1 Similarity

INDEX

Pr. S 1.1-1 Pg	6	Pr. S 1.2-4 Pg	10	Pr. S 1.3-1 Pg	16	Pr. S 1.3-9 Pg	17	PS 1-1 Pg	20	PS 1-9 Pg	13
Pr. S 1.1-2 Pg	7	Pr. S 1.2-5 Pg	13	Pr. S 1.3-2 Pg	16	Pr. S 1.4-1 Pg	19	PS $1-2 \mathrm{Pg}$	7	PS $1-10$ Pg	12
Pr. S 1.1-3 Pg	7	Pr. S 1.2-6 Pg	12	Pr. S 1.3-3 Pg	15	Pr. S 1.4-2 Pg	19	PS $1-3 \mathrm{Pg}$	8	PS $1-11$ Pg	16
Pr. S 1.1-4 Pg	7	Pr. S 1.2-7 Pg	13	Pr. S 1.3-4 Pg	17	Pr. S 1.4-3 Pg	19	Ps $1-4 \mathrm{Pg}$	8	PS $1-12$ Pg	18
Pr. S 1.1-5 Pg	8	Pr. S 1.2-8 Pg	12	Pr. S 1.3-5 Pg	16	Pr. S 1.4-4 Pg	19	PS $1-5 \mathrm{Pg}$	8	PS $1-13$ Pg	18
Pr. S 1.2-1 Pg	11	Pr. S 1.2-9 Pg	12	Pr. S 1.3-6 Pg	17	Pr. S 1.4-5 Pg	19	PS $1-6 \mathrm{Pg}$	20		
Pr. S 1.2-2 Pg	11	Pr. S 1.2-10 Pg	11	Pr. S 1.3-7 Pg	17	Pr. S 1.4-6 Pg	20	PS 1-7 Pg	11		
Pr. S 1.2-3 Pg	12	Pr. S 1.2-11 Pg	13	Pr. S 1.3-8 Pg	16	Pr. S 1.4-7 Pg	20	PS $1-8 \mathrm{Pg}$	14		

Points to Remember:

Ratio of Areas of Two Triangles

- Property - 1: The ratio of areas of two triangles is equal to the ratio of the product of their bases and corresponding heights.

In $\triangle \mathrm{ABC}$,
seg $A D$ is the height and seg $B C$ is the base.
In $\triangle P Q R$,
seg PS is the height and seg QR is the base.
$\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\Delta \mathrm{PQR})}=\frac{\mathrm{BC} \times \mathrm{AD}}{\mathrm{QR} \times \mathrm{PS}}$

- To learn the next property, we have to first understand the meaning of Triangles with equal heights.
In theorems and problems we will come across three situations where two or more triangles have equal height.
(1) In the following figure,
seg $A D$ and seg PS are the heights of $\triangle A B C$ and $\triangle \mathrm{PQR}$ respectively.
If $A D=P S$ then $\triangle A B C$ and $\triangle P Q R$ are said to have equal height.

(2) In the following figure, line $l \|$ line m $\triangle A B C$ and $\triangle P Q R$ lie between the same two parallel lines l and m.
$\therefore \quad$ They are said to have equal heights.

(3) In the following figure,
$\triangle \mathrm{ABD}$ and $\triangle \mathrm{ADC}$ and $\triangle \mathrm{ABC}$ have common vertex A and their bases $B D, D C$ and $B C$ lie on the same line BC.
Also, seg $\mathrm{AE} \perp$ line BC .
$\therefore \quad$ seg AE is their common height.
$\therefore \quad$ These three triangles have same height.

- Property - 2: The ratio of areas of two triangles with equal height is equal to the ratio of their corresponding bases.
(1) In the following figure, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ lie between the same two parallel lines l and m.
$\therefore \quad$ Their heights are equal.
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{\mathrm{BC}}{\mathrm{QR}}$

(2) In the following figure, $\triangle \mathrm{ABD}, \triangle \mathrm{ADC}$ and $\triangle \mathrm{ABC}$ have common vertex A, and their bases $B D, C D$ and $B C$ lie on the same line $B C$

Hence they have equal heights. Considering two triangles at a time we get the following results:
(i) $\frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ADC})}=\frac{\mathrm{BD}}{\mathrm{CD}}$

(ii) $\frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ABC})}=\frac{\mathrm{BD}}{\mathrm{BC}}$
(iii) $\frac{A(\triangle \mathrm{ADC})}{\mathrm{A}(\triangle \mathrm{ABC})}=\frac{\mathrm{DC}}{\mathrm{BC}}$

- Property -3: The ratio of areas of two triangles having equal bases, is equal to the ratio of their corresponding heights.

Q
In the above figure, $\triangle A B C$ and $\triangle A B D$ have the same base $A B$.
$\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{ABD})}=\frac{\mathrm{CP}}{\mathrm{DQ}}$

- Property - 4: Areas of two triangles having equal bases and equal heights are equal.

In the above figure, $\triangle A B D$ and $\triangle A C D$ have common vertex A and their bases BD and CD lie on the same line $B C$.
$\therefore \quad$ Their heights are equal.
Also, D is the midpoint of reg BC .
$\therefore \quad \mathrm{BD}=\mathrm{CD}$.
$\therefore \quad$ Their bases are equal.
$A(\triangle A B D)=A(\triangle A C D)$

Activity : Fill in the blanks properly.
(i)
(Textbook page nos)

$\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{APQ})}=\frac{\mathrm{BC} \times \mathrm{AR}}{\overline{\mathrm{PQ}} \times \mathrm{AR}}=\frac{\mathrm{BC}}{\overline{\mathrm{PQ}}}$
(ii)

$\frac{\mathrm{A}(\Delta \mathrm{LMN})}{\mathrm{A}(\Delta \mathrm{DMN})}=\frac{\mathrm{MN} \times \mathrm{LP}}{\mathrm{MN} \times \mathrm{DQ}}=\frac{\mathrm{LP}}{\mathrm{DQ}}$
(iii) Point M is the midpoint of sega $A B$ See $C M$ is the median of $\triangle \mathrm{ABC}$.

$\frac{\mathrm{A}(\triangle \mathrm{AMC})}{\mathrm{A}(\triangle \mathrm{BMC})}=\frac{\mathrm{AM}}{\mathrm{BM}}$
...(Triangles with equal heights)

$$
=\frac{\mathrm{AM}}{\mathrm{AM}}=1
$$

...($\because \mathrm{M}$ is the midpoint of AB$)$
Area of two triangles having equal bases and equal heights are equal.

MASTER KEY QUESTION SET - 1

Practice Set - 1.1 (Textbook Page No. 5)

(1) Base of a triangle is 9 and height is 5 . Base of another triangle is 10 and height is 6 . Find the ratio of areas of these triangles.
(2 marks)

Solution :

Let the area, base and height of the first triangle be A_{1}, b_{1} and h_{1} respectively.

Let the area, base and height of the second triangle be A_{2}, b_{2} and h_{2} respectively.
$b_{1}=9, h_{1}=5, b_{2}=10$ and $h_{2}=6$
...(Given)
$\frac{A_{1}}{A_{2}}=\frac{b_{1} \times h_{1}}{b_{2} \times h_{2}}$
...(Write the statement of)

$$
\therefore \quad=\frac{9 \times 5}{10 \times 6}
$$

$$
\therefore \quad \frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{3}{4}
$$

$\therefore \quad$ The ratio of the areas of the triangles is 3:4
(3) In the adjoining figure seg PS \perp ray RQ,
seg QT \perp seg PR.
If $R Q=6$,
$P S=6$ and $P R=12$
then find QT.

(2 marks)

Solution :

Area of a triangle $=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
\mathrm{A}(\triangle \mathrm{PQR}) & =\frac{1}{2} \times \mathrm{RQ} \times \mathrm{PS} \\
& =\frac{1}{2} \times 6 \times 6
\end{aligned}
$$

$\mathrm{A}(\triangle \mathrm{PQR})=18$ sq. units

$$
\begin{aligned}
& \text { Also, } \mathrm{A}(\triangle \mathrm{PQR})=\frac{1}{2} \times \mathrm{PR} \times \mathrm{QT} \\
& \therefore \quad 18
\end{aligned} \begin{aligned}
\therefore \quad & \frac{1}{2} \times 12 \times \mathrm{QT} \\
\mathrm{QT} & =\frac{18 \times 2}{12}
\end{aligned}
$$

$\therefore \quad$ QT $=3$ units
(4) In adjoining figure $\mathrm{AP} \perp \mathrm{BC}, \mathrm{AD} \| \mathrm{BC}$, then find $\mathrm{A}(\triangle \mathrm{ABC})$: $\mathrm{A}(\triangle \mathrm{BCD})$
(2 marks)

Solution :
line AD || line BC
...(Given)
$\therefore \quad \triangle \mathrm{ABC}$ and $\triangle \mathrm{BCD}$ lie between the same two parallel lines $A D$ and $B C$.
$\therefore \quad$ Their heights are equal.
Also, they have a common base BC
$\therefore \quad \mathrm{A}(\triangle \mathrm{ABC})=(\triangle \mathrm{BCD}) \quad$...(Triangles having equal base and equal height)

$$
\therefore \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{BCD})}=1
$$

(2) In figure $\mathrm{BC} \perp \mathrm{AB}, \mathrm{AD} \perp \mathrm{AB}$, $\mathrm{BC}=4, \mathrm{AD}=8$ then
find $\frac{A(\triangle A B C)}{A(\triangle A D B)}$
A($\triangle \mathrm{ADB})$

Solution

(1 mark)

$$
\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{ADB})}=\frac{\mathrm{BC}}{\mathrm{AD}} \ldots(\text { Triangles with common base })
$$

$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{ADB})}=\frac{4}{8}$
$\therefore \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{ADB})}=\frac{1}{2}$

Problem Set - 1 (Textbook Page No. 27)

(2) In $\triangle \mathrm{ABC}, \mathrm{B}-\mathrm{D}-\mathrm{C}$ and $B D=7, B C=20$. Then find the following ratio.
(i) $\frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ADC})}$

(ii) $\frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ABC})}$ (iii) $\frac{\mathrm{A}(\triangle \mathrm{ADC})}{\mathrm{A}(\triangle \mathrm{ABC})}$
(3 marks)
Solution :
$B C=B D+D C$
$\therefore \quad 20=7+D C$
$\therefore \quad 20-7=\mathrm{DC}$
$\therefore \quad \mathrm{DC}=13$ units.
$\triangle \mathrm{ABD}, \triangle \mathrm{ADC}$ and $\triangle \mathrm{ABC}$ have a common vertex A and their bases $B D, D C$ and $B C$ lie on the same line BC.
$\therefore \quad$ their heights are equal.
(1) $\frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ADC})}=\frac{\mathrm{BD}}{\mathrm{DC}}$
...(triangles with equal height)
$\frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ADC})}=\frac{7}{13}$
(2) $\frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ABC})}=\frac{\mathrm{BD}}{\mathrm{BC}}$
...(triangles with equal height)
$\frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ABC})}=\frac{7}{20}$
(3) $\frac{\mathrm{A}(\triangle \mathrm{ADC})}{\mathrm{A}(\triangle \mathrm{ABC})}=\frac{\mathrm{DC}}{\mathrm{BC}}$
...(triangles with equal height)
$\frac{\mathrm{A}(\triangle \mathrm{ADC})}{\mathrm{A}(\triangle \mathrm{ABC})}=\frac{13}{20}$
(3) Ratio of areas of two triangles with equal height is $2: 3$. If base of smaller triangle is 6 cm then what is the corresponding base of the bigger triangles.
(2 marks)

Solution :

Let the area and base of the smaller triangle be A_{1}, and b_{1} respectively.
Let the area and base of the bigger triangle be A_{2}, and b_{2} respectively.
Both the triangles have equal height
...(Given)
$\therefore \quad \frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{2}{3}$ and $b_{1}=6 \mathrm{~cm}$
...(Given)
$\therefore \quad \frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{b_{1}}{b_{2}}$
...(Triangles with equal height)
$\therefore \quad \frac{2}{3}=\frac{6}{b_{2}}$
$\therefore \quad b_{2}=\frac{3 \times 6}{2}$
$\therefore \quad b_{2}=9 \mathrm{~cm}$
$\therefore \quad$ The base of the bigger triangle is 9 cm .
(4) In the figure given
$\angle \mathrm{ABC}=\angle \mathrm{DCB}=90^{\circ}$.
$\mathrm{AB}=6, \mathrm{DC}=8$.
then $\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{DCB})}$?

Solution :

$\triangle A B C$ and $\triangle D C B$ have a common base $B C$.
$\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{DCB})}=\frac{\mathrm{AB}}{\mathrm{DC}}$
...(Triangles with equal base)
$\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{DCB})}=\frac{6}{8}$
$\therefore \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{DCB})}=\frac{3}{4}$
(5) In the adjoining
figure,
$P M=10 \mathrm{~cm}$,
$A(\triangle P Q S)=100 \mathrm{sq} \mathrm{cm}$
$A(\Delta Q R S)=110 \mathrm{sq} \mathrm{cm}$ then find NR.

Solution :
$\triangle P Q S$ and $\triangle \mathrm{QRS}$ have common base QS.
$\frac{\mathrm{A}(\triangle \mathrm{PQS})}{\mathrm{A}(\Delta \mathrm{QRS})}=\frac{\mathrm{PM}}{\mathrm{RN}}$
...(triangles with equal base)

$$
\begin{array}{ll}
\therefore & \frac{100}{110}=\frac{10}{\mathrm{RN}} \\
\therefore & \mathrm{RN}=\frac{10 \times 110}{100}
\end{array}
$$

$$
\therefore \quad \mathrm{RN}=11 \mathrm{~cm}
$$

Practice set - 1.1 (Textbook Page No. 6)

(5) In the adjoining figure, $\mathrm{PQ} \perp \mathrm{BC}, \mathrm{AD} \perp \mathrm{BC}$, then find the following ratios
(i) $\frac{\mathrm{A}(\triangle \mathrm{PQB})}{\mathrm{A}(\triangle \mathrm{PBC})}$
(ii) $\frac{\mathrm{A}(\triangle \mathrm{PBC})}{\mathrm{A}(\triangle \mathrm{ABC})}$
(iii) $\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{ADC})}$
(iv) $\frac{\mathrm{A}(\triangle \mathrm{ADC})}{\mathrm{A}(\triangle \mathrm{PQC})}$
(2 marks)

Solution :
(i) $\quad \triangle \mathrm{PQB}$ and $\triangle \mathrm{PBC}$ have a common height PQ .
$\therefore \quad \frac{\mathbf{A}(\triangle \mathbf{P Q B})}{\mathbf{A}(\triangle \mathbf{P B C})}=\frac{\mathbf{B Q}}{\mathbf{B C}} \quad \ldots$ (Triangles with equal height)
(ii) $\triangle \mathrm{PBC}$ and $\triangle \mathrm{ABC}$ have a common base BC .
$\therefore \quad \frac{\mathbf{A}(\triangle \mathbf{P B C})}{\mathbf{A}(\triangle \mathrm{ABC})}=\frac{\mathbf{P Q}}{\mathbf{A D}} \quad \ldots($ Triangles with equal base $)$
(iii) $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}$ have a common height AD .
$\therefore \frac{\mathbf{A}(\triangle \mathbf{A B C})}{\mathbf{A}(\triangle \mathbf{A D C})}=\frac{\mathbf{B C}}{\mathbf{D C}} \quad \ldots$ (Triangles with equal height)
(iv)
$\frac{\mathrm{A}(\triangle \mathrm{ADC})}{\mathrm{A}(\triangle \mathrm{PQC})}=\frac{\mathrm{DC} \times \mathrm{AD}}{\mathrm{QC} \times \mathrm{PQ}}$...(The ratio of areas of two triangles is equal to the ratio of product of bases and their corresponding heights)

[^0]A-D-B, A-E-C
To Prove : $\frac{A D}{D B}=\frac{A E}{E C}$
Construction : Draw seg BE and seg CD.
Proof: $\triangle \mathrm{ADE}$ and $\triangle \mathrm{BDE}$ have a common vertex E and their bases $A D$ and $B D$ lie on the same line AB.
$\therefore \quad$ Their heights are equal .
$\frac{\mathrm{A}(\triangle \mathrm{ADE})}{\mathrm{A}(\triangle \mathrm{BDE})}=\frac{\mathrm{AD}}{\mathrm{DB}}$
(Triangles having equal height)
$\triangle \mathrm{ADE}$ and $\triangle \mathrm{CDE}$ have a common vertex D and their bases AE and EC lie on the same line AC.
$\therefore \quad$ Their heights are equal.
$\frac{\mathrm{A}(\triangle \mathrm{ADE})}{\mathrm{A}(\triangle \mathrm{CDE})}=\frac{\mathrm{AE}}{\mathrm{CE}}$
(Triangles having equal height)
line DE II side BC
...(Given)
$\triangle \mathrm{BDE}$ and $\triangle \mathrm{CDE}$ are between the same two parallel lines DE and BC.
$\therefore \quad$ Their heights are equal.
Also, they have same base DE.
$\therefore \quad \mathrm{A}(\triangle \mathrm{BDE})=\mathrm{A}(\triangle \mathrm{CDE}) \ldots(\mathrm{iii})$
(Areas of two triangles having equal base and equal height are equal)
$\frac{\mathrm{A}(\triangle \mathrm{ADE})}{\mathrm{A}(\triangle \mathrm{BDE})}=\frac{\mathrm{A}(\triangle \mathrm{ADE})}{\mathrm{A}(\Delta \mathrm{CDE})}$
...(iv) [From (iii)]
$\underline{\mathrm{AD}}=\underline{\mathrm{AE}}$
...[From (i), (ii) and (iv)]

- Converse of Basic proportionality theorem Statement : If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side.

