CHAPTER 4

PRINCIPLES OF MATHEMATICAL INDUCTION

DECEMBER 2020

1. Consider the statement:

$$
\begin{equation*}
P(n): 1+3+3^{2}+\ldots+3^{n-1}=\frac{3^{n}-1}{2} . \tag{1}
\end{equation*}
$$

a) Show that $\mathrm{P}(1)$ is true.
b) Prove by principle of Mathematical induction that $\mathrm{P}(\mathrm{n})$ is true for all $n \in N$.

MARCH 2020

2. For every positive integer n, prove that $7^{n}-3^{n}$ is divisible by 4 using principle of mathematical induction.

IMPROVEMENT 2019

3. Consider the statement

$$
P(n): a+a r+a r^{2}+\ldots+a r^{n-1}=a \frac{\left(r^{n}-1\right)}{(r-1)} \text {,where }
$$

$n \in N$
a) Write the value of $P(1)$
b) Write $P(k), k \in N$.
c) By assuming the result obtained in part (b) prove the result is true for $n=k+1$.

MARCH 2019

4. Using principle of mathematical induction, prove that $n(n+1)(n+5)$ is a multiple of 3 for all $n \in N$.

IMPROVEMENT 2018

5. Consider the statement:

$$
\begin{equation*}
P(n): 1+3+3^{2}+\ldots+3^{n-1}=\frac{3^{n}-1}{2} \tag{1}
\end{equation*}
$$

c) Show that $\mathrm{P}(1)$ is true.
d) Prove by principle of Mathematical induction that $\mathrm{P}(\mathrm{n})$ is true for all $n \in N$.
[same as Dec 2020, Mar 2018]

MARCH 2018

6. a) If $3^{2 n+2}-8 n-9$ is divisible by k for all $n \in N$ is true, then which one of the following is a value of k ?
i) 8
ii) 6
iii) 3
iv) 12
b) Prove by using the Principle of Mathematical

$$
\text { Induction } P(n): 1+3+3^{2}+\ldots+3^{n-1}=\frac{3^{n}-1}{2}
$$ is true for all $n \in N$.

IMPROVEMENT 2017

7. Consider the statement: $P(n): " 7^{n}-3^{n}$ is divisible by 4 ".
a) Verify the statement for $n=1$
b) Prove the statement by using the principle of mathematical induction.

MARCH 2017

8. Consider the statement " $10^{2 n-1}+1$ is divisible by 11 ". Verify that $P(1)$ is true and then prove that the statement by using mathematical induction.

IMPROVEMENT 2016

9. Consider the statement:
" $P(n): x^{n}-y^{n}$ is divisible by $x-y "$.
a) Show that is $P(1)$ true.
b) Using the principle of mathematical inductions verify that $P(n)$ is true for all natural numbers.

MARCH 2016

10. Consider the following statement:
$P(n): a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$
a) Prove that $P(1)$ is true.

> b) Hence by using the principle of Mathematical induction, prove that $P(n)$ is true for all natural numbers n.

IMPROVEMENT 2015

11. Consider the statement: $P(n)=7^{n}-3^{n}$ is divisible by 4 .
a) Show that $P(1)$ is true.
b) Verify, by the method of Mathematical induction that $P(n)$ is true for all $n \in N$.

MARCH 2015

12. A statement $p(n)$ for a natural number n is given by $p(n)=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots . .+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$
a) Verify that $p(1)$ is true.
b) By assuming that $P(k)$ is true for a natural number k, show that $P(k+1)$ is true.

IMPROVEMENT 2014

13. Using the principal of mathematical induction,
prove that $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \ldots . .+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$.

MARCH 2014

14. Consider the statement " $3^{2 n+2}-8 n-9$ is divisible by 8 ".
a) Verify the statement is true for $n=1$
b) Prove the statement using the principle of mathematical induction for all natural numbers.

IMPROVEMENT 2013

15. Consider the statement
$P(n): 1^{3}+2^{3}+3^{3}+\ldots .+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$
a) Verify that $P(n)$ is true.
b) By mathematical induction show that $P(n)$ is true for all $n \in N$

MARCH 2013

16. Consider the statement

$$
\begin{equation*}
P(n): 1+3+3^{2}+\ldots \ldots+3^{n-1}=\frac{3^{n}-1}{2} \tag{1}
\end{equation*}
$$

a) Check whether $\mathrm{P}(1)$ is true.
b) If $P(k)$ is true, prove that $P(k+1)$ is also true.
c) Is $P(n)$ true for all natural numbers n? Justify your answer.

IMPROVEMENT 2012

17. Prove that
$1.2+2.3+3.4 \ldots .+n(n+1)=\frac{n(n+1)(n+2)}{3}$
by using the principle of mathematical induction for all $n \in N$

2012 MARCH

18. Consider the statement, " $n(n+1)(2 n+1)$ is divisible by 6 ".
a) Verify the statement for $n=2$.
b) By assuming that $P(k)$ is true for a natural number k, verify that $P(k+1)$ is true.

IMPROVEMENT 2011

No question from this chapter.

MARCH 2011

19. Consider the statement $P(n): " 9^{n}-1$ is a multiple of 8 ", where ' n ' is a natural number.
a) Is $\mathrm{P}(1)$ true?
b) Assuming $P(k)$ is true, show that $P(k+1)$ is true.

Remest's

IMPROVEMENT 2010

20. a) Which among the following is the least number that will divide $7^{2 n}-4^{2 n}$ for every positive integer n ?
[4,7,11,33]
b) Prove by mathematical induction, $(\cos \theta+i \sin \theta)^{n}=(\cos n \theta+i \sin n \theta)$, where $i=\sqrt{-1}$

MARCH 2010

21. Consider the statement " $7^{n}-3^{n}$ is divisible by 4 "
a) Verify the result for $\mathrm{n}=2$.
b) Prove the statement using mathematical induction.

IMPROVEMENT 2009

[same as March 2010]
22. Let $\mathrm{P}(\mathrm{n})$ be the statement :
$" 7^{n}-3^{n}$ is divisible by 4 .
a) Verify whether the statement is true for $\mathrm{n}=2$.
b) Prove the result by using mathematical induction.

MARCH 2009

23. a) For every positive integer $n, 7^{n}-3^{n}$ should be divisible by $\quad(2,3,4,8)$.
c) Prove by principle of mathematical induction

$$
\begin{equation*}
\text { that: } 2+2^{2}+2^{3}+2^{4}+\ldots+2^{n}=2\left(2^{n}-1\right) \tag{3}
\end{equation*}
$$

MARCH 2008

24. Consider the statement

$$
P(n): 1+3+5+\ldots+(2 n-1)=n^{2}
$$

a) Verify $P(1)$ is true.
(1)

