CHAPTER 9 SEQUENCES AND SERIES

DECEMBER 2020

- 1. a) Sum of n terms of an A.P. is given by $S_n = \frac{1}{2} (3n^2 - n)$. Find the 10th term of the progression. (3)
- 2. a) If the common ratio of a Geometric Progression is -1, then which of the following will be sum of its first 20 terms? (1)
 i) 2ⁿ ii) 20
 ii) 0 iv) (-1)²⁰
 - b) Insert 4 numbers between 2 and 486 so that the resulting sequence is a Geometric Progression. (2)

MARCH 2020

- 3. a) If the sum of 20 terms of an A.P. is equal to the sum of first 30 terms, then the sum of first 50 terms is (1)
 - a) 50 b) 20
 - c) 0 d) 80
 - b) Find the sum of infinite terms of the G.P

$$-\frac{3}{4}, \frac{3}{16}, -\frac{3}{64}....$$
 (2)

IMPROVEMENT 2019

- 4. a) In an arithmetic progression, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms, show that 20th term is -112. (3)
 - b) The sum of the first three terms of a geometric progression is 6 and sum of the next three terms is 128. Determine the first term,

common ratio and sum to n terms of this geometric progression. (3)

MARCH 2019

- 5. The sum of first three terms of a Geometric progression is $\frac{13}{12}$ and their product is -1. Find the common ratio and the terms. (3)
- 6. Consider the sequence: 3, 6, 9, 12, ..., 99.
 - a) How many terms are there in the given sequence? (1)
 - b) Find the mean of the sequence. (2)
 - c) Find the sum of squares of each term of the given sequence. (2)
 - d) Find the variance of the sequence. (1)

IMPROVEMENT 2018

- 7. a) How many terms of the GP, 3,3/2,3/4, ... are needed to give the sum 3069/512? (3)
 b) Insert five numbers between 8 and 26 such
 - that the resulting sequence is an AP. (2)c) Find the sum to *n* terms of the series

$1 \times 2 + 2 \times 3 + 3 \times 4 + \dots \tag{2}$

MARCH 2018

8. a) Find the sum to *n* terms of the sequence 4 + 44 + 444 + ... (3) b) Find the *n*th term of the sequence 3, 5, 7, ... (1) c) Find the sum to *n* terms of the series. $3 \times 1^2 + 5 \times 2^2 + 7 \times 3^2 + ...$ (3)

IMPROVEMENT 2017

9. a) The n^{th} term of an AP is $t_n = 3n - 2$. Then the

	common difference is	(1)		
b)	In an AP the first term is 2 and the sum of the			
	first five terms is $1/4^{th}$ of the sum of the next			
	five terms. Show that 20^{th} term is -112.	(4)		
	OR			
a)	The common ratio of the G.P.			
	$\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \dots$ is	(1)		
b)	Find the sum of n terms of the series			
	8 + 88 + 888 +	(4)		
MARC	СН 2017			
10. a)	The sum of the infinite series $1, \frac{1}{3}, \frac{1}{9}, \dots$ is.			
	a) $\frac{3}{2}$ ii) $\frac{5}{2}$			
	iii) $\frac{2}{3}$ iv) $\frac{7}{2}$			
b)	Find the sum of all natural numbers lying	(1)		
	between 100 and 1000 which are multiples			
	of 5.	(2)		
c)	Find the sum of n terms of the sequence			
	8, 88, 888,	(3)		
OR				
a)	The 6 th term of the G.P. $\frac{1}{2}, \frac{1}{4}, \frac{1}{8},$ is			
	i) $\frac{1}{32}$ ii) $\frac{1}{64}$			
	iii) $\frac{1}{16}$ iv) $\frac{1}{128}$	(1)		
b)	The sum of the first three terms of a G.P is			
	$\frac{13}{12}$ and their product is -1. Find the comme	on		
	ratio and the terms.	(3)		
c)	Find the sum to n terms of the series:			

[XI MATHEMATICS QUESTION BANK]

IMPROVEMENT 2016

- 11. a) Which among the following represents the sequence whose n^{th} term is $\frac{n}{n+1}$? i) 1, 2, 3, 4, 5, 6 ii) 2, 3, 4, 5, 6 iii) 2, 3, 4, 5, 6 iii) 2, $\frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}$ iv) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}$ (1)
 - b) Using progression, find the sum of first five terms of the series $1 + \frac{2}{3} + \frac{4}{9} + \dots$ (2)
 - c) Calculate: 0.6 + 0.66 + 0.666 + ... n terms.

MARCH 2016

The n^{th} term of the G.P.5,25,125, is		
i) <i>n</i> ⁵	ii) 5 ^{<i>n</i>}	
iii) $(2n)^5$	iv) 5^{2n}	(1)
	The n^{th} term of the G i) n^5 iii) $(2n)^5$	The n^{th} term of the G.P.5,25,125, is i) n^5 ii) 5^n iii) $(2n)^5$ iv) 5^{2n}

- b) Find the sum of all natural numbers between 200 and 1000 which are multiples of 10. (2)
- c) Calculate the sum of n-terms of the series whose n^{th} term is $a_n = n(n+3)$. (3)

IMPROVEMENT 2015

- 13. a) Geometric mean of 16 and 4 is (1)
 - i) 20 ii) 4 iii) 10 iv) 8
 - b) Find the sum to *n* terms: 5+55+555+... (2)
 - c) Find the sum to n terms of the A.P. whose kth term is (2)

OR

a) If the first 3 terms of an A.P. are
x - 1, x + 1, 2x + 3 then x is (1)
i) -2 ii) 0
iii) 2 iv) 4