In $\triangle \mathrm{PQR}$, line l intersects the side PQ and side PR in the points M and N respectively. such that $\frac{P M}{M Q}=\frac{P N}{N R}$ and $P-M-Q, P-N-R$
$\therefore \quad$ line $l \|$ side $Q R$
Property of an Angle Bisector of a Triangle Statement: In a triangle, the angle bisector divides the side opposite to the angle in the ratio of the remaining sides.
(4 marks)

- - - - - - - - - - - - - - - - - - - - - - - - -

Given :
In $\triangle A B C$, ray $A D$ is the bisector of $\angle B A C$ such that $\mathrm{B}-\mathrm{D}-\mathrm{C}$.
To Prove : $\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}$
Construction : Draw a line passing through C, parallel to line AD and intersecting line BA at point E, B-A - E.

Proof: In $\triangle \mathrm{BEC}$,
line $\mathrm{AD} \|$ | side CE
...(Construction)
$\frac{B D}{D C}=\frac{A B}{A E} \quad \ldots$ (i) (By Basic Proportionately
Theorem)
line AD || line CE
... (Construction)
\therefore On transversal BE,
$\angle \mathrm{BAD} \cong \angle \mathrm{AEC}$
...(ii) (Corresponding angle
theorem)
Also, on transversal AC,
$\angle \mathrm{DAC} \cong \angle \mathrm{ACE}$...(iii) (alternate angle theorem)
But, $\angle \mathrm{BAD} \cong \angle \mathrm{DAC}$
(\because ray AD bisects $\angle \mathrm{BAC}$)
In $\triangle \mathrm{AEC}, \angle \mathrm{AEC} \cong \angle \mathrm{ACE}$
...[From (ii), (iii) and (iv)]
$\therefore \quad \operatorname{seg} \mathrm{AC} \cong \operatorname{seg} \mathrm{AE}$ Isosceles triangle theorem)
$\therefore \quad A C=A E$
$\therefore \quad \frac{\mathbf{B D}}{\mathbf{D C}}=\frac{\mathbf{A B}}{\mathbf{A C}} \quad \ldots[$ From (i) and (v)]

For more information:

Write another proof of the theorem.
(Textbook page no. 9)
Given : In $\triangle \mathrm{ABC}$, bisector \angle A insects side BC

Construction
Draw $\mathrm{DM} \perp \mathrm{AB}$

and $\mathrm{DN} \perp \mathrm{AC}$

Proof: $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}$ have a common vertex A and their bases. BD and DC lie on the same line BC.
\therefore their heights are equal.
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ADC})}=\frac{\mathrm{BD}}{\mathrm{DC}} \quad \ldots$ (i) (Triangles having equal
Also, $\frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ADC})}=\frac{\mathrm{AB} \times \mathrm{DM}}{\mathrm{AC} \times \mathrm{DN}} \ldots \begin{array}{r}\text { (ii) (Statmement } \\ \text { of property }-\mathrm{I})\end{array}$
Every point on the bisector of an angle is equidistant from the sides of the angle
$\mathrm{DM}=\mathrm{DN}$
$\therefore \frac{\mathrm{A}(\triangle \mathrm{ABD})}{\mathrm{A}(\triangle \mathrm{ADC})}=\frac{\mathrm{AB}}{\mathrm{AC}} \quad \ldots$ (iv) [From (ii) and (iii)]
$\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}$
...[From (i) and (iv)]
$\frac{A B}{A C}=\frac{B D}{D C}$
...[From (i) and (iv)]
Converse of angle bisector property
If in $\triangle A B C$ point D on side $B C$
such that $\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{DC}}$, then ray AD bisects $\angle \mathrm{BAC}$ (Textbook page no. 13)

Example :
In $\triangle \mathrm{ABC}$,
ray BD bisects
$\angle A B C$ A-D-C,
side DE IIside BC ,
A-E-B

then prove, $\frac{A B}{B C}=\frac{A E}{E B}$
Proof :
In $\triangle A B C$, ray $B D$ bisects $\angle B$.
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{AD}}{\mathrm{DC}}$
...(i) (angle bisector property of a triangle)

In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$,

$$
\begin{aligned}
& \frac{\mathrm{AE}}{\mathrm{~EB}}=\frac{\mathrm{AD}}{\mathrm{DC}} \\
& \text {..(ii) (By basic proportionality } \\
& \text { EB DC } \\
& \text { theorem) } \\
& \therefore \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{AE}}{\mathrm{~EB}}
\end{aligned}
$$

- Property of Three Parallel Lines and their transversals
The ratio of the intercepts made on the transversal by three parallel lines is equal to the ratio of the corresponding intercepts made on any other transversal by the same parallel lines.

line $l \|$ line $m \|$ line n and lines l, m and n cut the transversal x in points P, Q and R respectively and lines l, m and n cut the transversal y in point E, F and G respectively.
$\therefore \quad \frac{\mathrm{PQ}}{\mathrm{QR}}=\frac{\mathrm{EF}}{\mathrm{FG}}$
Activity :
(Textbook page no. 12) In the adjoining figure,
$\mathrm{AB}\|\mathrm{CD}\| \mathrm{EF}$. If $\mathrm{AC}=5.4$,
$C E=9, B D=7.5$, then find $D F$.

Solution :
$A B\|C D\| E F$
$\frac{\mathrm{AC}}{\overline{\mathrm{CE}}}=\frac{\mathrm{BD}}{\mathrm{DF}}$
... (Property of three parallel
lines and their transversal)
$\frac{5.4}{9}=\frac{7.5}{\mathrm{DF}}$
$\therefore \quad \mathrm{DF}=12.5$

Practice Set - 1.2 (Textbook Page No. 14)

(4) Measurements of the some angles in the figure are given. Prove that $\frac{\mathbf{A P}}{\mathbf{P B}}=\frac{\mathbf{A Q}}{\mathbf{Q C}} \quad$ (2 marks)

Solution :

$\angle \mathrm{APQ} \cong \angle \mathrm{ABC}$
...(Given)
$\therefore \quad \operatorname{seg} \mathrm{PQ} \|$ side $B C$
...(i)
(Corresponding angles test) In $\triangle A B C$, seg $P Q \|$ side $B C$
...[From (i)]
$\therefore \quad \frac{\mathbf{A P}}{\mathbf{P B}}=\frac{\mathbf{A Q}}{\mathbf{Q C}} \quad \ldots($ By Basic Proportionality Theorem $)$

Problem Set - 1 (Textbook Page No. 28)

(7) In the figure,

A-D - C and
B-E-C.
Seg DE \| side
AB. If AD
$=5, \quad \mathrm{DC}=3$,

$B C=6.4$ then find $B E$.
(2 marks)

Solution :

Let $\mathrm{BE}=x$ units
...(Supposition)
$\mathrm{BC}=\mathrm{BE}+\mathrm{CE}$
$\therefore \quad 6.4=x+C E$
$\therefore \quad \mathrm{CE}=(6.4-x)$ units
In $\triangle A B C$, seg $D E \|$ side $A B$
...(Given)
$\therefore \quad \frac{\mathrm{AD}}{\mathrm{DC}}=\frac{\mathrm{BE}}{\mathrm{EC}} \quad \ldots$ (By Basic Proportionality theorem $)$
$\therefore \quad \frac{5}{3}=\frac{x}{6.4-x}$
$\therefore 5(6.4-x)=3 x$
$\therefore \quad(6.4 \times 5)-5 x=3 x$
$\therefore \quad 6.4 \times 5=3 x+5 x$
$\therefore \quad \frac{6.4 \times 5}{8}=x$
$\therefore \quad x \quad=4$
$\therefore \quad B E=4$ units

Practice Set - 1.2 (Textbook Page No. 13)

(2) In $\triangle \mathrm{PQR}$,
$P M=15$,
$P Q=25$,
$P R=20$,
$\mathrm{NR}=8$

whether lin NM is parallel to side RQ? Give reason.
(3 marks)
Solution :

$$
\begin{array}{ll}
& P Q=P M+M Q \\
\therefore & 25=15+M Q \\
\therefore & M Q=25-15 \\
\therefore & \mathrm{MQ}=10 \\
& \\
& \mathrm{PR}=\mathrm{PN}+\mathrm{NR} \\
\therefore & 20=P N+8 \\
\therefore & \mathrm{PN}=20-8 \\
\therefore & \mathrm{PN}=12 \tag{i}\\
& \\
& \text { Now, } \frac{\mathrm{PM}}{\mathrm{MQ}}=\frac{15}{10}=\frac{3}{2}
\end{array}
$$

$$
\ldots(\mathrm{P}-\mathrm{M}-\mathrm{Q})
$$

$$
\ldots(\mathrm{P}-\mathrm{N}-\mathrm{R})
$$

and $\frac{\mathrm{PN}}{\mathrm{NR}}=\frac{12}{8}=\frac{3}{2}$
$\therefore \quad$ In $\triangle \mathrm{PRQ}, \frac{\mathrm{PM}}{\mathrm{MQ}}=\frac{\mathrm{PN}}{\mathrm{NR}} \quad \ldots[$ From (i) and (ii)]
$\therefore \quad \operatorname{seg}$ NM || side QR ...(Converse of basic proportionality theorem)
(10) In the adjoining figure X is any point in interior of triangle. Point X is joined to vertices of triangle.

Seg PQ || DE,
seg QR || seg EF. Then fill in the blanks to prove that, seg PR\|seg DF.
(3 marks)
Proof:
In $\triangle \mathrm{XDE}, \mathrm{PQ} \| \mathrm{DE}$
...(Given)
$\therefore \quad \frac{\mathrm{XP}}{\mathrm{PD}}=\frac{\mathrm{XQ}}{\mathrm{QE}} \quad \ldots$ (i) (Basic proportionality theorem)
In \triangle XEF, seg QR II side EF
... (Given)
$\therefore \quad \overline{\overline{\mathrm{QE}}}=\frac{\overline{\mathrm{XR}}}{\overline{\mathrm{RF}}} \ldots$ (ii) (Basic proportionality theorem)
$\therefore \quad \frac{\mathrm{XP}}{\overline{\mathrm{PD}}}=\frac{\mathrm{XR}}{\mathrm{RF}}$
...[From (i) and (ii)]
$\therefore \quad$ seg PR\|side DF
...(Converse of Basic Proportionality theorem)
(1) Given below some triangles and lengths of line segments. Identity in which figures, Ray PM is bisector of \angle QPR.
(3 marks)

Solution :
(i) $\frac{\mathrm{PQ}}{\mathrm{PR}}=\frac{7}{3}$
$\frac{\mathrm{QM}}{\mathrm{RM}}=\frac{3.5}{1.5}=\frac{35}{15}=\frac{7}{3}$
In $\triangle P Q R, \frac{P Q}{P R}=\frac{Q M}{R M}$
...[From (i) and (ii)]
$\therefore \quad$ Ray PM bisects $\angle \mathrm{QPR}$
(ii) $\frac{\mathrm{PQ}}{\mathrm{PR}}=\frac{10}{7}$
$\frac{\mathrm{QM}}{\mathrm{RM}}=\frac{8}{6}=\frac{4}{3}$
In $\triangle P Q R, \frac{P Q}{P R} \neq \frac{\mathrm{QM}}{\mathrm{RM}} \quad \ldots[$ From (i) and (ii)]
$\therefore \quad$ Ray PM does not bisect $\angle \mathrm{QPR}$
(iii) $\frac{\mathrm{PQ}}{\mathrm{PR}}=\frac{9}{10}$
$\frac{\mathrm{QM}}{\mathrm{RM}}=\frac{3.6}{4}=\frac{36}{40}=\frac{9}{10}$
In $\triangle P Q R, \frac{P Q}{P R}=\frac{Q M}{R M}$
...[From (i) and (ii)]
$\therefore \quad$ Ray PM bisect \angle QPR
(3) In $\triangle \mathbf{M N P}, \mathrm{NQ}$ is bisector of $\angle \mathbf{N}$. If $\mathbf{M N}=5$, $P N=7, M Q=2.5$ then find $Q P$.
(2 marks)

In $\triangle \mathrm{MNP}, \mathrm{NQ}$ bisects $\angle \mathrm{MNP}$
...(Given)
$\frac{\mathrm{MN}}{\mathrm{PN}}=\frac{\mathrm{MQ}}{\mathrm{PQ}} \ldots$ (Angle bisector property of a triangle)
$\therefore \quad \frac{5}{7}=\frac{2.5}{\mathrm{PQ}}$
$\therefore \quad 5 \times \mathrm{PQ}=2.5 \times 7$
$\therefore \quad \mathrm{PQ}=\frac{2.5 \times 7}{5}$
$\therefore \quad \mathrm{PQ}=3.5$ units
(6) Find QP using given information in the figure.

(2 marks)

Solution :
In $\triangle \mathrm{MNP}$, NQ bisects $\angle \mathrm{MNP}$
...(Given)

$$
\begin{array}{lll}
\therefore & \frac{\mathrm{MN}}{\mathrm{NP}}=\frac{\mathrm{MQ}}{\mathrm{QP}} & \ldots(\text { (Angle bisector property } \\
\therefore & \frac{25}{40}=\frac{14}{\mathrm{QP}} & \text { of a triangle) } \\
\therefore & \mathrm{QP}=\frac{14 \times 40}{25} & \\
\therefore & \mathrm{QP}=22.4 \text { units } &
\end{array}
$$

(8) In $\triangle \mathrm{LMN}$,

Ray MT bisects $\angle \mathrm{LMN}$,
$\mathrm{LM}=6$, if

$\mathrm{MN}=10, \mathrm{TN}=8$.
then find LT.
(2 marks)

Solution :

In $\triangle \mathrm{LMN}$, Ray MT bisects $\angle \mathrm{LMN}$
...(Given)

$$
\therefore \quad \frac{\mathrm{LM}}{\mathrm{MN}}=\frac{\mathrm{LT}}{\mathrm{TN}} \quad \ldots \text { (Angle bisector property }
$$

$\therefore \quad \frac{6}{10}=\frac{\mathrm{LT}}{8}$
$\therefore \quad \mathrm{LT}=\frac{6 \times 8}{10}$

$$
\therefore \quad \text { LT }=4.8 \text { units }
$$

(9) In $\triangle A B C$, seg $B D$ bisects $\angle A B C$, if $A B=x$, $\mathrm{BC}=x+5, \mathrm{AD}=x-2, \mathrm{DC}=x+2$. Then find the value of x.
(2 marks)

Solution :

In $\triangle A B C$, ray $B D$ bisects $\angle A B C$
...(Given)

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{AD}}{\mathrm{DC}} \\
\therefore & \frac{x}{x+5}=\frac{x-2}{x+2} \\
& x(x+2)=(x+5)(x-2) \\
& x^{2}+2 x=x^{2}+5 x-2 x-10 \\
x^{2}+2 x=x^{2}+3 x-10 \\
& x^{2}+2 x-x^{2}-3 x=-10 \\
& -x=-10 \\
& x=10
\end{array}
$$

...(Angle bisector property
of a triangle)

Problem Set - 1 (Textbook Page No. 29)

(10) In the adjoining figure, bisectors of $\angle B$ and $\angle C$ intersect each other in point X . Line AXintersects side $B C$ in point Y. $\mathrm{AB}=5, \mathrm{AC}=4, \mathrm{BC}=6$ then find $\frac{A X}{X Y}$.

