Exercise – 9.1

```
1. In a \triangle ABC, if \angle A = 55^\circ, \angle B = 40^\circ, find \angle C.

Sol:

Given \angle A = 55^\circ, \angle B = 40^\circ then \angle C = ?

We know that

In a\triangle ABC sum of all angles of triangle is 180^\circ

i.e., \angle A + \angle B + \angle C = 180^\circ

\Rightarrow 55^\circ + 40^\circ \angle C = 180^\circ

\Rightarrow 95^\circ + \angle C = 180^\circ

\Rightarrow \angle C = 180^\circ - 95^\circ

\Rightarrow \angle C = 85^\circ
```

2. If the angles of a triangle are in the ratio 1: 2 : 3, determine three angles. Sol:

Given that the angles of a triangle are in the ratio 1:2:3Let the angles be a, 2a, 3a

... We know that Sum of all angles of triangles is 180° $a + 2a + 3a = 180^{\circ}$ $\Rightarrow 6a = 180^{\circ}$ $\Rightarrow a = \frac{180^{\circ}}{6}$ $\Rightarrow a = 30^{\circ}$ Since $a = 30^{\circ}$ $2a = 2(30)^{\circ} = 60^{\circ}$ $3a = 3(30)^{\circ} = 90^{\circ}$... angles are $a = 30^{\circ}, 2a = 60^{\circ}, 3a = 90^{\circ}$... Hence angles are $30^{\circ}, 60^{\circ}$ and 90°

 3. The angles of a triangle are (x - 40)°, (x - 20)° and (¹/₂x -10)°. Find the value of x.
 Sol: Given that The angles of a triangle are

$$(x-40^{\circ}), (x-20)^{\circ} \text{ and } \left(\frac{x}{2}-10\right)^{\circ}$$

We know that

Sum of all angles of triangle is 180°

$$\therefore x - 40^{\circ} + x - 20^{\circ} + \frac{x}{2} - 10^{\circ} = 180^{\circ}$$

$$2x + \frac{x}{2} - 70^{\circ} = 180^{\circ}$$

$$\frac{5x}{2} = 180 + 70^{\circ}$$

$$5x = 250^{\circ}(2)$$

$$x = 50^{\circ}(2)$$

$$x = 100^{\circ}$$

$$\therefore x = 100^{\circ}$$

4. The angles of a triangle are arranged in ascending order of magnitude. If the difference between two consecutive angles is 10°, find the three angles.

Sol:

Given that,

The difference between two consecutive angles is 10°

Let x, x+10, x+20 be the consecutive angles differ by 10°

 $W \cdot K \cdot T$ sum of all angles of triangle is 180°

 $x + x + 10 + x + 20 = 180^{\circ}$

 $3x + 30 = 180^{\circ}$

$$\Rightarrow 3x = 180 - 30^{\circ} \Rightarrow 3x = 150^{\circ}$$

 $\Rightarrow x = 50^{\circ}$

:
$$x = 50^{\circ}$$

 \therefore The required angles are

x, x + 10 and x + 20

x = 50

x + 10 = 50 + 10 = 60

x + 20 = 50 + 10 + 10 = 70

The difference between two consecutive angles is 10° then three angles are 50° , 60° and 70° .

5. Two angles of a triangle are equal and the third angle is greater than each of those angles by 30°. Determine all the angles of the triangle.Sol:

Given that,

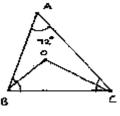
Two angles are equal and the third angle is greater than each of those angles by 30° . Let x, x, x + 30 be the angles of a triangle We know that Sum of all angles of a triangle is 180° $x + x + x + 30 = 180^{\circ}$ $3x + 30 = 180^{\circ}$ $\Rightarrow 3x = 180^{\circ} - 30^{\circ}$ $\Rightarrow 3x = 150^{\circ}$ $\Rightarrow x = \frac{150^{\circ}}{3}$ $\Rightarrow x = 50^{\circ}$ \therefore The angles are x, x, x + 30 $x = 50^{\circ}$ $x + 30 = 80^{\circ}$ \therefore The required angles are $50^{\circ}, 50^{\circ}, 80^{\circ}$

6. If one angle of a triangle is equal to the sum of the other two, show that the triangle is a right triangle.

Sol:

If one angle of a triangle is equal to the sum of other two i.e., $\angle B = \angle A + \angle C$ Now, in $\triangle ABC$ (Sum of all angles of triangle 180°) $\angle A + \angle B + \angle C = 180^{\circ}$ $\angle B + \angle B = 180^{\circ}$ [$\because \angle B = \angle A + \angle C$] $2\angle B = 180^{\circ}$ $\angle B = \frac{180^{\circ}}{2}$ $\angle B = 90^{\circ}$ $\therefore ABC$ is a right angled a triangle.

