 120^{\circ}$ $\angle 1 = 60^{\circ}$ Since $\angle 1 = \angle 5 = 60^{\circ}$ $\therefore m \parallel n$ [As pair of corresponding angles are equal]

21. In the below fig, transversal *l* intersects two lines m and n, $\angle 4 = 110^{\circ}$ and $\angle 7 = 65^{\circ}$. Is m || n?

 $\angle 4 = 110^{\circ}, \angle 7 = 65^{\circ}$ To find: Is $m \parallel n$ Here, $\angle 7 = \angle 5 = 65^{\circ}$ [Vertically opposite angle] Now, $\angle 4 + \angle 5 = 110 + 65^{\circ} = 175^{\circ}$ $\therefore m$ is not parallel to n as the pair of co-interior angles is not supplementary.

22. Which pair of lines in the below fig, is parallel? Given reasons.

Sol:

 $\angle A + \angle B = 115 + 65 = 180^{\circ}$ $\therefore AB \parallel BC \qquad [As sum of co-interior angles we supplementary]$ $\angle B + \angle C = 65 + 115 = 180^{\circ}$ $\therefore AB \parallel CD \qquad [As sum of interior angles are supplementary]$

23. If *l*, m, n are three lines such that $l \parallel m$ and $n \perp l$, prove that $n \perp m$. **Sol:**

Given $l \parallel m, n$ perpendicular l

To prove: $n \perp m$

Since $l \parallel m$ and n intersects them at G and H respectively

$$\therefore \angle l = \angle 2$$
 [Corresponding angles]
But, $U = 90^{\circ}$ $[n \perp l]$

$$\Rightarrow \angle 2 = 90^{\circ}$$

Hence *n* perpendicular *m*

24. In the below fig, arms BA and BC of $\angle ABC$ are respectively parallel to arms ED and EF of $\angle DEF$. Prove that $\angle ABC = \angle DEF$.

25. In the below fig, arms BA and BC of $\angle ABC$ are respectively parallel to arms ED and EF of $\angle DEF$. Prove that $\angle ABC + \angle DEF = 180^{\circ}$.

Given $AB \parallel DE, BC \parallel EF$ To prove: $\angle ABC + \angle DEF = 180^{\circ}$ Construction: produce BC to intersect DE at M Proof: Since $AB \parallel EM$ and BL is the transversal $\angle ABC = \angle EML$ [Corresponding angle](1) Also, $EF \parallel ML$ and EM is the transversal By the property of co-interior angles are supplementary $\angle DEF + \angle EML = 180^{\circ}$ From (i) and (ii) we have $\therefore \angle DEF + \angle ABC = 180^{\circ}$

- 26. Which of the following statements are true (T) and which are false (F)? Give reasons.
 - (i) If two lines are intersected by a transversal, then corresponding angles are equal.
 - (ii) If two parallel lines are intersected by a transversal, then alternate interior angles are equal.
 - (iii) Two lines perpendicular to the same line are perpendicular to each other.
 - (iv) Two lines parallel to the same line are parallel to each other.
 - (v) If two parallel lines are intersected by a transversal, then the interior angles on the same side of the transversal are equal.

Sol:

(i)	False	(iii)	False	(v)	False
(ii)	True	(iv)	True		

- **27.** Fill in the blanks in each of the following to make the statement true:
 - (i) If two parallel lines are intersected by a transversal, then each pair of corresponding angles are _____
 - (ii) If two parallel lines are intersected by a transversal, then interior angles on the same side of the transversal are _____
 - (iii) Two lines perpendicular to the same line are ______ to each other.
 - (iv) Two lines parallel to the same line are _____ to each other.
 - (v) If a transversal intersects a pair of lines in such a way that a pair of alternate angles are equal, then the lines are _____
 - (vi) If a transversal intersects a pair of lines in such a way that the sum of interior angles on the same side of transversal is 180°, then the lines are _____.

Sol: (i)

Equal

- (iv) Parallel
- (ii) Supplementary (v) Parallel
- (iii) Parallel (vi) Parallel