(3 marks)

Solution :

In $\triangle A B Y$, ray $B X$ bisects $\angle A B Y$
...(Given)
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{BY}}=\frac{\mathrm{AX}}{\mathrm{XY}}$
...(i) (Angle bisector property of a triangle)
In $\triangle A C Y$, ray $C X$ bisects $\angle A C Y$
...(Given)
$\therefore \quad \frac{A C}{C Y}=\frac{A X}{X Y} \quad \ldots$ (ii) $\begin{array}{r}\text { (Angle bisector property } \\ \text { of a triangle) }\end{array}$
$\therefore \quad \frac{A B}{B Y}=\frac{A C}{C Y}=\frac{A X}{X Y}$
...[From (i) and (ii)]
$\therefore \quad \frac{A B+A C}{B Y+C Y}=\frac{A X}{X Y} \quad \cdots$ (By theorem on equal ratios)
$\therefore \quad \frac{A B+A C}{B C}=\frac{A X}{X Y}$
$\therefore \quad \frac{5+4}{6}=\frac{\mathrm{AX}}{X Y}$
$\therefore \quad \frac{\mathrm{AX}}{\mathrm{XY}}=\frac{9}{6}$
$\therefore \quad \frac{\mathrm{AX}}{\mathrm{XY}}=\frac{3}{2}$

Practice Set - 1.2 (Textbook Page No. 15)

*(11) In $\triangle A B C$, Ray $B D$ bisects $\angle A B C$ and Ray $C E$ bisects $\angle A C B$. If seg $A B \cong \operatorname{seg} A C$, then prove that ED \| BC.
(3 marks)
Proof:

In $\triangle A B C$, ray $B D$ bisects $\angle A B C$
...(Given)
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{AD}}{\mathrm{DC}}$
(Angle bisector property of a triangle)

In $\triangle A B C$, ray $C E$ bisects $\angle A C B$
...(Given)
$\therefore \quad \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{AE}}{\mathrm{BE}}$
...(ii) (Angle bisector property of a triangle)
$\operatorname{seg} A B \cong \operatorname{seg} A C$
...(iii) (Given)
$\therefore \quad \frac{A B}{B C}=\frac{A E}{B E}$
...(iv) [From (ii) and (iv)]
$\therefore \quad$ In $\triangle \mathrm{ABC}, \frac{\mathrm{AD}}{\mathrm{DC}}=\frac{\mathrm{AE}}{\mathrm{BE}}$
$\therefore \quad$ seg ED \| side BC
...(Converse of Basic proportionality theorem)

Problem Set - 1 (Textbook Page No. 28)
(9) In $\triangle P Q R$, seg PM is a median. Angle bisectors of $\angle \mathrm{PMQ}$ and $\angle \mathrm{PMR}$ intersect side PQ and side

PR in point X and Y respectively. Prove that $\mathbf{X Y} \| \mathrm{QR}$.
(3 marks)
(Complete the proof by filling the boxes)

Proof:

In $\triangle \mathrm{PMQ}$, ray MX bisects $\angle \mathrm{PMQ}$
...(Given)

$$
\therefore \quad \begin{array}{ll}
\therefore & \frac{P M}{M Q} \\
\hline & =\frac{P X}{X Q}
\end{array} \quad . . . \text { (i) } \quad \begin{array}{r}
\text { (Angle bisector } \\
\text { property of a triangle) }
\end{array}
$$

In \triangle PMR, ray MY bisects $\angle \mathrm{PMR}$
...(Given)

$$
\therefore \quad \begin{array}{ll}
\frac{\mathrm{PM}}{\mathrm{MR}}=\frac{\mathrm{PY}}{\mathrm{YR}} & \ldots \text { (ii) } \quad \begin{array}{r}
\text { (Angle bisector } \\
\text { property of a triangle) }
\end{array}
\end{array}
$$

But, $\frac{P M}{\mathrm{MQ}}=\frac{\mathrm{PM}}{\mathrm{MR}} \quad . .(\because \mathrm{M}$ is midpoint of seg QR ,

$$
\therefore \mathrm{MQ}=\mathrm{MR})
$$

$$
\frac{P X}{X Q}=\frac{P Y}{Y R}
$$

...[From (i) and (ii)]
$\therefore \quad \operatorname{seg} X Y \|$ side $Q R$
...(Converse of Basic proportionality theorem)

Practice set - 1.2 (Textbook Page No. 14)
(5) In trapezium ABCD , side $\mathrm{AB} \|$ side $\mathrm{PQ} \|$ side DC . $\mathrm{AP}=15, \mathrm{PD}=12, \mathrm{QC}=14$. Find $\mathrm{BQ} . \quad(2 \mathrm{marks})$

Solution :
$\operatorname{seg} \mathrm{AB}\|\operatorname{seg} \mathrm{PQ}\| \operatorname{seg} \mathrm{DC}$
...(Given)
$\therefore \quad \frac{\mathrm{AP}}{\mathrm{PD}}=\frac{\mathrm{BQ}}{\mathrm{QC}} \quad \ldots$ (Property of three parallel lines $\begin{array}{r}\text { and their transversals) }\end{array}$
$\therefore \quad \frac{15}{12}=\frac{\mathrm{BQ}}{14}$
$\therefore \quad \mathrm{BQ}=\frac{15 \times 14}{12}$
$\therefore \quad B Q=17.5$ units
(7) In the adjoining figure $\mathrm{AB}\|\mathrm{CD}\| \mathrm{EF}$. Find x and AE.
(2 marks)

Solution :

$$
\left.\begin{array}{lll}
& \text { seg } \mathrm{AB} \| \text { seg } \mathrm{CD} \| \text { seg EF } \\
\therefore & \frac{\mathrm{AC}}{\mathrm{CE}}=\frac{\mathrm{BD}}{\mathrm{DF}} \quad \ldots(\text { (Property of three parallel lines } \\
\text { and their transversals) }
\end{array}\right) \quad \begin{array}{ll}
\therefore & \frac{12}{x}=\frac{8}{4} \\
\therefore & x=\frac{12 \times 4}{8} \\
\therefore & x=6 \\
& \mathrm{AE}=\mathrm{AC}+\mathrm{CE} \\
\therefore & \mathrm{AE}=18 \text { units }
\end{array}
$$

Problem Set - 1 (Textbook Page No. 28)
(8) In the figure given seg PA, seg QB, seg RC and seg SD are perpendicular to line AD.
$A B=60, B C=70$,
$C D=80$ and $P S=280$,
then find $P Q, Q R$ and RS.

Solution :
seg PA \perp line AD
seg QB \perp line $A D$...(Given)
seg $R C \perp$ line $A D$
seg $\mathrm{SD} \perp$ line AD
$\therefore \quad$ seg PA \| seg QB\|seg RC\|seg SD
...(If two or more lines are perpendicular to the same line then they are parallel to each other)
$\therefore \quad \mathrm{PQ}: \mathrm{QR}: \mathrm{RS}=\mathrm{AB}: \mathrm{BC}: \mathrm{CD} \quad$...(Property of three parallel lines and their transversals)
$\therefore \quad \mathrm{PQ}: \mathrm{QR}: \mathrm{RS}=60: 70: 80$
$\therefore \quad \mathrm{PQ}: \mathrm{QR}: \mathrm{RS}=6: 7: 8$
Let the common multiple be x.
$\therefore \quad \mathrm{PQ}=6 x, \mathrm{QR}=7 x, \mathrm{RS}=8 x$
$\mathrm{PS}=\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}$
$\therefore \quad 280=6 x+7 x+8 x$
$\therefore \quad 21 x=280$
$\therefore \quad x=\frac{280}{21}=\frac{40}{3}$

$$
\begin{aligned}
& \mathrm{PQ}=6 x=6 \times \frac{40}{3}=80 \text { units } \\
& \mathrm{QR}=7 x=7 \times \frac{40}{3}=\frac{280}{3} \text { units } \\
& \mathrm{RS}=8 x=8 \times \frac{40}{3}=\frac{320}{3} \text { units }
\end{aligned}
$$

Points to Remember:

- Similarity of Triangles

Definition: For a given one - to - one correspondence between the vertices of two triangles, if
(i) their corresponding angles are congruent,
(ii) their corresponding sides are in proportion, then the correspondence is known as similarity and the triangles are said to be Similar Triangles.

In above figure, for correspondence $\mathrm{ABC} \leftrightarrow \mathrm{PQR}$
(i) $\angle \mathrm{A} \cong \angle \mathrm{P}, \angle \mathrm{B} \cong \angle \mathrm{Q}, \angle \mathrm{C} \cong \angle \mathrm{R}$ and
(ii) $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{2}{1}$

Hence, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are similar triangles.
$\triangle A B C$ is similar to $\triangle P Q R$ under $A B C \leftrightarrow P Q R$, this statement is written symbolically as $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$.

Note

If two triangles are similar, then
(i) their corresponding angles are congruent
(ii) their corresponding sides are in proportion.

$$
\text { If } \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} \text {, then }
$$

(i) $\angle \mathrm{A} \cong \angle \mathrm{P}, \angle \mathrm{B} \cong \angle \mathrm{Q}, \angle \mathrm{C} \cong \angle \mathrm{R}$
(ii) $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}$

Points to Remember:

- Test of Similarity of Triangles

When two triangles are similar, then three pairs of corresponding angles are congruent and three pairs of corresponding sides are in proportion.

But to prove that two triangles are similar, we select only three conditions taken in proper order. These conditions are called Tests of similarity. There are three tests of similarity :
(1) A - A - A test (A - A test) :

For a given one - to - one correspondence between the vertices of two triangles, if the corresponding angles are congruent, then the two triangles are similar.

In the figure, for $\mathrm{ABC} \leftrightarrow \mathrm{PQR}$,
if, $\angle \mathrm{A} \cong \angle \mathrm{P}, \angle \mathrm{B} \cong \angle \mathrm{Q}$ and $\angle \mathrm{C} \cong \angle \mathrm{R}$, then $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ by A-A-A test of similarity.
We know that sum of measures of three angles of a triangle is 180°. Because of this if two pairs of corresponding angles of two given triangles are congruent then remaining pair is also congruent, and thus the triangles become similar triangles. This is known as A - A test.
A - A Test : For a given one-one correspondence between the vertices of two triangles, if two angles of one triangle are congruent with the corresponding two angles of other triangle, then the two triangles are similar.
(2) S - A - S Test:

For a given one-one correspondence between the vertices of two triangles, if two sides of one triangle are proportional to the corresponding sides of the other triangle and angles included by them are congruent, then the two triangles are similar.

In the above figure, for $\mathrm{ABC} \leftrightarrow \mathrm{PQR}$,
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{2}{1}, \quad \angle \mathrm{~B} \cong \angle \mathrm{Q}$,
then $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ by $\mathrm{S}-\mathrm{A}-\mathrm{S}$ test of similarity.
(3) S - S - S Test :

For a given one-one correspondence between the vertices of two triangles, if three sides of one triangle are proportional to the three corresponding sides of other triangle, then the two triangles are similar.

In the above figure, for $A B C \leftrightarrow P Q R$, $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{2}{1}$
then $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
by S-S - S test of similarity.
Properties of similar triangles
(1) $\triangle \mathrm{ABC} \sim \triangle \mathrm{ABC}$
...(Reflexivity)
(2) If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ then
$\triangle \mathrm{DEF} \sim \triangle \mathrm{ABC}$
...(Symmetry)
(3) If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and
$\triangle \mathrm{DEF} \sim \Delta \mathrm{GHI}$ then $\triangle \mathrm{ABC} \sim \Delta \mathrm{GHI}$
...(Transitivity)

PRACTICE SET - 1.3 (Textbook Page No.)

(3) As shown in adjoining figure, two poles of height 8 m and 4 mare perpendicular to ground. If the length of shadow of smaller pole due to sunlight is $6 \mathbf{m}$ then how long will be the shadow of bigger pole at the same time?
(2 marks)

Solution :
Let PR and AC represent poles of length 4 m and 8 m respectively.
Let QR and BC represent the lengths cast by them of the poles at the same time.

Now $\triangle \mathrm{PQR} \sim \triangle \mathrm{ABC}$
...(Shadow reckoning property)
$\therefore \quad \frac{\mathrm{PR}}{\mathrm{AC}}=\frac{\mathrm{QR}}{\mathrm{BC}}$
$\therefore \quad \frac{4}{8}=\frac{6}{\mathrm{BC}}$
$\therefore \quad \mathrm{BC}=\frac{8 \times 6}{4}$
$\therefore \quad B C=12 \mathrm{~m}$
$\therefore \quad$ Length of the shadow casted by longer pole is 12 m .
(2) Arethetrianglesinthe figure given similar? (2 marks)

Solution :

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{PQ}}{\mathrm{LM}}=\frac{6}{3}=\frac{2}{1} \\
\therefore & \frac{\mathrm{QR}}{\mathrm{MN}}=\frac{8}{4}=\frac{2}{1} \\
\therefore & \frac{\mathrm{PR}}{\mathrm{LN}}=\frac{10}{5}=\frac{2}{1} \tag{iii}
\end{array}
$$

$\therefore \quad$ In $\triangle P Q R$ and $\triangle \mathrm{LMN}$

$$
\begin{array}{rll}
& \frac{\mathrm{PQ}}{\mathrm{LM}}=\frac{\mathrm{QR}}{\mathrm{MN}}=\frac{\mathrm{PR}}{\mathrm{LN}} & \ldots[\text { From (i), (ii) and (iii)] } \\
\therefore & \Delta \mathrm{PQR} \sim \Delta \mathrm{LMN} & \ldots(\mathrm{SSS} \text { test for similarity) }
\end{array}
$$

(8) In the figure seg AC and seg BD intersects each other at point P
and $\frac{A P}{C P}=\frac{B P}{D P}$.

Then
Prove that $\triangle \mathrm{ABP} \sim \Delta \mathrm{CDP}$.
(2 marks)
Proof:
In $\triangle \mathrm{ABP}$ and $\triangle \mathrm{CDP}$
$\frac{\mathrm{AP}}{\mathrm{CP}}=\frac{\mathrm{BP}}{\mathrm{DP}}$
....(Given)
$\angle \mathrm{APB} \cong \angle \mathrm{CPD} \quad . .$. (vertically opposite angles)
$\therefore \quad \triangle \mathrm{ABP} \sim \triangle \mathrm{CDP}$
...(SAS test for similarity)
(5) In trapezium $P Q R S$, side $P Q \|$ side $S R . A R=5 A P$ and $A S=5 A Q$. Prove that $: S R=5 P Q$ (3 marks)

Proof :

$$
\begin{align*}
& \mathrm{AR}=5 \mathrm{AP} \tag{Given}\\
\therefore \quad & \frac{\mathrm{AR}}{\mathrm{AP}}=\frac{5}{1} \tag{i}\\
& \mathrm{AS}=5 \mathrm{AQ} \tag{Given}\\
\therefore \quad & \frac{\mathrm{AS}}{\mathrm{AQ}}=\frac{5}{1} \tag{ii}
\end{align*}
$$

In $\triangle A S R$ and $\triangle A Q P$,

$$
\begin{array}{rlr}
& \frac{\mathrm{AR}}{\mathrm{AP}}=\frac{\mathrm{AS}}{\mathrm{AQ}} & \ldots[\text { From (i) and (ii)] } \\
& \angle \mathrm{SAR} \cong \angle \mathrm{QAP} & \ldots(\text { Vertically opposite angles }) \\
\therefore & \triangle \mathrm{ASR} \sim \triangle \mathrm{AQP} & \ldots(\text { By SAS Test of similarity })
\end{array}
$$

$$
\therefore \quad \frac{\mathrm{SR}}{\mathrm{PQ}}=\frac{\mathrm{AR}}{\mathrm{AP}}
$$

$$
\therefore \quad \frac{S R}{P Q}=\frac{5}{1}
$$

$$
\therefore \quad \mathrm{SR}=5 \mathrm{PQ}
$$

(1) In adjoining figure,
$\angle \mathrm{ABC}=75^{\circ}$,
$\angle \mathrm{EDC}=75^{\circ}$
state which two triangles are similar
 and by which
test? Also triangles by a proper one to one correspondence
(2 marks)

Solution :

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EDC}$
$\angle \mathrm{ABC} \cong \angle \mathrm{EDC}$
...(Each 75 ${ }^{\circ}$)
$\angle \mathrm{C} \cong \angle \mathrm{C}$
...(Common angle)
$\therefore \quad \triangle \mathrm{ABC} \sim \Delta \mathrm{EDC} \quad$...(By AA test for similarity)

Problem Set - 1 (Textbook Page No. 29)

(11) In $\square \mathrm{ABCD}$, seg AD \| seg BC. Diagonal AC and diagonal $B D$ intersect each other in point P. Then show that $\frac{A P}{P D}=\frac{P C}{B P}$
(3 marks)

Proof :

$\operatorname{seg} A D \| \operatorname{seg} B C$
...(Given)
$\therefore \quad \angle \mathrm{PAD} \cong \angle \mathrm{PCB}$
...(i) (Alternate angles theorem)
In $\triangle \mathrm{APD}$ and $\triangle \mathrm{CPB}$
$\angle \mathrm{PAD} \cong \angle \mathrm{PCB}$
...[From (i)]
$\angle \mathrm{APD} \cong \angle \mathrm{CPB} \quad . .$. (vertically opposite angles)
$\therefore \quad \triangle \mathrm{APD} \sim \triangle \mathrm{CPB} \quad$...(By AA test for similarity)
$\therefore \quad \frac{\mathrm{AP}}{\mathrm{PC}}=\frac{\mathrm{PD}}{\mathrm{BP}}$

$$
\therefore \quad \frac{\mathbf{A P}}{\mathbf{P D}}=\frac{\mathbf{P C}}{\mathbf{B P}}
$$