ABC is a triangle in which ∠A — 72°, the internal bisectors of angles B and C meet in O. Find the magnitude of ∠ROC.
 Sol:



ABC is a triangle ∠*A* = 72° and internal bisector of angles B and C meeting O In $\triangle ABC = \angle A + \angle B + \angle C = 180^{\circ}$ ⇒ 72° + ∠*B* + ∠*C* = 180° ⇒ ∠*B* + ∠*C* = 180° - 72° divide both sides by '2' ⇒ $\frac{\angle B}{2} + \frac{\angle C}{2} = \frac{108^{\circ}}{2}$ (1) ⇒ ∠*OBC* + ∠*OCB* = 54°(1) Now in $\triangle BOC \Rightarrow \angle OBC + \angle OCB + \angle BOC = 180^{\circ}$ ⇒ 54° + ∠*BOC* = 180° ⇒ ∠*BOC* = 180° - 54° = 126° ∴ ∠*BOC* = 126°

8. The bisectors of base angles of a triangle cannot enclose a right angle in any case. Sol:

In a $\triangle ABC$ Sum of all angles of triangles is 180°

i.e., $\angle A + \angle B + \angle C = 180^\circ$ divide both sides by '2'

$$\Rightarrow \frac{1}{2} \angle A + \frac{1}{2} \angle B + \frac{1}{2} \angle C = 180^{\circ}$$

$$\Rightarrow \frac{1}{2} \angle A + \angle OBC + \angle OBC = 90^{\circ}$$
 [:: *OB*, *OC* insects $\angle B$ and $\angle C$]

$$\Rightarrow \angle OBC + \angle OCB = 90^{\circ} - \frac{1}{2}A$$

Now in $\triangle BOC$

$$\therefore \angle BOC + \angle OBC + \angle OCB = 180^{\circ}$$

$$\Rightarrow \angle BOC + 90^{\circ} - \frac{1}{2} \angle A = 180^{\circ}$$

$$\Rightarrow \angle BOC = 90^{\circ} - \frac{1}{2} \angle A$$

Hence, bisectors of a base angle cannot enclose right angle.

9. If the bisectors of the base angles of a triangle enclose an angle of 135°, prove that the triangle is a right triangle.

Sol:

Given the bisectors the base angles of an triangle enclose an angle of 135°

i.e., $\angle BOC = 135^{\circ}$ But, W.K.T

 $\angle BOC = 90^{\circ} + \frac{1}{2} \angle B$ $\Rightarrow 135^{\circ} = 90^{\circ} + \frac{1}{2} \angle A$ $\Rightarrow \frac{1}{2} \angle A = 135^{\circ} - 90^{\circ}$ $\Rightarrow \angle A = 45^{\circ}(2)$ $\Rightarrow \angle A = 90^{\circ}$

 $\therefore \Delta ABC$ is right angled triangle right angled at A.

10. In a $\triangle ABC$, $\angle ABC = \angle ACB$ and the bisectors of $\angle ABC$ and $\angle ACB$ intersect at O such that $\angle BOC = 120^{\circ}$. Show that $\angle A = \angle B = \angle C = 60^{\circ}$. Sol: Given, In $\triangle ABC$ $\angle ABC = \angle ACB$ Divide both sides by '2' $\frac{1}{2} \angle ABC = \frac{1}{2} \angle ACB$ $\Rightarrow \angle OBC = \angle OCB$ [:: OB, OC bisects $\angle B$ and $\angle C$] Now

$\angle BOC = 90^\circ + \frac{1}{2} \angle A$	
$\Rightarrow 120^{\circ} - 90^{\circ} = \frac{1}{2} \angle A$	
$\Rightarrow 30^{\circ} \times (2) = \angle A$	
$\Rightarrow \angle A = 60^{\circ}$	
Now in $\triangle ABC$	
$\angle A + \angle ABC + \angle ACB = 180^{\circ}$	(Sum of all angles of a triangle)
$\Rightarrow 60^{\circ} + 2 \angle ABC = 180^{\circ}$	$\begin{bmatrix} \because \angle ABC = \angle ACB \end{bmatrix}$
$\Rightarrow 2 \angle ABC = 180^\circ - 60^\circ$	
$\Rightarrow \angle ABC = \frac{120^{\circ}}{2} = 90^{\circ}$	
$\Rightarrow \angle ABC = \angle ACB$	
$\therefore \angle ACB = 60^{\circ}$	
Hence proved.	

- **11.** Can a triangle have:
 - (i) Two right angles?
 - (ii) Two obtuse angles?
 - (iii) Two acute angles?
 - Justify your answer in each case.

Sol:

(i) No,

Two right angles would up to 180°, So the third angle becomes zero. This is not possible, so a triangle cannot have two right angles. [Since sum of angles in a triangle is 180°]

(ii) No,

A triangle can't have 2 obtuse angles. Obtuse angle means more than 90° So that the sum of the two sides will exceed 180° which is not possible. As the sum of all three angles of a triangle is 180° .

(iii) Yes

A triangle can have 2 acute angle. Acute angle means less the 90° angle

(iv) No,

Having angles-more than 60° make that sum more than 18° . Which is not possible [:: The sum of all the internal angles of a triangle is 180°]

- (iv) All angles more than 60° ?
- (v) All angles less than 60° ?
- (vi) All angles equal to 60° ?

(v) No.

> Having all angles less than 60° will make that sum less than 180° which is not possible.

[: The sum of all the internal angles of a triangle is 180°]

(vi) Yes

A triangle can have three angles are equal to 60°. Then the sum of three angles equal to the 180°. Which is possible such triangles are called as equilateral triangle. [: The sum of all the internal angles of a triangle is 180°]

12. If each angle of a triangle is less than the sum of the other two, show that the triangle is acute angled.

Sol:

Given each angle of a triangle less than the sum of the other two

 $\therefore \angle A + \angle B + \angle C$ $\Rightarrow \angle A + \angle A < \angle A + \angle B + \angle C$ $\Rightarrow 2\angle A < 180^{\circ}$ [Sum of all angles of a triangle] $\Rightarrow \angle A < 90^{\circ}$ Similarly $\angle B < 90^{\circ}$ and $\angle C < 90^{\circ}$

Hence, the triangles acute angled.