CHAPTER 5

COMPLEX NUMBERS AND QUADRATIC EOUATIONS

DECEMBER 2020

- 1. Write the complex number $z = \frac{1+i}{1-i}$ in a + ib form how that $(a^{2}+b^{2})(c^{2}+d^{2})(e^{2}+f^{2}) = A^{2}+B^{2}.$ (2)
- 2. i. Find the square root of the complex number 1 + i. (2)(2)
 - ii. Write z in polar form.

MARCH 2020

- 3. a) Modulus of a complex number Z is 2 and $\arg(Z) = \frac{\pi}{2}$. Write the complex number in the form a + ib. (1)
 - b) Find the square root of the above complex number. (3)

IMPROVEMENT 2019

- 4. a) If (a+ib)(c+id)(e+if) = A+iB, show that $(a^{2}+b^{2})(c^{2}+d^{2})(e^{2}+f^{2}) = A^{2}+B^{2}.$ (2)
 - b) Find the square root of the complex number 1 + i. (2)

MARCH 2019

- 5. Find the square root of the complex number 3 - 4i. (3)
- 6. If z is a complex number with |z| = 2 and $\arg(z) = \frac{4\pi}{3}$, then

a) Express z in a + ib form (2)

- b) Find \bar{z} . (1)
- c) Verify that $(\bar{z})^2 = 2z$. (1)

IMPROVEMENT 2018

7. Find the polar form of the complex

number
$$\frac{1+i}{1-i}$$
 (3)

8. Find the square roots of the complex number 3 + 4i. (2)

MARCH 2018

- 9. Consider the quadratic equation $x^2 + x + 1 = 0$
 - a) Solve the quadratic equation. (2)
 - b) Write the polar form of the roots. (2)
 - c) If the two roots of the given quadratic are α
 - and β , show that $\alpha^2 = \beta$ (1)

IMPROVEMENT 2107

10. a)	The multiplicative inverse of the complex	
\checkmark	number $3 + 4i =$	(1)

- b) Express in the Polar form: $z = 1 + i\sqrt{3}$ (2)
- c) Solve the equation $x^2 + 3x + 5 = 0$ (2)

MARCH 2017

- 11. a) $i^{18} = \dots$ i) 1 ii) 0 iii) -1 iv) i (1)b) Represent the complex number $\sqrt{3} + i$ in
 - polar form. (2)c) Find the square root of the complex number
 - -8 6i(3)

IMPROVEMENT 2016

12. a) Write the real and imaginary parts of the complex number $-3 + \sqrt{-7}$. (1)b) Find the modulus and argument of the complex number $1 + i\sqrt{3}$ (2) c) Solve: $x^2 - 2x + 3 = 0$. (3)

[XI MATHEMATICS QUESTION BANK]

MARCH 2016

13. a) Which one of the following is the real part and imaginary parts of the complex number:

$$\left(\frac{1+i}{1-i}\right) - \left(\frac{1-i}{1+i}\right)?$$

i) 0 and 1	ii) 0 and 2	
iii) 3 and 2	iv) 0 and 4	(1)

- b) Express the complex number *i* in the Polar form. (2)
- c) Solve: $\sqrt{5}x^2 + x + \sqrt{5} = 0$ (3)

IMPROVEMENT 2015

- 14. a) What is i^{-35} ? (1)
 - b) Represent the complex number $\sqrt{3} + i$ in the polar form. (2)
 - c) Solve: $\sqrt{5}x^2 + x + \sqrt{5} = 0$. (3)

MARCH 2015

15. a) Represent the complex number $1+i\sqrt{3}$ in the polar form. (2) b) Find the square root of the complex number -7-24i. (4)

IMPROVEMENT 2014

16. a) Solve the quadratic equation:

$$-x^{2} + x - 2 = 0$$
 (2)
b) Express *i* in the polar form.

$$r(\cos\theta + i\sin\theta). \tag{3}$$

MARCH 2014

- 17. a) Solve $\sqrt{3}x^2 + x + \sqrt{3} = 0$ (2) b) Represent the complex number
 - $z = 1 + i\sqrt{3}$ in the polar form. (3)

SEPTEMBER 2013

- 18. a) Express $\frac{1+i}{1-i}$ in the form a+ib. (2)
 - b) Represent $\frac{1+i}{1-i}$ in polar form. (3)

MARCH 2013

19. a) Represent the complex number $\sqrt{3} + i$ in the polar form. (2)

b) Solve:
$$\sqrt{5}x^2 + x + \sqrt{5} = 0$$
 (3)

SEPTEMBER 2012

20. i) Represent the complex number $1 + i\sqrt{3}$ in the polar form. (2)

ii) Express
$$\frac{2+i}{2-i}$$
 in the form $a + ib$. (3)

MARCH 2012

- 21. Consider the complex number, $Z = \frac{5 \sqrt{3i}}{4 + 2\sqrt{3i}}$
 - a) Express Z in the form a + ib. (2)
 - b) Express Z in the polar form. (3)

IMPROVEMENT 2011

- 22. Consider the equation $z^2 2z + 4 = 0$.
 - i) Find two complex numbers satisfying this equation. (2)
 - ii) Simplify $\frac{z_1}{z_2} + \frac{z_2}{z_1}$ (3)

MARCH 2011

23.	Cor	nsider the complex number $Z =$	$\frac{2+i}{(1+i)(1-2i)}$
	a)	Express Z in the form $a + ib$.	(2)
	b)	Represent Z in the polar form.	(3)

MARCH 2010

24. i) Express the complex number $z = \frac{5+i}{2+3i}$

2 . :

___.

	in the form	a+ib	(2)	
ii)	Represent	z in the polar form.	(3)	

AUGUST 2009

25. i) Express the complex number $\frac{3-\sqrt{-16}}{1-\sqrt{-9}}$ in the form a+ib. (2) ii) Represent the complex number $z=1+i\sqrt{3}$ in the polar form. (2)

iii) Solve the equation
$$ix^2 - x + 12i = 0$$
 (2)

MARCH 2009

26. a) Express the complex number

$$\frac{2-i}{(1-i)(1+2i)}$$
 in the form $a + ib$. (2)

b) Find the polar from of the complex number $\sqrt{3} + i$ (2)

(2)

c) Solve the quadratic equation: $27 x^2 - 10x + 1 = 0$