...(Alternendo)

Practice set - 1.3 (Textbook Page No. 22)

(7) $\square \mathrm{ABCD}$ is a parallelogram. Point E is on side $B C$, line DE intersects Ray AB in point T. Prove that : $\mathrm{DE} \times \mathrm{BE}=\mathrm{CE} \times \mathrm{TE}$.
(3 marks)

Proof :
$\square \mathrm{ABCD}$ is a parallelogram
...(Given)
seg $\mathrm{AB}|\mid \operatorname{seg} C D$...(Opposite sides of a parallelogram) seg AT \| $\operatorname{seg} \mathrm{CD}$... (A - B - T) on transversal TD,
$\therefore \quad \angle \mathrm{ATD} \cong \angle \mathrm{CDT} \quad . . .($ Alternate angles theorem)
$\therefore \quad \angle \mathrm{BTE} \cong \angle \mathrm{CDE}$
($\mathrm{A}-\mathrm{B}-\mathrm{T}, \mathrm{T}-\mathrm{E}-\mathrm{D}$)
In $\triangle \mathrm{BTE}$ and $\triangle \mathrm{CDE}$,
$\angle \mathrm{BTE} \cong \angle \mathrm{CDE}$
...[From (i)]
$\angle \mathrm{BET} \cong \angle \mathrm{CED} \quad$...(vertically opposite angles)
$\therefore \quad \triangle \mathrm{BTE} \sim \triangle \mathrm{CDE} \quad$...(By AA test of similarity)
$\therefore \quad \frac{\mathrm{BE}}{\mathrm{CE}}=\frac{\mathrm{TE}}{\mathrm{DE}}$
(c.s.s.t.)
$\therefore \quad \mathrm{DE} \times \mathrm{BE}=\mathrm{CE} \times \mathrm{TE}$
(6) In trapezium $A B C D$, side $A B \|$ side $D C$. Diagonals $A C$ and $B D$ intersect in O. If $A B=20, D C=6$, $O B=15$. Find $O D$.
(3 marks)

Solution :
side $A B \|$ side $C D$
...(Given)
On transversal AC
$\angle \mathrm{CAB} \cong \angle \mathrm{ACD} \quad$ (Alternate angles theorem)
$\therefore \quad \angle \mathrm{OAB} \cong \angle \mathrm{OCD}$
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$
$\angle \mathrm{AOB} \cong \angle \mathrm{COD} \quad .$. (vertically opposite angles)
$\angle \mathrm{OAB} \cong \angle \mathrm{OCD}$
...[From (i)]
$\therefore \quad \triangle \mathrm{AOB} \sim \triangle \mathrm{COD} \quad .$. (By AA test for similarity)

$$
\begin{array}{ll}
\therefore & \frac{A B}{D C}=\frac{O B}{O D} \\
\therefore & \frac{20}{6}=\frac{15}{O D} \\
\therefore & O D=\frac{15 \times 6}{20} \\
& O O=4.5 \text { units }
\end{array}
$$

(4) In $\triangle \mathrm{ABC}, \mathrm{AP} \perp \mathrm{BC}$,
$B Q \perp A C, B-P-C$,
$A-Q-C$, then prove that $\triangle C P A \sim \Delta C Q B$.
If $\mathbf{A P}=7, \mathrm{BQ}=8$,
$B C=12$ then find $A C$.
(3 marks)

Proof and Solution :
In $\triangle \mathrm{CPA}$ and $\triangle \mathrm{CQB}$
$\angle C \cong \angle C$...(Common angle)
$\angle \mathrm{APC} \cong \angle \mathrm{BQC}$
...(Each is 90°)
$\therefore \quad \triangle \mathrm{CPA} \sim \triangle \mathrm{CQB} \quad .$. (By AA test for similarity)
$\therefore \quad \frac{\mathrm{AP}}{\mathrm{BQ}}=\frac{\mathrm{AC}}{\mathrm{BC}}$
$\therefore \quad \frac{7}{8}=\frac{\mathrm{AC}}{12}$
$\therefore \quad \frac{7 \times 12}{8}=\mathrm{AC}$
$\mathrm{AC}=10.5$ units
(9) In the figure, in $\triangle A B C$, point D on side $B C$ is such that, $\angle B A C \cong \angle A D C$, then prove that, $\mathrm{CA}^{2} \equiv \mathrm{CB} \times \mathrm{CD}$.
(3 marks)

Proof:

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DAC}$,

$$
\begin{align*}
& \angle \mathrm{BAC} \cong \angle \mathrm{ADC} \tag{Given}\\
& \angle \mathrm{BCA} \cong \angle \mathrm{ACD} \\
\therefore \quad & \triangle \mathrm{ABC} \sim \triangle \mathrm{DAC} \\
\therefore & \frac{\mathrm{CA}}{\mathrm{CD}}=\frac{\mathrm{CB}}{\mathrm{CA}} \\
& \mathrm{CA}^{2}=\mathrm{CB} \times \mathrm{CD}
\end{align*}
$$

Problem Set - 1 (Textbook Page No. 29)
(12) In the adjoining figure, XY \| seg AC. If 2AX $=3 \times B X$ and $X Y=9$. Complete the activity to find the value of AC.

> ...(By AA test of similarity)

Activity :

$$
\begin{array}{lll}
& 2 \mathrm{AX}=3 \mathrm{BX} \therefore \frac{\mathrm{AX}}{\mathrm{BX}}=\frac{3}{2} \\
\therefore & \frac{\mathrm{AX}+\mathrm{BX}}{\mathrm{BX}}=\frac{3}{2}+2 \\
\therefore & \frac{\mathrm{AB}}{\mathrm{BX}}=\frac{5}{2} \\
\therefore & \Delta \mathrm{BCA} \sim \triangle \mathrm{BYX} & \ldots \text { (By componendo) } \\
\therefore & \frac{B A}{B X}=\frac{A C}{X Y} \\
\therefore & \frac{5}{2}=\frac{A C}{9} \\
\therefore & A C=22.5 \text { units } \tag{c.s.s.t.}
\end{array}
$$

*(13) In the adjoining figure, \square DEFG is a square. In $\Delta \mathrm{ABC}, \mathrm{A}=90^{\circ}$. Then prove that $\mathrm{DE}^{2}=\mathrm{BD} \times \mathrm{EC}$ (Hint : \triangle GBD is similar to \triangle CFE.
Use GD = FE = DE)
(4 marks)

Proof:
\square DEFG is a square.
$\therefore \quad \mathrm{DE}=\mathrm{EF}=\mathrm{GF}=\mathrm{DG}$
(Sides of a square)
on transversal AB
$\therefore \quad$ seg GF II seg DE $\quad .$. (Opposite sides of a square are parallel.)
$\therefore \quad$ seg GF II side BC ...(B-D-E-C)
on transversal AC
$\therefore \quad \angle \mathrm{AGF} \cong \angle \mathrm{ABC} . .$.
on transversal AC ...(Corresponding angles
$\angle \mathrm{AFG} \cong \angle \mathrm{ACB}$
theorem)
In $\triangle \mathrm{AGF}$ and $\triangle \mathrm{DBG}$,
$\angle \mathrm{AGF} \cong \angle \mathrm{GBD} \quad . .[$ [From (ii) and A-G-B, B-D-C]
$\angle \mathrm{GAF} \cong \angle \mathrm{BDG}$
...(Each is 90°)
$\therefore \quad \triangle \mathrm{AGF} \sim \triangle \mathrm{DBG} \quad$...(iv) (By AA Test for similarity) In $\triangle \mathrm{AGF}$ and $\triangle \mathrm{EFC}$,
$\angle \mathrm{AFG} \cong \angle \mathrm{FCE} \quad .$. [From (iii) and A-F-C, C-E-A]
$\angle \mathrm{GAF} \cong \angle \mathrm{FEC}$
...(Each is 90°)
$\therefore \quad \triangle \mathrm{AGF} \sim \triangle \mathrm{EFC} \quad . . .(\mathrm{v}) \quad$ (AA Test for similarity)
$\therefore \quad \triangle \mathrm{DBG} \sim \triangle \mathrm{EFC} \quad . .[$ [From (iv) and (v)]
$\therefore \quad \frac{\mathrm{BD}}{\mathrm{EF}}=\frac{\mathrm{DG}}{\mathrm{EC}}$
...(c.s.s.t.)
$\therefore \quad \mathrm{BD} \times \mathrm{EC}=\mathrm{EF} \times \mathrm{DG}$
$\therefore \quad \mathrm{BD} \times \mathrm{EC}=\mathrm{DE} \times \mathrm{DE} \quad \ldots[$ From (i)]
$\therefore \quad \mathrm{DE}^{2}=\mathrm{BD} \times \mathrm{EC}$

Points to Remember:

- Theorem of Areas of Similar Triangles

Statement : The ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.
(5 marks)

Given : $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.
To Prove :
$\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{PR}^{2}}$
Construction :
(i) Draw seg $\mathrm{AD} \perp$ side BC, B - D - C
(ii) Draw seg PS \perp side QR, Q - S - R

Proof :
$\frac{\mathrm{A}(\Delta \mathrm{ABC})}{\mathrm{A}(\Delta \mathrm{PQR})}=\frac{\mathrm{BC} \times \mathrm{AD}}{\mathrm{QR} \times \mathrm{PS}}$
[The ratio of the areas of two triangles is equal to the ratio of the product of their bases and corresponding height.]
$\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{\mathrm{BC}}{\mathrm{QR}} \times \frac{\mathrm{AD}}{\mathrm{PS}}$
$\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$
... (Given)
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}$
...(ii) (c.s.s.t.)
Also, $\angle \mathrm{B} \cong \angle \mathrm{Q}$
In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{PSQ}$,
$\angle \mathrm{ADB} \cong \angle \mathrm{PSQ} \quad . . .($ Each is a right angle)
$\angle \mathrm{B} \cong \angle \mathrm{Q}$...[From (iii)]
$\therefore \quad \triangle \mathrm{ADB} \sim \triangle \mathrm{PSQ} \quad$ (By A-A test of similarity)
$\therefore \quad \frac{\mathrm{AD}}{\mathrm{PS}}=\frac{\mathrm{AB}}{\mathrm{PQ}}$
...(iv) (c.s.s.t.)
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{\mathrm{AB}}{\mathrm{PQ}} \times \frac{\mathrm{AB}}{\mathrm{PQ}} \quad \ldots[$ From (i), (ii) and (iv)]
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}$
Similarly we can prove ,
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{PR}^{2}}$
$\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\frac{\mathrm{AC}^{2}}{\mathbf{P R}^{2}}$
...[From (vi) and (vii)]

Practice Set - 1.4 (Textbook Page No. 25)

(2) If $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ and $\mathrm{AB}: \mathrm{PQ}=2: 3$, then fill in the blanks.

$$
\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{\mathrm{AB}^{2}}{\frac{\mathrm{PQ}^{2}}{2}}=\frac{2^{2}}{3^{2}}=\frac{4}{4}
$$

(2 marks)
(1) Ratio of corresponding sides of two similar triangles is $3: 5$, then find ratio of their area.
(2 marks)

Solution :

Let the areas of two similar triangles be A_{1} and A_{2} and their corresponding sides S_{1} and S_{2} respectively.
$\frac{S_{1}}{S_{2}}=\frac{3}{5}$
Both the triangles are similar
...(Given)
$\therefore \quad \frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{\mathrm{S}_{1}{ }^{2}}{\mathrm{~S}_{2}{ }^{2}} \ldots$...Theorem on areas of similar triangles)
$\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\left(\frac{\mathrm{S}_{1}}{\mathrm{~S}_{2}}\right)^{2}$

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\left(\frac{3}{5}\right)^{2} \\
\therefore & \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}=\frac{9}{25}
\end{array}
$$

$\therefore \quad$ The ratio of the areas of two similar triangles is 9:25
(3) If $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}, \mathrm{A}(\triangle \mathrm{ABC})=80, \mathrm{~A}(\triangle \mathrm{PQR})=125$, then fill in the blanks.
(1 mark)
$\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{80}{125} \quad \therefore \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{4}{5}$
(4) $\Delta \mathrm{LMN} \sim \Delta \mathrm{PQR}, 9 \times \mathrm{A}(\Delta \mathrm{PQR})=16 \times \mathrm{A}(\Delta \mathrm{LMN})$. If $Q R=20$, then find $M N$.
(2 marks)
Solution :
$9 \times \mathrm{A}(\triangle \mathrm{PQR})=16 \times \mathrm{A}(\triangle \mathrm{LMN})$
...(Given)
$\therefore \quad \frac{9}{16}=\frac{\mathrm{A}(\Delta \mathrm{LMN})}{\mathrm{A}(\triangle \mathrm{PQR})}$
i.e. $\frac{\mathrm{A}(\Delta \mathrm{LMN})}{\mathrm{A}(\Delta \mathrm{PQR})}=\frac{9}{16}$

In $\triangle L M N$ and $\triangle P Q R$,
...(Given)
$\frac{\mathrm{A}(\Delta \mathrm{LMN})}{\mathrm{A}(\Delta \mathrm{PQR})}=\frac{\mathrm{MN}^{2}}{\mathrm{QR}^{2}}$
...(Theorem on areas of
$\therefore \quad \frac{9}{16}=\frac{\mathrm{MN}^{2}}{20^{2}}$
$\therefore \quad \frac{3}{4}=\frac{\mathrm{MN}}{20}$
...(Taking square roots)
$\therefore \quad \mathrm{MN}=\frac{3 \times 20}{4}$
$\therefore \quad \mathrm{MN}=15$
$\therefore \quad$ MN $=15$ units
(5) Areas two similar triangles are $225 \mathrm{sq} . \mathrm{cm}, 81 \mathrm{sq} . \mathrm{cm}$. If a side of the smaller triangles is 12 cm , then find corresponding side of bigger triangle. (3 marks) Solution :

Let the areas of two similar triangles be A_{1} and A_{2} and their corresponding sides S_{1} and S_{2} respectively.
$\mathrm{A}_{1}=225 \mathrm{~cm}^{2}, \mathrm{~A}_{2}=81 \mathrm{~cm}^{2}, \mathrm{~S}_{2}=12 \mathrm{~cm}$
...(Given)
Both the triangles are similar
...(Given)
$\therefore \quad \frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{\mathrm{S}_{1}{ }^{2}}{\mathrm{~S}_{2}{ }^{2}}$...(Theorem on areas of similar triangles)
$\therefore \quad \frac{225}{81}=\frac{\mathrm{S}_{1}{ }^{2}}{(12)^{2}}$
$\therefore \quad \frac{15}{9}=\frac{\mathrm{S}_{1}}{12}$
...(Taking square roots)

$$
\begin{array}{ll}
\therefore & S_{1}=\frac{15 \times 12}{9} \\
\therefore & S_{1}=20 \mathrm{~cm}
\end{array}
$$

$\therefore \quad$ The corresponding side of the bigger triangle is 20 cm
(6) $\triangle A B C$ and $\triangle D E F$ are equilateral triangles. $A(\triangle A B C): A(\triangle D E F)=1: 2$ and $A B=4$ find $D E$.
(3 marks)

Solution :

$\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are equilateral triangles.
Equilateral triangles are always similar .
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}$
...(Theorem on areas of similar triangles)
$\therefore \quad \frac{1}{2}=\frac{4^{2}}{\mathrm{DE}^{2}}$
$\therefore \quad \frac{1}{\sqrt{2}}=\frac{4}{\mathrm{DE}}$
...(Taking square roots)
$\therefore \quad \mathrm{DE}=4 \sqrt{2}$
$\therefore \quad \mathrm{DE}=4 \sqrt{2}$ units
(7) In the adjoining figure, seg $P Q \|$ seg $D E$, $A(\triangle P Q F)=20$ sq units. $P F=2 D P$, then find A(\square DPQE) by completing the following activity.
(3 marks)

Solution :
$\mathrm{A}(\triangle \mathrm{PQF})=20$ sq units.
$\mathrm{PF}=2 \mathrm{DP}$
Let us assume $\mathrm{DP}=x$ units $\quad \therefore \quad \mathrm{PF}=2 x$
$\mathrm{DF}=\mathrm{DP}+\mathrm{PF}=x+2 x=3 x$
In $\triangle \mathrm{FDE}$ and $\triangle \mathrm{FPQ}$,
$\angle \mathrm{FDE}=\angle \mathrm{FPQ} \ldots$ (Corresponding angles theorem)
$\angle \mathrm{FED}=\angle \mathrm{FQP} \ldots$ (Corresponding angles theorem)
$\therefore \quad$ In $\triangle \mathrm{FDE} \sim \triangle \mathrm{FPQ} \quad$...(By AA test of similarity)

$$
\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{FDE})}{\mathrm{A}(\Delta \mathrm{FPQ})}=\frac{\mathrm{DF}^{2}}{\mathrm{PF}^{2}}=\frac{(3 x)^{2}}{(2 x)^{2}}=\frac{9}{4}
$$

$$
\begin{aligned}
& \mathrm{A}(\Delta \mathrm{FDE})=\frac{9}{4} \mathrm{~A}(\Delta \mathrm{FPQ})=\frac{9}{4} \times 20=45 \text { sq units } \\
& \begin{aligned}
\mathrm{A}(\square \mathrm{DPQE}) & =\mathrm{A}(\Delta \mathrm{FDE})-\mathrm{A}(\Delta \mathrm{FPQ}) \\
& =45-20 \\
& =25 \text { sq units }
\end{aligned}
\end{aligned}
$$

Problem Set - 1 (Textbook Page No. 27)

(6) $\quad \Delta \mathrm{MNT} \sim \Delta \mathrm{QRS}$: Length of altitude drawn from vertex T is 5 and length of altitude drawn from vertex S is 9 . Find $A(\triangle M N T)$
(3 marks) A(\triangle QRS)

Solution :

$\Delta \mathrm{MNT} \sim \Delta \mathrm{QRS}$
$\therefore \quad \angle \mathrm{M} \cong \angle \mathrm{Q}$
...(Given)
(c.a.s.t.)