 $3 \times 1^{2} + 5 \times 2^{2} + 7 \times 3^{2} + \dots$

(2)

Remesh's Mathematics

b) Find the sum to *n* terms of the sequence $1 \times 2 + 2 \times 3 + 3 \times 4 + \dots$ (2)

c) The nth term of a G.P.
$$5, \frac{-5}{2}, \frac{5}{4}, \frac{-5}{8}, \dots$$
 is
 $\frac{5}{1024}$. Find 'n'. (2)

MARCH 2015

14. a) The 3^{rd} term of the sequence whose n^{th} term

is
$$\left(\frac{3}{2}\right)^{n+1}$$
 is (1)

i)
$$\frac{9}{4}$$
 ii) $\frac{3}{2}$ iii $\frac{18}{3}$ iv) $\frac{81}{16}$

- b) Interest three numbers between 1 and 256 so that the resulting sequence is a G.P. (2)
- c) If m^{th} term of an A.P. is n and n^{th} term is

m, where $m \neq n$, find p^{th} term. (3) OR

- a) The 6th term of the sequence whose n^{th} term is $a_n = \frac{2n-3}{6}$ is(1) i) 3 ii) $\frac{1}{2}$ iii) $\frac{3}{2}$ iv) $\frac{1}{3}$
- b) Find the sum infinity of the sequence $1, \frac{1}{3}, \frac{1}{9}, \dots$ (2)
- c) If a, b, c are in A.P. and $a^{1/x} = b^{1/y} = c^{1/z}$, prove that x, y, z are in A.P. (3)

IMPROVEMENT 2014

- 15. a) If the sum of a certain number of terms of A.P.25,22,19,.... Is 116, then find the last term.
 - b) Find the sum to n- terms of the series

$$1 \times 2 \times 3 + 2 \times 3 \times 4 + 3 \times 4 \times 5 + \dots \tag{3}$$

- a) A man starts repaying a loan as a first installment of Rs.1.000. If he increases the installment by Rs. 150 every month, What amount will he pay in the 30th installment?
 - (2)
- b) Find the sum to n-terms of the sequence:7, 77, 777, 7777, ... (3)

MARCH 2014

16. a) If the sum of a certain number of terms of the A.P 25, 22, 19, ... is 116, then find the last term. (2)
b) Find the sum to n terms of the series

$$1 \times 2 \times 3 + 2 \times 3 \times 4 + 3 \times 4 \times 5 + \dots \tag{3}$$

IMPROVEMENT 2013

17. a) Find the sum of multiples of 7 between 200
and 400.(2)b) The sum of first 3 terms of a Geometric
progression is $\frac{39}{10}$ and their product is 1. Find
the terms.(3)

MARCH 2013

18. a) Find the 5th term of the sequence whose nth

term,
$$a_n = \frac{n^2 - 5}{4} \tag{1}$$

- b) Find 7+77+777+777+... to n terms. (2)
- c) Find the sum to n terms of the series.

$$1 \times 2 + 2 \times 3 + 3 \times 4 + 4 \times 5 = \dots$$
 (2)

(2)

IMPROVEMENT 2012

- 19. a) What is the sum of the first 'n' natural numbers?
 - b) Find the sum to 'n' terms of the series ` $3 \times 8 + 6 \times 11 + 9 \times 14 + \dots$ (5)

MARCH 2012

20. a) Find the 10th term of an A.P whose nth terms is

$$\frac{2n-3}{6}.$$
 (1)

- b) Find the sum of the first 10 terms of the above A.P. (2)
- c) Find the sum of first 10 terms of a G.P, whose 3rd term is 12 and 8th term is 384. (3)

MARCH 2011

- 21. a) Which of the following is the nth term of an A.P.?
 - a) 3-2n b) $n^2 3$ c) $3^n - 2$ d) $2 - 3n^2$ (1)
 - b) Find the 10th term of the sequence $-6, \frac{-11}{2}, -5, \dots$ (2)
 - c) The sum of first three terms of a G.P. is $\frac{39}{10}$ and their product is 1. Find the common ratio and the terms. (3)

IMPROVEMENT 2010

22. a) In an A.P if mth terms is 'n' and nth terms is

'm', $m \neq n$, find the $(m+n)^{th}$ term. (3)

- b) If 3rd, 8th and 13th terms of a G.P. are x, y, z respectively, prove that x, y, z are in G.P. (2)
- c) Prove that x, y, z in the above satisfies the

[XI MATHEMATICS QUESTION BANK]

equation
$$\frac{y^{10}}{\left(xz\right)^5} = 1$$
 (1)

MARCH 2010

(1)

- 23. a) In an AP, the first term is 2 and the sum of the first five terms is one fourth the sum of the next five terms. (1)
 i) Find the common difference. (3)
 ii) Find the 20th term. (1)
 - b) If A.M and G.M of two numbers are 10 and 8 respectively, find the numbers. (2)

IMPROVEMENT 2009

- 24. a) If the nth term of a sequence is ^{n(n²+5)}/₄, then find its first two terms. (1)
 b) How many terms of the A.P. -6, -¹¹/₂, -5, ... are needed to give the sum -25? (2)
 d) Find the 10th term of a G.P., whose 3rd
 - term is 24 and 6^{th} term is 192. (2)

MARCH 2009

25. a) Find the value of x in which the number

$$\frac{-2}{7}, x, \frac{-7}{2}$$
 are in G.P. (1)

- b) Find the sum of all natural numbers between
 - 100 and 1000 which are multiples of 5. (2)
- c) Prove that

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
(2)