In $\triangle \mathrm{MAT}$ and $\triangle \mathrm{QBS}$
$\therefore \quad \angle \mathrm{M} \cong \angle \mathrm{Q}$
...[From (i)]
$\angle \mathrm{MAT} \cong \angle \mathrm{QBS}$
...(Each 90°)
$\triangle \mathrm{MAT} \sim \Delta \mathrm{QBS}$
...(By AA test of similarity)
$\frac{T M}{S Q}=\frac{T A}{S B}$
(c.s.s.t.)
$\frac{\mathrm{A}(\Delta \mathrm{TMN})}{\mathrm{A}(\Delta \mathrm{SQR})}=\frac{\mathrm{TM}^{2}}{\mathrm{SQ}^{2}}$
...(Theorem on areas of similar triangles)
$\frac{\mathrm{A}(\Delta \mathrm{TMN})}{\mathrm{A}(\Delta \mathrm{SQR})}=\frac{\mathrm{TA}^{2}}{\mathrm{SB}^{2}}$
...[From (ii)]
$\frac{\mathrm{A}(\Delta \mathrm{TMN})}{\mathrm{A}(\Delta \mathrm{SQR})}=\frac{\mathrm{TA}^{2}}{\mathrm{SB}^{2}}$
...[From (ii)]
$\frac{\mathrm{A}(\Delta \mathrm{TMN})}{\mathrm{A}(\Delta \mathrm{SQR})}=\frac{5^{2}}{9^{2}}$
...[From (ii)]
$\frac{\mathrm{A}(\triangle \mathrm{TMN})}{\mathrm{A}(\triangle \mathrm{SQR})}=\frac{25}{81}$
...[From (i)]

Problem Set - 1 (Textbook Page No. 27)

$M C Q^{\prime} s$

Q. 1. Choose correct alternative for each of the following questions.
(1 mark each)
(1) If in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ for some one-one correspondence if $\frac{\mathrm{AB}}{\mathrm{QR}}=\frac{\mathrm{BC}}{\mathrm{PR}}=\frac{\mathrm{CA}}{\mathrm{PQ}}$ then

(A) $\triangle \mathrm{PQR} \sim \triangle \mathrm{ABC}$
(B) $\triangle \mathrm{PQR} \sim \triangle \mathrm{CAB}$
(C) $\triangle C B A \sim \triangle P Q R$
(D) $\triangle \mathrm{BCA} \sim \triangle \mathrm{PQR}$
(2) If in $\triangle \mathrm{DEF}$ and $\triangle \mathrm{PQR} . \angle \mathrm{D} \cong \angle \mathrm{Q}, \angle \mathrm{R} \cong \angle \mathrm{E}$, then which of the following statement is false?

(A) $\frac{E F}{P R}=\frac{D F}{P Q}$
(B) $\frac{\mathrm{DE}}{\mathrm{PQ}}=\frac{\mathrm{EF}}{\mathrm{RP}}$
(C) $\frac{D E}{Q R}=\frac{D F}{P Q}$
(D) $\frac{\mathrm{EF}}{\mathrm{RP}}=\frac{\mathrm{DE}}{\mathrm{QR}}$
(3) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF} . \angle \mathrm{B} \cong \angle \mathrm{E}, \angle \mathrm{F} \cong \angle \mathrm{C}$ and $\mathrm{AB}=3 \mathrm{DE}$, then which statement regarding two triangles is true?
(A) The triangles are not congruent and not similar.
(B) The triangles are similar but not congruent.
(C) The triangles are congruent and similar.
(D) None of the statements above is true.

(4) $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ both are equilateral triangles. $\mathrm{A}(\triangle \mathrm{ABC}): \mathrm{A}(\triangle \mathrm{DEF})=1: 2$. If $\mathrm{AB}=4$, then what is the length of $D E$?
(A) $2 \sqrt{2}$
(B) 4
(C) 8
(D) $4 \sqrt{2}$.

(5) In the figure seg $X Y \| \operatorname{seg} B C$, then which of the following statement is true?
(A) $\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{AX}}{\mathrm{AY}}$
(B) $\frac{A X}{X B}=\frac{A Y}{A C}$
(C) $\frac{A X}{Y C}=\frac{A Y}{X B}$
(D) $\frac{\mathrm{AB}}{\mathrm{YC}}=\frac{\mathrm{AC}}{\mathrm{XB}}$

(6) In $\triangle \mathrm{ABC}, \mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=2 \mathrm{~cm}$ and $\mathrm{AC}=2.5 \mathrm{~cm}$. $\triangle \mathrm{DEF} \sim \triangle \mathrm{ABC}, \mathrm{EF}=4 \mathrm{~cm}$. What is the perimeter of $\triangle \mathrm{DEF}$?
(A) 30 cm
(B) 22.5 cm
(C) 15 cm
(D) 7.5 cm
(7) The sides of two similar triangles are $4: 9$. What is the ratio of their area?
(A) $2: 3$
(B) $4: 9$
(C) $81: 16$
(D) $16: 81$
(8) The areas of two similar triangles are $18 \mathrm{~cm}^{2}$ and $32 \mathrm{~cm}^{2}$ respectively. What is the ratio of their corresponding sides?
(A) $3: 4$
(B) $4: 3$
(C) $9: 16$
(D) $16: 9$
(9) $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}, \mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}, \mathrm{CA}=10 \mathrm{~cm}$ and $Q R=6 \mathrm{~cm}$. What is the length of side $P R$?
(A) 8 cm
(B) 10 cm
(C) 4.5 cm
(D) 7.5 cm
(10) In $\triangle X Y Z$, ray $Y M$ is the bisector of $\angle X Y Z$ where $X Y=Y Z$ and $X-M-Z$, then which of the relation is true?
(A) $\mathrm{XM}=\mathrm{MZ}$
(B) $\mathrm{XM} \neq \mathrm{MZ}$
(C) $X M>M Z$
(D) None
(11) In $\triangle \mathrm{ABC}, \mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{AC}=10 \mathrm{~cm}$. $\triangle A B C$ is enlarged to $\triangle P Q R$ such that the largest side is 12.5 cm . What is the length of the smallest side of $\triangle P Q R$?
(A) 7.5 cm
(B) 9 cm
(C) 8 cm
(D) 10 cm
(12) In $\triangle \mathrm{ABC}, \mathrm{B}-\mathrm{D}-\mathrm{C}$ and $\mathrm{BD}=6 \mathrm{~cm}, \mathrm{DC}=4 \mathrm{~cm}$. What is the ratio of $\mathrm{A}(\triangle \mathrm{ABC})$ to $\mathrm{A}(\triangle \mathrm{ACD})$?
(A) $2: 3$
(B) $5: 2$
(C) $3: 2$
(D) $5: 3$
(13) In $\triangle X Y Z, P Q \| Y Z, ~ X-P-Y$ and $X-Q-Z$. If $\frac{X P}{P Y}=\frac{4}{13}$ and $X Q=4.8 \mathrm{~cm}$. What is XZ ?
(A) 15.6 cm
(B) 20.4 cm
(C) 7.8 cm
(D) 10.2 cm
(14) In $\triangle A B C, P$ is a point on side $B C$ such that $B P=4 \mathrm{~cm}$ and $P C=7 \mathrm{~cm}$.
$\mathrm{A}(\triangle \mathrm{APC}): \mathrm{A}(\triangle \mathrm{ABC})=$ \qquad
(A) $11: 7$
(B) $7: 11$
(C) $4: 7$
(D) $7: 4$
(15) In $\triangle \mathrm{PQR}$, seg RS is the bisector of $\angle \mathrm{PRQ}, \mathrm{PS}=8$, $\mathrm{SQ}=6, \mathrm{PR}=20$ then $\mathrm{QR}=$ \qquad ..
(a) 10
(b) 15
(c) 30
(d) 40
(16) In $\triangle A B C$, line $P Q$ II side $B C, A P=3, B P=6$, $A Q=5$ then the value of $C Q$ is \qquad .
(a) 20
(b) 10
(c) 5
(d) 16

ANSWERS

(1)
(B) $\triangle \mathrm{PQR} \sim \triangle \mathrm{CAB}$
(2) (B) $\frac{D E}{P Q}=\frac{E F}{R P}$
(3) (B) Both triangles are similar but not congruent.
(4)
(D) $4 \sqrt{2}$
(5) (A) $\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{AX}}{\mathrm{AY}}$
(6) $(\mathrm{C}) 15 \mathrm{~cm}$
(7) (D) $16: 81$
(8) (A) $3: 4$
(9) (D) 7.5 cm
(10)
(A) $\mathrm{XM}=\mathrm{MZ}$
(11) (A) 7.5 cm
(12)
(B) $5: 2$
(13) (B) 20.4 cm
(14)
(B) $7: 11$
(15) (B) 15 units
(16) (B) 10

PROBLEMS FOR PRACTICE

Based on Practice Set 1.1

(1) In the adjoining figure, seg $B E \perp$ seg $A B$ and $\operatorname{seg} B A \perp \operatorname{seg} A D$. If $B E=6$, $\mathrm{AD}=9$,

then find $A(\triangle A B E): A(\triangle B A D)$
(1 mark)
(2) The ratio of the areas of two triangles with the common base is $6: 5$. Height of the larger triangles is 9 cm . Then find the corresponding height of the smaller triangle.
(1 mark)
(3) In the adjoining figure, $R P: P K=3: 2$, then find the value of
(i) $\mathbf{A}(\triangle T R P): \mathbf{A}(\triangle T P K)$
(ii) $\mathbf{A}(\triangle T R K): \mathbf{A}(\triangle T P K)$
(iii) $\mathbf{A}(\triangle T R P): \mathbf{A}(\triangle T R K$

In the adjoining figure, $\operatorname{seg} \mathrm{DH} \perp$ seg EF,
seg GK \perp seg EF.
If $\mathrm{DH}=\mathbf{1 2} \mathbf{c m}$,
GK $=20 \mathrm{~cm}$ and
$A(\triangle D E F)=300^{\circ} \mathrm{cm}^{2}$, then find

(i) EF
(ii) $\mathbf{A}(\triangle \mathrm{GEF})$
(3 marks)
(5) The ratio of the areas of two triangles with equal height is $3: 2$. The base of the larger triangle is 18 cm . Find the corresponding base of the smaller triangle.
(2 marks)

Based on Practice set 1.2

(6) In $\triangle \mathrm{DEF}$, line $\mathrm{PQ} \|$ side $\mathrm{EF} . \mathrm{DQ}=1.8, \mathrm{QF}=5.4$, $P E=7.2$. Find $D E$.
(2 marks)

(7) In $\triangle P Q R$, seg RS is bisector of $\angle \mathrm{PRQ}$. $\mathrm{PS}=6, \mathrm{SQ}=8$,
$P R=15$. Find $Q R$.
(2 marks)

(8)

In $\triangle X Y Z, X Y=Y Z$.
Ray YM bisects $\angle X Y Z$.
$X-M-Z$. Prove that M is midpoint of seg XZ.
(2 marks)

(9) In the adjoining figure, seg ML \| seg BC, $\operatorname{seg} N L \| \operatorname{seg} D C$. Prove that $A M: A B=A N: A D$.

(10) $\square \mathrm{ABCD}$ is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and its diagonals intersect each other at point O. Show that AO: BO = CO : DO. (3 marks)
(11)

Point D and E are the points on sides $A B$ and $A C$ such athat $A B=5.6$, $\mathrm{AD}=1.4, \mathrm{AC}=7.2$ and $\mathrm{AE}=1.8$.

Show that DE\|BC.
(3 marks)
(12) In $\triangle P Q R$, ray $Q S$ bisects of $\angle \mathrm{PQR}$. P-S-R. Show that $\frac{A(\Delta P Q S)}{A(\Delta Q R S)}=\frac{P Q}{Q R}$.
(3 marks)

(13) In the adjoining figure, seg $P Q \|$ seg $A B$.

Seg PR \| seg BD. Prove that QR \|AD.

(3 marks)

Based on Practice Set 1.3

(14) In the adjoining figure, seg PA, seg QB, seg RC and seg SD are \perp to line $l \mathrm{AB}=6, \mathrm{BC}=9$, $C D=12$ and $P S=36$, then find $P Q, Q R$ and RS.

(15) A vertical pole of a length 6 m casts a shadow of 4 m long on the ground. At the same time a tower casts a shadow 28 m long. Find the height of the tower.
(2 marks)
(16) In $\triangle \mathrm{ABC}, \mathrm{AB}=5, \mathrm{BC}=6, \mathrm{AC}=7 . \triangle \mathrm{PQR} \sim \triangle \mathrm{ABC}$. Perimeter of $\triangle P Q R$ is 360 . Find $P Q, Q R$ and $P R$.
(3 marks)
In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$,
seg $\mathrm{DE} \perp$ side AC .
$A D=6, A B=12$,
$A C=18$, then find AE.
(3 marks)

(18) E is a point on side CB, C-B-E, In $\triangle A B C$,
$A B=A C$. If
seg AD BC, B-D-C and seg $E F \perp$ side AC, A-F-C. Prove that

(19) D is a point on side $B C$ of $\triangle A B C$ such that, $\angle \mathrm{ADC}=\angle \mathrm{BAC}$. Show that $\mathrm{AC}^{2}=\mathrm{BC} \times \mathrm{DC}$.
(3 marks)
(20)

In \triangle RES, $\mathrm{RE}=15, \mathrm{SE}=10$. In $\triangle \mathrm{PEA}, \mathrm{PE}=8$, $\mathrm{AE}=12$. Prove that $\triangle \mathrm{RES} \sim \triangle \mathrm{AEP}$
(3 marks)

(21)

In the adjoining figure, seg $C E \perp$ side $A B$, seg $A D \perp$ side $B C$. Prove that
(i) $\triangle \mathrm{AEP} \sim \triangle \mathrm{CDP}$
(ii) $\triangle \mathrm{AEP} \sim \triangle \mathrm{ADB}$

(4 marks)
(22) In the adjoining figure, if $\triangle A B N \cong \triangle A C M$, show that $\triangle \mathrm{AMN} \sim \triangle \mathrm{ABC}$.
(4 marks)

(23) Let X be any point on side $B C$ of $\triangle A B C$. seg $X M \|$ side $A B$ and seg $X N \|$ side $C A$. M-N-T, T-B-X. Prove that : TX ${ }^{2}=$ TB.TC. (2 marks)

(24) In the adjoining figure, seg $A B \|$ side $D C$, $\mathrm{OD}=x \mathrm{OB}=x-3, \mathrm{OC}$ $=x-5, \mathrm{OA}=3 x-19$.
Find the value of x.

(4 marks)

Based on Practice set 1.4

(25) $\triangle \mathrm{DEF} \sim \triangle \mathrm{MNK}$, If $\mathrm{DE}=5$ and $\mathrm{MN}=6$, then find the value of $\mathrm{A}(\triangle \mathrm{DEF}): \mathrm{A}(\triangle \mathrm{MNK})$
(2 marks)
(26) If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ such that the area of $\triangle \mathrm{ABC}$ is $9 \mathrm{~cm}^{2}$ and the area of $\triangle D E F$ is $16 \mathrm{~cm}^{2}$. If $B C=2.1$ cm . Find length of EF.
(2 marks)

In the adjoining figure, seg $D E \|$ side $B C$. If $D E: B C=3: 5$, then find A($\triangle \mathrm{ADE})$: A($\triangle \mathrm{DBCE})$ (3 marks)

(28) In $\triangle \mathrm{ABC}, \mathrm{PQ}$ is a line segment intesecting $A B$ at point P and $A C$ at point $Q . P Q \| B C$. If $P Q$ divides $\triangle A B C$ into two equal parts equal in area, find BP : AB. (3 marks)
(29) In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ} . \triangle \mathrm{PAB}, \triangle \mathrm{QAC}$ and $\triangle \mathrm{RBC}$ are the equilateral triangles constructed on sides $A B, A C$ and $B C$ respectively.
Prove that: $\mathbf{A}(\triangle P A B)+\mathbf{A}(\triangle R B C)=\mathbf{A}(\triangle Q A C)$.
(4 marks)
(30) In $\triangle A B C$, seg $D E \|$ side $B C$. If $2 A(\triangle A D E)=$ $A(\square D B C E)$. Show that $B C=\sqrt{3} \times D E$.
(4 marks)

ANSWERS

(1) $2: 3$ (2) 7.5 cm (3) (i) $3: 2$ (ii) $5: 2$ (iii) $3: 5$
(4)
(i) 50 cm
(ii) $500 \mathrm{~cm}^{2}$
(5) 12 cm
(6) 9.6 units
(7) 20 units (14) $\mathrm{PQ}=8, \mathrm{QR}=12, \mathrm{RS}=16$ (15) 42 m
(16) 100 units, 120 units, 140 units (17) 4 units
(24) $x=8, x=9$ (25) $25: 36$ (26) 2.8 (27) $9: 16$
(28) $\frac{\sqrt{2}-1}{\sqrt{2}}$

(2) In the adjoining figure, $\mathrm{DX}=4, \mathrm{DE}=8, \mathrm{FY}=6$, $\mathrm{OF}=12$. Complete the following activity to prove that seg XY \| seg EF.

Proof :

In $\triangle \mathrm{DEF}$,

...[From (i) and (ii)]
$\therefore \quad$ Seg XY\|seg EF
...[By \qquad ...]
Q.3. Attempt any Two of the following:
(1) In $\square \mathrm{ABCD}$, seg $\mathrm{AB} \|$ seg $C D$. Diagonals $A C$ and $B D$ intersect each other at point P.

$$
\text { Prove : } \frac{\mathbf{A}(\mathbf{\Delta A B P})}{\mathbf{A}(\mathbf{\Delta C P D})}=\frac{\mathbf{A B}^{2}}{\mathbf{C D}^{2}}
$$

...(Given)
(2) D is a point on side $B C$ of $\triangle A B C$ such that $\angle A D C=\angle B A C$. Show that $A C^{2}=B C \times D C$.
(3) In the adjoining figure, seg PA, seg QB seg RC and seg SD are \perp line l. $A B=60, B C=70, C D=80$. If $P S=280$ then find $P Q, Q R, R S$.
Q.4. Attempt any two of the following:

(1) In $\triangle P Q R$, ray MX and ray MY bisect $\angle \mathrm{PMQ}$ and $\angle \mathrm{PMR}$ respectively. $\mathrm{P}-\mathrm{X}-\mathrm{Q}, \mathrm{P}-\mathrm{Y}-\mathrm{R}$. Seg PM is a median, prove that $\operatorname{seg} X Y \| \operatorname{seg} Q R$

(2) In the adjoining figure, in $\triangle A B C, A-P-B$ and $A-Q-C$ prove that $\frac{\mathrm{A}(\triangle \mathrm{APQ})}{\mathrm{A}(\triangle \mathrm{ABC})}=\frac{\mathrm{AP} \times \mathrm{AQ}}{\mathrm{AB} \times \mathrm{AC}}$

(3) Prove: In a triangle the angle bisector divides the side opposite to the angle in the ratio of the remaining sides.

Pr. S. 2.1-1(i) Pg 33	Pr.S. 2.1-4	Pg 34	Pr. S. 2.2-2	Pg 38	PS. 2-2(iv)	Pg 30	PS. 2-8	Pg 38	PS. 2-16	Pg 35
Pr. S. 2.1-1(ii) Pg 33	Pr.S. 2.1-5	Pg 36	Pr. S. 2.2-3	Pg 29	PS. 2-2(v)	Pg 30	PS. 2-9	Pg 38	PS. 2-17	Pg 39
Pr. S. 2.1-1(iii) Pg 33	Pr.S. 2.1-6	Pg 27	Pr. S. 2.2-4	Pg 37	PS. 2-2(vi)	Pg 33	PS. 2-10	Pg 30	PS. 2-18	Pg 39
Pr. S. 2.1-1(iv) Pg 33	Pr.S. 2.1-7	Pg 28	Pr.S. 2.2-5	Pg 29	PS. 2-3	Pg 34	PS. 2-11	Pg 31		
Pr. S. 2.1-1(v) Pg 33	Pr.S. 2.1-8	Pg 27	PS. 2-1	Pg 40	PS. 2-4	Pg 30	PS. 2-12	Pg 39		
Pr. S. 2.1-1(vi) Pg 33	Pr.S.2.1-9	Pg 28	PS. 2-2(i)	Pg 34	PS. 2-5	Pg 35	PS. 2-13	Pg 31		
Pr.S.2.1-2 Pg 26	Pr. S. 2.1-10	Pg 28	PS. 2-2(ii)	Pg 33	PS. 2-6	Pg 37	PS. 2-14	Pg 39		
Pr.S.2.1-3 Pg 27	Pr. S. 2.2-1	Pg 37	PS. 2 - 2 (iii)	Pg 30	PS. 2-7	Pg 35	PS. 2-15	Pg 31		

Points to Remember:

Theorem : 1

- Similarity and Right Angled Triangles :
'In a right angled triangle, if the altitude is drawn from the vertex of the right angle to the hypotenuse, then the two triangles formed are similar to the original triangle and to each other'.

Given :
(1) In $\triangle A B C, \angle A B C=90^{\circ}$
(2) seg $\mathrm{BD} \perp$ hypotenuse AC , A-D-C
To Prove :
$\triangle \mathrm{ABC} \sim \triangle \mathrm{ADB} \sim \Delta \mathrm{BDC}$
' Proof:
In $\triangle A B C$ and $\triangle A D B$,

$\angle \mathrm{ABC} \cong \angle \mathrm{ADB}$
...(Each is a right angle)
$\angle \mathrm{A} \cong \angle \mathrm{A}$
...(Common angle)
$\triangle A B C \sim \triangle A D B \quad . . .(i)$ (By AA Test of similarity)
In $\triangle A B C$ and $\triangle B D C$,
$\angle \mathrm{ABC} \cong \angle \mathrm{BDC} \quad . .($ Each is a right angle)
$\angle C \cong \angle C$
...(Common angle)
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{BDC} \quad . .($ (ii) (By AA Test of similarity)
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{ADB} \sim \Delta \mathrm{BDC} \quad . . .[$ From (i) and (ii)]
, - Theorem of Geometric Mean :
'In a right angled triangle, the length of perpendicular segment drawn on the hypotenuse from the opposite vertex, is the geometric mean of the segments into which the hypotenuse is divided'.

Given :

(1) In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}$
(2) seg $\mathrm{BD} \perp$ hypotenuse AC , A-D-C
To Prove:

$$
\mathrm{BD}^{2}=\mathrm{AD} \times \mathrm{CD}
$$

Proof:
In $\triangle A B C, \angle A B C=90^{\circ}$

...(Given)
seg BD \perp hypotenuse AC ...(Given) $\therefore \quad \triangle \mathrm{ADB} \sim \triangle \mathrm{BDC} \quad .$. (Similarity in right angled
$\therefore \quad \frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{BD}}{\mathrm{CD}}$ triangles)
...(c.s.s.t)
$\therefore \quad \mathrm{BD}^{2}=\mathrm{AD} \times \mathrm{CD}$

MASTER KEY QUESTION SET - 2

Practice Set - 2.1 (Textbook Page No. 38)

(2) In the adjoining
figure, $\angle \mathrm{MNP}=90^{\circ}$
seg NQ \perp seg MP,
$\mathrm{MQ}=9, \mathrm{QP}=4$.
Find NQ.
(2 marks)
Solution :
In $\triangle \mathrm{MNP}, \angle \mathrm{MNP}=90^{\circ}$
...(Given) \mathbf{N}

seg $\mathrm{NQ} \perp$ hypotenuse MP
...(Given)
$\therefore \quad \mathrm{NQ}^{2}=\mathrm{MQ} \times \mathrm{PQ} \ldots$...(Theorem of Geometric mean)
$\therefore \quad \mathrm{NQ}^{2}=9 \times 4$
$\therefore \quad \mathrm{NQ}^{2}=36$
$\therefore \quad \mathrm{NQ}=6$ units
...(Taking square roots)
(3) In the adjoining figure, $\angle \mathrm{QPR}=$ 90°, seg PM \perp hypotenuse QR, Q-M - R. If $P M=10, Q M=8$

(2 marks)

Solution :

In $\triangle \mathrm{QPR}, \angle \mathrm{QPR}=90^{\circ}$
seg $\mathrm{PM} \perp$ hypotenuse QR
...(Given)
...(Given)
$\therefore \quad \mathrm{PM}^{2}=\mathrm{QM} \times \mathrm{RM} \quad \ldots$ (Theorem of Geometric mean)
$\therefore \quad 10^{2}=8 \times \mathrm{RM}$
$\therefore \quad \mathrm{RM}=\frac{100}{8}$
$\therefore \quad \mathrm{RM}=12.5$ units

$$
\begin{array}{ll}
& Q R=Q M+R M \\
\therefore & Q R=8+12.5 \\
\therefore & Q(Q-M-R) \\
& Q R=\mathbf{2 0 . 5} \text { units }
\end{array}
$$

Points to Remember:

Theorem : 2

- Theorem of Pythagoras:

Statement: 'In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the remaining two sides'.
Given :
In $\triangle \mathrm{ABC}, m \angle \mathrm{ABC}=90^{\circ}$
To Prove :

$$
\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}
$$

Construction :
Draw seg BD \perp side AC such that A - D - C

Proof:
In $\triangle A B C, \angle A B C=90^{\circ}$
...(Given)
seg $\mathrm{BD} \perp$ hypothenuse AC
...(Construction)
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{ADB} \sim \Delta \mathrm{BDC} \ldots(\mathrm{i})($ Similarity in right angled triangles)
$\triangle \mathrm{ABC} \sim \triangle \mathrm{ADB}$...(From (i)]
$\frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AB}}$
...(c.s.s.t)
$\therefore \quad \mathrm{AB}^{2}=\mathrm{AC} \times \mathrm{AD}$
$\triangle \mathrm{ABC} \sim \triangle \mathrm{BDC}$
...(From (i)]
$\therefore \quad \frac{\mathrm{BC}}{\mathrm{DC}}=\frac{\mathrm{AC}}{\mathrm{BC}}$
...(c.s.s.t)
$\therefore \quad \mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{DC}$

```
Adding (ii) and (iii) we get,
\(\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{AD}+\mathrm{AC} \times \mathrm{DC}\)
\(\therefore \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}(\mathrm{AD}+\mathrm{DC})\)
\(\therefore \quad A B^{2}+B C^{2}=A C \times A C[\because A-D-C]\)
\(\therefore \quad A B^{2}+B C^{2}=A C^{2}\)
\[
\mathrm{AC}^{2}=\mathbf{A B} \mathbf{B}^{2}+\mathrm{BC}^{2}
\]
```


Practice Set - 2.1 (Textbook Page No. 39)

(6) Find the side and perimeter of a square whose diagonal is 10 cm .
(2 marks)

Given :

(1) $\square \mathrm{PQRS}$ is a square
(2) $\mathrm{PR}=10 \mathrm{~cm}$

To Find :

(a) Side PQ

(b) Perimeter of $\square \mathrm{PQRS}$

Solution :

$$
\begin{align*}
& \square \mathrm{PQRS} \text { is a square } \\
& \therefore \quad \mathrm{PQ}=\mathrm{QR} \tag{i}\\
& \text { In } \triangle \mathrm{PQR}, \angle \mathrm{Q}=90^{\circ} \\
& \therefore \quad \mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2} \\
& \therefore \quad 10^{2}=\mathrm{PQ}^{2}+\mathrm{PQ}^{2} \\
& \therefore \quad 2 \mathrm{PQ}^{2}=100 \\
& \therefore \quad \mathrm{PQ}^{2}=\frac{100}{2} \\
& \therefore \quad \mathrm{PQ}^{2}=50 \\
& \therefore \quad \mathrm{PQ}=\sqrt{25 \times 2} \\
& \therefore \quad P Q=5 \sqrt{2} \mathrm{~cm} \\
& \therefore \quad \text { Perimeter of } \square \mathrm{PQRS}=4 \times \text { side } \\
& =4 \times \mathrm{PQ} \\
& =4 \times 5 \sqrt{2}
\end{align*}
$$

...(Pythagoras theorem)
$\therefore \quad$ Perimeter of $\square P Q R S=20 \sqrt{2} \mathrm{~cm}$
(8) Length and breadth of a rectangle are 35 cm and 12 cm respectively. Find length of its diagonal.
(2 marks)
Given :
(1) $\square \mathrm{ABCD}$ is a rectangle
(2) $\mathrm{AB}=35 \mathrm{~cm}$, $\mathrm{BC}=12 \mathrm{~cm}$
To Find :

diagonal AC

Solution:

In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}$
...(Angle of a rectangle)

$$
\begin{array}{lll}
\therefore & \mathrm{AC}^{2} & =\mathrm{AB}^{2}+\mathrm{BC}^{2}
\end{array} \quad \ldots \text { (By Pythagoras theorem) }
$$

Length of the diagonal of the rectangle is 37 cm
(7) In the adjoining figure, $\angle \mathrm{DFE}=90^{\circ}, \mathrm{FG} \perp \mathrm{ED}$ if $\mathrm{GD}=8, \mathrm{FG}=12$ then find (i) EG (ii) FD (iii) EF. (3 marks)

Solution :
(i) $\operatorname{In} \triangle \mathrm{DFE}, \angle \mathrm{DFE}=90^{\circ}$

$\therefore \quad \operatorname{seg} \mathrm{FG} \perp$ hypotenuse DE
...(Given)
$\mathrm{FG}^{2}=\mathrm{DG} \times \mathrm{EG} \quad$...(Theorem of Geometric mean)
$\therefore \quad 12^{2}=8 \times \mathrm{EG}$
$\therefore \quad \mathrm{EG}=\frac{12 \times 12}{8}$
$\therefore \quad \mathrm{EG}=18$ units
(ii) In $\triangle \mathrm{FGD}, \angle \mathrm{FGD}=90^{\circ}$
...(Given)
$\therefore \quad \mathrm{FD}^{2}=\mathrm{FG}^{2}+\mathrm{GD}^{2} \quad$...(By Pythagoras theorem)
$\therefore \quad=12^{2}+8^{2}$
$\therefore \quad=144+64$
$\therefore \quad \mathrm{FD}^{2}=208$
$\therefore \quad \mathrm{FD}=\sqrt{208}$
...(Taking square roots)
$\therefore \quad \mathrm{FD}=\sqrt{16 \times 13}$
$\therefore \quad F D=4 \sqrt{13}$ units
(iii) In $\triangle \mathrm{FGE}, \mathrm{m} \angle \mathrm{FGE}=90^{\circ}$
...(Given)
$\therefore \quad \mathrm{EF}^{2}=\mathrm{EG}^{2}+\mathrm{FG}^{2}$
...(By Pythagoras theorem)
$\therefore \quad=18^{2}+12^{2}$
...[From (i)]
$\therefore \quad=324+144$
$\therefore \quad \mathrm{EF}^{2}=468$
$\therefore \quad \mathrm{EF}=\sqrt{468}$
(Taking square roots)
$\therefore \quad \mathrm{EF}=\sqrt{36 \times 13}$
$\therefore \quad E F=6 \sqrt{13}$ units
*(10) Walls of two buildings on either side of a street are parallel to each other. A ladder 5.8 m long is placed on the street such that its top just reaches the window of a building
 at the height if 4 m . On turning the ladder over to the other side of the
street, its top touches the window of the other building at a heitht 4.2 m . Find the width of the street.
(3 marks)
Solution :
Let RD represents the width of the street.
BD represents the first building.
AR represents the second building
CA and CB are two different positions of the same ladder from point C.
$\mathrm{AR}=4.2 \mathrm{~m}, \mathrm{BD}=4 \mathrm{~m}, \mathrm{AC}=\mathrm{BC}=5.8 \mathrm{~m}, \mathrm{RD}=$?
In $\triangle \mathrm{ARC}, \angle \mathrm{R}=90^{\circ}$
...(Given)
$\therefore \quad \mathrm{AC}^{2}=\mathrm{AR}^{2}+\mathrm{CR}^{2} \quad$...(By Pythagoras theorem)
$\therefore \quad(5.8)^{2}=(4.2)^{2}+C R^{2}$
$\therefore \quad C R^{2}=(5.8)^{2}-(4.2)^{2}$
$\therefore \quad \mathrm{CR}^{2}=(5.8+4.2)(5.8-4.2)$
$\therefore \quad \mathrm{CR}^{2}=10 \times 1.6$
$\therefore \quad \mathrm{CR}^{2}=16$
$\therefore \quad C R=4 \mathrm{~m}$
...(Taking square root)
In $\triangle \mathrm{BDC}, \angle \mathrm{D}=90^{\circ}$
...(Given)
$\therefore \quad \mathrm{BC}^{2}=\mathrm{CD}^{2}+\mathrm{BD}^{2} \quad$...(By Pythagoras theorem)
$\therefore \quad 5.8^{2}=\mathrm{CD}^{2}+4^{2}$
$\therefore \quad \mathrm{CD}^{2}=(5.8)^{2}-4^{2}$
$\therefore \quad \mathrm{CD}^{2}=(5.8+4)(5.8-4)$
$\therefore \quad \mathrm{CD}^{2}=9.8 \times 1.8$
$\therefore \mathrm{CD}^{2}=\frac{98}{10} \times \frac{18}{10}$
$\therefore \mathrm{CD}^{2}=\frac{98 \times 18}{100}$
$\therefore \quad \mathrm{CD}^{2}=\frac{98 \times 2 \times 9}{100}$
$\therefore \quad \mathrm{CD}^{2}=\frac{196 \times 9}{100}$
$\therefore \quad \mathrm{CD}=\frac{14 \times 3}{10} \quad$...(Taking square roots)
$\therefore \quad \mathrm{CD}=\frac{42}{10}$
$\therefore \quad \mathrm{CD}=4.2 \mathrm{~m}$
$R D=R C+C D$
$=4+4.2$
$R D=8.2 \mathrm{~m}$
$\therefore \quad$ Width of the street is 8.2 m
*(9) In the adjoiningfigure, M is the midpoint of $\mathrm{QR} . \angle \mathrm{PRQ}=90^{\circ}$.
Prove that,
$P^{2}=4 \mathbf{P M}^{2}-3 \mathbf{P R}^{2}$

(4 marks)

Proof :

In $\triangle \mathrm{PRQ}, \angle \mathrm{PRQ}=90^{\circ}$
$\therefore \quad \mathrm{PQ}^{2}=\mathrm{PR}^{2}+\mathrm{QR}^{2} \quad$...(i) (By Pythagoras theorem)
$\therefore \quad \mathrm{QR}=2 \mathrm{RM} \quad \ldots$ (ii) (M is the midpoint of $\operatorname{seg} \mathrm{QR}$)
$\therefore \quad \mathrm{PQ}^{2}=\mathrm{PR}^{2}+(2 \mathrm{RM})^{2}$
...[From (i) and (ii)]
$\therefore \quad \mathrm{PQ}^{2}=\mathrm{PR}^{2}+4 \mathrm{RM}^{2}$
In $\triangle \mathrm{PRM}, \angle \mathrm{PRM}=90^{\circ}$
$\therefore \quad \mathrm{PM}^{2}=\mathrm{PR}^{2}+\mathrm{RM}^{2}$
...(Pythagoras theorem)
$\therefore \quad \mathrm{RM}^{2}=\mathrm{PM}^{2}-\mathrm{PR}^{2}$
$\therefore \quad \mathrm{PQ}^{2}=\mathrm{PR}^{2}+4\left(\mathrm{PM}^{2}-\mathrm{PR}^{2}\right) \quad$...[From (iii) and (iv)]
$\therefore \quad \mathrm{PQ}^{2}=\mathrm{PR}^{2}+4 \mathrm{PM}^{2}-4 \mathrm{PR}^{2}$
$\therefore \quad \mathrm{PQ}^{2}=4 \mathrm{PM}^{2}-3 \mathrm{PR}^{2}$

Practice Set - 2.2 (Textbook Page No. 43)

(3) In $\triangle P Q R$ seg PS is median of $\triangle \mathrm{PQR}$. and $\mathrm{PT} \perp \mathrm{QR}$, (4 marks)
Prove that:

(i) $\mathrm{PR}^{2}=\mathrm{PS}^{2}+\mathrm{QR} \times \mathrm{ST}+\left(\frac{\mathrm{QR}}{2}\right)^{2}$
(ii) $\mathrm{PQ}^{2}=\mathrm{PS}^{2}-\mathrm{QR} \times \mathrm{ST}+\left(\frac{\mathrm{QR}}{2}\right)^{2}$

Proof:

$$
\mathrm{QS}=\mathrm{RS}=\frac{\mathrm{QR}}{2} \quad \ldots(\mathrm{i})(\mathrm{S} \text { is the midpoint of } \operatorname{seg} \mathrm{QR})
$$

In $\triangle \mathrm{PTS}, \angle \mathrm{PTS}=90^{\circ}$
...(Given)
$\therefore \quad \mathrm{PS}^{2}=\mathrm{PT}^{2}+\mathrm{ST}^{2} \quad$...(Pythagoras theorem)
$\therefore \quad \mathrm{PT}^{2}=\mathrm{PS}^{2}-\mathrm{ST}^{2}$
(i) $\operatorname{In} \triangle \mathrm{PTR}, \angle \mathrm{PTR}=90^{\circ}$
...(Given)
$\therefore \quad \mathrm{PR}^{2}=\mathrm{PT}^{2}+\mathrm{TR}^{2} \quad$...(By Pythagoras theorem)
$\therefore \quad \mathrm{PR}^{2}=\mathrm{PS}^{2}-\mathrm{ST}^{2}+(\mathrm{RS}+\mathrm{ST})^{2} \ldots[$ From (ii), R - S - T]
$=\mathrm{PS}^{2}-\mathrm{ST}^{2}+\mathrm{RS}^{2}+2 \times \mathrm{RS} \times \mathrm{ST}+\mathrm{ST}^{2}$
$=\mathrm{PS}^{2}+2 \mathrm{RS} \times \mathrm{ST}+\mathrm{RS}^{2}$
$=\mathrm{PS}^{2}+2 \times \frac{\mathrm{QR}}{2} \times \mathrm{ST}+\left(\frac{\mathrm{QR}}{2}\right)^{2} \quad \ldots[$ From (i) $]$
$\therefore \quad \mathrm{PR}^{2}=\mathrm{PS}^{2}+\mathrm{QR} \times \mathrm{ST}+\left(\frac{\mathrm{QR}}{2}\right)^{2}$
(ii) In $\triangle \mathrm{PTQ}, \angle \mathrm{PTQ}=90^{\circ}$
...(Given)
$\therefore \quad \mathrm{PQ}^{2}=\mathrm{PT}^{2}+\mathrm{QT}^{2} \quad$...(By Pythagoras theorem)
$\therefore \quad \mathrm{PQ}^{2}=\mathrm{PS}^{2}-\mathrm{ST}^{2}+(\mathrm{QS}-\mathrm{ST})^{2} \ldots[$ From (ii), $\mathrm{Q}-\mathrm{T}-\mathrm{S}$]
$\mathrm{PQ}^{2}=\mathrm{PS}^{2}-\mathrm{ST}^{2}+\mathrm{QS}^{2}-2 \mathrm{QS} \times \mathrm{ST}+\mathrm{ST}^{2}$
$\mathrm{PQ}^{2}=\mathrm{PS}^{2}-2 \mathrm{QS} \times \mathrm{ST}+\mathrm{QS}^{2}$
$\mathrm{PQ}^{2}=\mathrm{PS}^{2}-2 \times \frac{\mathrm{QR}}{2} \times \mathrm{ST}+\left(\frac{\mathrm{QR}}{2}\right)^{2} \quad \ldots[$ From (i) $]$
$\therefore \mathrm{PQ}^{2}=\mathrm{PS}^{2}-\mathrm{QR} \times \mathrm{ST}+\left(\frac{\mathrm{QR}}{2}\right)^{2}$
*(5) In adjoining figure, point T is in the interior of rectangle PQRS.

Prove that, $\mathrm{TS}^{2}+\mathrm{TQ}^{2}=\mathrm{TP}^{2}+\mathrm{TR}^{2} \quad$ (5 marks)

To Prove :
$\mathrm{TS}^{2}+\mathrm{TQ}^{2}=\mathrm{TP}^{2}+\mathrm{TR}^{2}$

Construction :

Draw a line parallel to side SR, through point T, intersecting sides PS and QR at point A and B respectively.
Proof:

$$
\begin{aligned}
& \square \mathrm{PQRS} \text { is a rectangle } \\
& \therefore \quad \angle \mathrm{SPQ}=\angle \mathrm{PSR}=\angle \mathrm{SRQ}=\angle \mathrm{PQR}=90^{\circ} \ldots(\text { (i) (Aven) } \\
& \text { of a rectangle) }
\end{aligned}
$$

$\operatorname{seg} \mathrm{PQ} \| \operatorname{seg} \mathrm{SR}$
...(ii) (Opposite sides of rectangle are parallel)
But, seg AB \| seg SR
...(iii) [Construction]
$\therefore \quad \operatorname{seg} P Q\|\operatorname{seg} S R\| \operatorname{seg} A B \quad . . .(i v)[F r o m(i),(i i) \&(i i i)]$ In $\square \mathrm{ABRS}$, seg $\mathrm{AB} \|$ seg SR ...[From (iii)] seg AS\|seg BR ...(Opposite sides of rectangle are parallel and $\mathrm{P}-\mathrm{A}-\mathrm{S}, \mathrm{Q}-\mathrm{B}-\mathrm{R}$)

In \square ABRS is parallelogram ...(By definition)
$\therefore \quad \mathrm{AS}=\mathrm{BR} \quad$...(v) (Opposite sides of parallelogram are equal)
Similarly by proving $\square \mathrm{ABQP}$ is a parallelogram we get,
$\mathrm{AP}=\mathrm{BQ}$
seg PQ\|seg AB
...[From (ii)]
on transversal PS,
$\angle \mathrm{QPS}=\angle \mathrm{BAS}=90^{\circ}$
Similarly we can prove,
seg BA \perp seg PS
$\therefore \quad$ In $\triangle \mathrm{TAS}, \angle \mathrm{TAS}=90^{\circ}$
...[From (vii)]
$\therefore \quad \mathrm{TS}^{2}=\mathrm{TA}^{2}+\mathrm{AS}^{2}=90^{\circ}$
...(ix) (By Pythagoras theorem)
$\therefore \quad$ In $\triangle \mathrm{TBQ}, \angle \mathrm{TBQ}=90^{\circ}$
$\therefore \quad \mathrm{TQ}^{2}=\mathrm{TB}^{2}+\mathrm{BQ}^{2}=90^{\circ}$
...(x) (By Pythagoras theorem)

Adding (ix) and (x),
$\mathrm{TS}^{2}+\mathrm{TQ}^{2}=\mathrm{TA}^{2}+\mathrm{AS}^{2}+\mathrm{TB}^{2}+\mathrm{BQ}^{2}$
In $\triangle \mathrm{TAP}, \angle \mathrm{TAP}=90^{\circ}$
...[From (vii)]
$\therefore \quad \mathrm{TP}^{2}=\mathrm{TA}^{2}+\mathrm{AP}^{2} \quad \ldots($ xii $)$ (By Pythagoras theorem) In $\triangle \mathrm{TBR}, \angle \mathrm{TBR}=90^{\circ}$
$\therefore \quad \mathrm{TR}^{2}=\mathrm{TB}^{2}+\mathrm{BR}^{2} \ldots$ (xiii) (By Pythagoras theorem) Adding (xii) and (xiii),
$\mathrm{TP}^{2}+\mathrm{TR}^{2}=\mathrm{TA}^{2}+\mathrm{AP}^{2}+\mathrm{TB}^{2}+\mathrm{BR}^{2}$
$\mathrm{TP}^{2}+\mathrm{TR}^{2}=\mathrm{TA}^{2}+\mathrm{BQ}^{2}+\mathrm{TB}^{2}+\mathrm{AS}^{2} \ldots$ (xiv) \ldots [From
(vi) and (v)
$\therefore \quad \mathbf{T S}^{2}+\mathbf{T Q}^{2}=\mathbf{T P}^{2}+\mathbf{T R}^{2} \quad \ldots[$ From (xi) and (xiv)

Problem Set - 2 (Textbook Pg No. 44)

(2) Solve the following:
(iii) Find the length a diagonal of a rectangle having side 11 cm and 60 cm .
(2 marks)

Solution :

In rectangle $A B C D$ $A B=60 \mathrm{~cm}, B C=11 \mathrm{~cm}$.

In $\triangle A B C, \angle A B C=90^{\circ} \quad$...(Angle of a rectangle)

$$
\begin{array}{rlr}
\therefore \quad \mathrm{AC}^{2} & =\mathrm{AB}^{2}+\mathrm{BC}^{2} \quad \ldots(\text { By Pythagoras theorem }) \\
\mathrm{AC}^{2} & =(60)^{2}+(11)^{2} \\
& =3600+121 \\
\mathrm{AC}^{2} & =3721 \\
\therefore \quad \mathrm{AC} & =61 \mathrm{~cm} \quad \ldots \text { (Taking square roots) }
\end{array}
$$

\therefore The length of the diagonal of the rectangle is 61 cm
(iv) Find the length of the hypotenuse of a right angled triangle if remaining sides are 9 cm and 12 cm . (2 marks)

Solution :

In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}$
...(Given)
$\therefore \quad \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \quad$...(By Pythagoras theorem)
$\mathrm{AC}^{2}=(9)^{2}+(12)^{2}$
$=81+144$
$\mathrm{AC}^{2}=225$
$\therefore \quad A C=15 \mathrm{~cm}$
...(Taking square roots)
$\therefore \quad$ length of the hypotenuse is $\mathbf{1 5 ~ c m}$
(v) A side of and isosceles right angled triangle is \mathbf{x}. Find its hypotenuse.. (2 marks)

Solution :

...(Given)
$\therefore \quad \mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2} \quad$...(By Pythagoras theorem)
$\mathrm{PR}^{2}=x^{2}+x^{2}$
$=2 x^{2}$
$\therefore \quad \mathrm{PR}=\sqrt{2} x$
...(Taking square roots)
$\therefore \quad$ The length of the hypothenuse is $\sqrt{2} x$ units
(4) Find the diagonal of a rectangle whose length is 16 cm and area is $192 \mathrm{sq} . \mathrm{cm}$.
(3 marks)

Given :

(1) $\square \mathrm{ABCD}$ is a rectangle
(2) $\mathrm{AB}=16 \mathrm{~cm}$
(3) $A(\square A B C D)=192 \mathrm{sq} . \mathrm{cm}$.

To find :
AC

Solution :

$\square \mathrm{ABCD}$ is a rectangle
$\mathrm{A}(\square \mathrm{ABCD})=$ length \times breadth
$\therefore \quad 192=\mathrm{AB} \times \mathrm{BC}$
$\therefore \quad 192=16 \times \mathrm{BC}$
$\frac{192}{16}=\mathrm{BC}$
$\therefore \quad B C=12 \mathrm{~cm}$
In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ} \quad \ldots$ (Angle of a rectangle)
$\therefore \quad \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \quad$...(By Pythagoras theorem)
$A C^{2}=(16)^{2}+(12)^{2}$
$=256+144$
$\therefore \quad \mathrm{AC}^{2}=400$
$\therefore \quad \mathrm{AC}=20 \mathrm{~cm}$
...(Taking square roots)
$\therefore \quad$ length of the diagonal is 20 cm
(10) Pranali and Prasad started walking to the East and to the North respectively, from the same point and at the same speed. After 2 hours distance between them was $15 \sqrt{2} \mathrm{~km}$. Find their speed per hour.
(3 marks)
Solution :
B represents starting point of W journey.
BA is the distance

travelled by Prasad in North direction.
BC is the distance travelled by Pranali in east direction.
AC is the distance between Pranali and Prasad after two hours.

Let the speed of each one be $x \mathrm{~km} / \mathrm{hr}$.
$\therefore \quad$ Distance travelled by each one hour is $2 x \mathrm{~km}$.
i.e. $\mathrm{AB}=\mathrm{BC}=2 x \mathrm{~km}$

In $\triangle A B C, \angle B=90^{\circ} \quad$...(Line joining adjacent direction are \perp to each other)
$\therefore \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2} \quad$...(By Pythagoras theorem)
$\therefore \quad(2 x)^{2}+(2 x)^{2}=(15 \sqrt{2})^{2}$
$\therefore \quad 4 x^{2}+4 x^{2}=225 \times 2$
$\therefore \quad 8 x^{2}=225 \times 2$
$\therefore \quad x^{2}=\frac{225 \times 2}{8}$
$\therefore \quad x^{2}=\frac{225}{4}$
$\therefore \quad x=\frac{15}{2}$
...(Taking square roots)
$\therefore \quad x=7.5$
$\therefore \quad$ Speed of each one is $7.5 \mathrm{~km} / \mathrm{hr}$
*(11) In $\triangle A B C, \angle B A C=90^{\circ}$, seg BL and seg CM are medians of $\triangle \mathrm{ABC}$, prove that $4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)=5 \mathrm{BC}^{2}$. (5 marks)

To Prove :
$4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)=5 \mathrm{BC}^{2}$

...(Given)
Proof:
In $\triangle \mathrm{BAC}, \angle \mathrm{BAC}=90^{\circ}$
...(Given)
$\therefore \quad B C^{2}=A B^{2}+A C^{2} \quad \ldots$ (i) (By Pythagoras theorem)
In $\triangle \mathrm{BAL}, \angle \mathrm{BAC}=90^{\circ}$
...(Given)
$\therefore \quad \mathrm{BL}^{2}=\mathrm{AB}^{2}+\mathrm{AL}^{2}$
...(ii) (By Pythagoras
theorem)
In $\triangle C A M, \angle C A M=90^{\circ}$
...(Given)
$\therefore \quad \mathrm{CM}^{2}=\mathrm{AC}^{2}+\mathrm{AM}^{2}$
...(iii) (By Pythagoras theorem)
Adding (ii) and (iii),
$\mathrm{BL}^{2}+\mathrm{CM}^{2}=\mathrm{AB}^{2}+\mathrm{AL}^{2}+\mathrm{AC}^{2}+\mathrm{AM}^{2}$
$\therefore \quad \mathrm{BL}^{2}+\mathrm{CM}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}+\mathrm{AL}^{2}+\mathrm{AM}^{2}$
$\therefore \quad \mathrm{BL}^{2}+\mathrm{CM}^{2}=\mathrm{BC}^{2}+\mathrm{AL}^{2}+\mathrm{AM}^{2} \quad$ [From (i)]
$\therefore \quad \mathrm{BL}^{2}+\mathrm{CM}^{2}=\mathrm{BC}^{2}+\left(\frac{1}{2} \mathrm{AC}\right)^{2}+\left(\frac{1}{2} \mathrm{AB}\right)^{2} \quad[\because \mathrm{~L}$ and
M are the midpoint of sides $A C$ and AB respectively]
$\therefore \quad \mathrm{BL}^{2}+\mathrm{CM}^{2}=\mathrm{BC}^{2}+\frac{\mathrm{AC}^{2}}{4}+\frac{\mathrm{AB}^{2}}{4}$
$\therefore \quad 4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)=4 \mathrm{BC}^{2}+\mathrm{AC}^{2}+\mathrm{AB}^{2} \quad$ (Multiplying throughout by 4)
$\therefore \quad 4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)=4 \mathrm{BC}^{2}+\mathrm{BC}^{2}$
...[From (i)]
$\therefore \quad 4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)=5 \mathrm{BC}^{2}$
(13) In $\triangle \mathrm{ABC}$, $\operatorname{seg} \mathrm{AD} \perp \operatorname{seg} \mathrm{BC}$, $D B=3 C D$.

Prove that:
$2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}$

(4 marks)
To Prove:
$2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}$
Proof :

$$
\begin{array}{lr}
\mathrm{DB}=3 \mathrm{CD} & \ldots(\text { (i) }
\end{array} \text { (Given) } \text { (Given) }
$$

$$
\therefore \quad \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{DB}^{2} \quad \text { (By Pythagoras theorem) }
$$

$$
\therefore \quad A B^{2}=A D^{2}+(3 C D)^{2} \quad[\text { From }(\mathrm{i})]
$$

$$
\begin{equation*}
\therefore \quad \mathrm{AB}^{2}=\mathrm{AD}^{2}+9 \mathrm{CD}^{2} \tag{ii}
\end{equation*}
$$

In $\triangle \mathrm{ADC}, \angle \mathrm{ADC}=90^{\circ}$
$\therefore \quad \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2} \quad$ (By Pythagoras theorem)
$\therefore \quad \mathrm{AD}^{2}=\mathrm{AC}^{2}-\mathrm{CD}^{2}$
$A B^{2}=A C^{2}-C D^{2}+9 C D^{2} \quad[$ From (ii) and (iii)
$\therefore \quad \mathrm{AB}^{2}=\mathrm{AC}^{2}+8 \mathrm{CD}^{2}$
But $\mathrm{BC}=\mathrm{CD}+\mathrm{DB}$
$\ldots[C-D-B]$
$\therefore \quad B C=C D+3 C D$
$\therefore \quad B C=4 C D$
$\therefore \quad \mathrm{CD}=\frac{\mathrm{BC}}{4}$
$\therefore \quad \mathrm{AB}^{2}=\mathrm{AC}^{2}+8\left(\frac{\mathrm{BC}}{4}\right)^{2} \quad \ldots[$ From (iv) and (v)]
$\therefore \quad \mathrm{AB}^{2}=\mathrm{AC}^{2}+8 \times \frac{\mathrm{BC}^{2}}{16}$
$\therefore \quad \mathrm{AB}^{2}=\mathrm{AC}^{2}+\frac{\mathrm{BC}^{2}}{2}$...[From (iv) and (v)]
$\therefore \quad 2 \mathbf{A B}^{2}=2 \mathbf{A C}^{2}+\mathbf{B C}^{2} \quad$ (Multiplying throughout by 2)
(15) In trapesium $A B C D$, seg $A B \|$ seg $D C$. seg $B D \perp$ seg $A D$, seg $A C \perp$ seg $B C$. If $A D=15, B C=15$ and $\mathbf{A B}=\mathbf{2 5}$, then find $\mathbf{A}(\square \mathrm{ABCD}) \quad$ (5 marks)

Construction :

Draw seg $C M \perp$ side $A B$,
(A - M - B)
Draw seg $\mathrm{DN} \perp$ side AB ,
(A-N - B)

Solution :
In $\triangle \mathrm{ABC}, \angle \mathrm{ACB}=90^{\circ}$
...(Given)
$\therefore \quad \mathrm{AC}^{2}+\mathrm{BC}^{2}=\mathrm{AB}^{2} \quad$...(By Pythagoras theorem)
$\therefore \quad \mathrm{AC}^{2}+(15)^{2}=(25)^{2}$
$A C^{2}+(25)^{2}-(15)^{2}$
$A C^{2}=625-225=400$
AC $=20$ units
...(Taking square roots)

$$
\begin{align*}
& \mathrm{A}(\triangle \mathrm{ABC})=\frac{1}{2} \times \mathrm{AB} \times \mathrm{CM} \\
& \mathrm{Also}, \mathrm{~A}(\triangle \mathrm{ABC})=\frac{1}{2} \times \mathrm{AC} \times \mathrm{BC} \\
\therefore \quad & \frac{1}{2} \times \mathrm{AB} \times \mathrm{CM}=\frac{1}{2} \times \mathrm{AC} \times \mathrm{BC} \\
& \therefore \quad 25 \times \mathrm{CM}=20 \times 15 \\
\therefore \quad & \mathrm{CM}=\frac{20 \times 15}{25} \\
\therefore \quad & \mathrm{CM}=12 \text { units } \tag{iii}
\end{align*}
$$

In $\triangle \mathrm{BMC}, \angle \mathrm{BMC}=90^{\circ} \quad$...(Construction)
$\therefore \quad \mathrm{BC}^{2}=\mathrm{CM}^{2}+\mathrm{BM}^{2} \quad$...(By Pythagoras theorem)
$\therefore \quad 15^{2}=12^{2}+\mathrm{BM}^{2}$
$\mathrm{BM}^{2}=15^{2}-12^{2}$
$\therefore \quad \mathrm{BM}^{2}=225-144$
$\therefore \quad \mathrm{BM}^{2}=81$
$\therefore \quad B M=9$ units
...(iv) (Taking square roots)
$\therefore \quad \mathrm{CM}=\mathrm{DN} . . .(\mathrm{v})$ (Prependicular distance between the same two parallel lines are equal)
In $\triangle \mathrm{BMC}$ and $\triangle \mathrm{AND}$
$\angle \mathrm{BMC} \cong \angle \mathrm{AND}$
...(Each $\left.90^{\circ}\right)$
Hyp. $\mathrm{BC} \cong$ Hyp. AD
...(Given)
$\operatorname{seg} C M \cong \operatorname{seg} D N$
...[From (v)]
$\therefore \quad \triangle \mathrm{BMC} \cong \triangle \mathrm{AND}$...(Hypotenuse side test)
$\therefore \quad \operatorname{seg} B M \cong \operatorname{seg} A N$
...(c.s.s.t.)
$\therefore \quad \mathrm{AN}=9$ units $\quad . .($ vii)
...[From (iv) and (vi)]
$A B=A N+M N+B M$
... (A - N - M - B)
$\therefore \quad 25=9+\mathrm{MN}+9$
$\mathrm{MN}=25-18=7$ units
In $\square \mathrm{CMND}$, seg MN $\mid \mathrm{seg} \mathrm{CD}$
...(Given, A - N - M - B)
$\operatorname{seg} \mathrm{CM} \|$ seg DN
...(Perpendiculars drawn to the same line are parallel)
$\therefore \quad \square \mathrm{CMND}$ is a parallelogram
...(Definition)
$\therefore \quad \mathrm{CD}=\mathrm{MN}$
...(Opposite sides of parallelogram are equal)
$\therefore \quad C D=7$ units
...[From (viii)]
$\therefore \quad \mathrm{A}($ trapezium ABCD$)=\frac{1}{2}(\mathrm{AB}+\mathrm{CD}) \times \mathrm{CM}$

$$
\begin{aligned}
& =\frac{1}{2}(25+7) \times 12 \\
& =\frac{1}{2} \quad(32) \times 12=192
\end{aligned}
$$

$\therefore \quad$ A (trapezium ABCD$)=192$ square units

Points to Remember:

- Converse of Pythagoras theorem :

Statement: In a triangle, if the square of one side , is equal to the sum of the squares of remaining ; two sides, then the angle opposite to the first side is a right angle and the triangle is right angled triangle.
Given : In $\triangle \mathrm{ABC}, \quad \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
To prove : $\angle \mathrm{ABC}=90^{\circ}$

Construcion: Draw $\triangle \mathrm{PQR}$ such that

$$
\mathrm{AB}=\mathrm{PQ}, \mathrm{BC}=\mathrm{QR} \text { and } \angle \mathrm{PQR}=90^{\circ}
$$

Proof: In $\triangle A B C$ and $\triangle P Q R$

$$
\left.\begin{array}{rlr}
\mathrm{PR}^{2} & =\mathrm{PQ}^{2}+\mathrm{QR}^{2} & \ldots(\text { By Pythagores } \\
\text { theorem })
\end{array}\right] \begin{array}{lr}
\\
& =\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
& =\mathrm{AC}^{2} \\
\therefore \quad \ldots(\text { Construction }) \\
\mathrm{PR}^{2} & =\mathrm{AC}^{2} \\
\mathrm{PR} & =\mathrm{AC} \\
\triangle \mathrm{ABC} & \cong \triangle \mathrm{PQR} \\
\angle \mathrm{ABC} & =\angle \mathrm{PQR}=90^{\circ} \quad \ldots \text { (taking square roots) }
\end{array}
$$

Pythagorean Triplet:
In a triplet of natural numbers, if the square of the largest number is equal to the sum of the squares of the remaining two numbers. Then the triplet is called Pythagorean triplet.
Example: In the triplet $(11,60,61)$

$$
\begin{aligned}
& 11^{2}=121 ; 60^{2}=3600 ; 61^{2}=3721 \\
& 121+3600=3721
\end{aligned}
$$

The square of the largest number is equal of the sum of the squares of the other two number.
Formula for the Pythagorean triplet:
If a, b, c are natural numbers and $a>b$, then $\left[\left(a^{2}+b^{2}\right),\left(a^{2}-b^{2}\right), 2 a b\right]$ is pythagorean triplet.
$\therefore \quad\left(a^{2}+b^{2}\right)^{2}=a^{4}+2 a^{2} b^{2}+b^{4}$

$$
\begin{align*}
\left(a^{2}-b^{2}\right)^{2} & =a^{4}-2 a^{2} b^{2}+b^{4} \tag{ii}\\
(2 a b)^{2} & =4 a^{2} b^{2} \tag{iii}
\end{align*}
$$

by (i), (ii) and (iii),
$\left(a^{2}+b^{2}\right)^{2}=\left(a^{2}-b^{2}\right)^{2}+(2 a b)^{2}$
$\therefore \quad\left[\left(a^{2}+b^{2}\right),\left(a^{2}-b^{2}\right),(2 a b)\right]$ is a Pythagorean triplet
Example: For $a=5$ and $b=3$
$a^{2}+b^{2}=25+9=34$
$a^{2}-b^{2}=25-9=16$
$2 \mathrm{ab}=30$
$\therefore \quad(16,30,34)$ is a Pythagorean triplet

Practice Set - 2.1 (Textbook Page No. 38)

(1) Which of the following are Pythagorean triplets? Justify.
(i) $3,5,4$
(1 mark)
$5^{2}=25$
$3^{2}+4^{2}=9+16$
$\therefore \quad 3^{2}+4^{2}=25$
From (i) and (ii)
$5^{2}=3^{2}+4^{2}$
$\therefore \quad 3,5,4$ is a Pythagorean triplet.
(ii) $4,9,12$
$12^{2}=144$
$4^{2}+9^{2}=16+81$
$\therefore \quad 4^{2}+9^{2}=97$
From (i) and (ii)
$12^{2} \neq 4^{2}+9^{2}$
$\therefore \quad 4,9,12$ is not a Pythagorean triplet.
(iii) $5,12,13$
(1 mark)
$13^{2}=169$
$5^{2}+12^{2}=25+144$
$\therefore \quad 5^{2}+12^{2}=169$
$13^{2}=5^{2}+12^{2}$
...[From (i) and (ii)]
$\therefore \quad 5,12,13$ is a Pythagorean triplet.
(iv) $24,70,74$
(1 mark)
$74^{2}=5476$
$24^{2}+70^{2}=576+4900$
$\therefore \quad 24^{2}+70^{2}=5476$
$74^{2}=24^{2}+70^{2}$
...[From (i) and (ii)]
$\therefore \quad 24,70,74$ is a Pythagorean triplet.
(v) $10,24,27$
(1 mark)
$27^{2}=729$
$10^{2}+24^{2}=100+576$
$\therefore \quad 10^{2}+24^{2}=676$

From (i) and (ii)
$27^{2} \neq 10^{2}+24^{2}$
$\therefore \quad 10,24,27$ is not a Pythagorean triplet.
(vi) $11,60,61$
(1 mark)
$61^{2}=3721$
$60^{2}+11^{2}=3600+121$
$\therefore \quad 60^{2}+11^{2}=3721$
From (i) and (ii)
$61^{2}=60^{2}+11^{2}$
$\therefore \quad 11,60,61$ is a Pythagorean triplet.

Problem Set - 2 (Textbook Pg No. 44)

(2) Solve the following
(ii) Do sides $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$ from a right angled triangle? Give reason.
(1 mark)
Solution :
$25^{2}=625$
$7^{2}+24^{2}=49+576$
$7^{2}+24^{2}=625$
$\therefore \quad 25^{2}=7^{2}+4^{2} \quad$...[From (i) and (ii)]
$\therefore \quad$ By converse of Pythagoras theorem, given triangle is a right angled triangle.
(vi) In $\triangle \mathrm{PQR}, \mathrm{PQ}=\sqrt{8}, \mathrm{QR}=\sqrt{5}, \mathrm{PR}=\sqrt{3}$. Is $\triangle \mathrm{PQR}$ a right angle? If yes, which angle is of 90° ?
(1 mark)

Solution :

$$
\begin{array}{ll}
& \mathrm{PQ}^{2}=(\sqrt{8})^{2}=8 \\
& \mathrm{PR}^{2}+\mathrm{QR}^{2}=(\sqrt{3})^{2}+(\sqrt{5})^{2} \\
\therefore & \mathrm{PR}^{2}+\mathrm{QR}^{2}=3+5 \\
\therefore & \mathrm{PR}^{2}+\mathrm{QR}^{2}=8 \tag{ii}\\
\therefore & \mathrm{PQ}^{2}=\mathrm{PR}^{2}+\mathrm{QR}^{2}
\end{array}
$$

...[From (i) and (ii)] Yes, $\triangle P Q R$ is a right angled triangled.
$\therefore \quad \angle \mathrm{R}=90^{\circ} \quad$...(Converse of Pythagoras theorem)
$\therefore \quad \angle \mathbf{R}=\mathbf{9 0} 0^{\circ}$

Points to Remember:

- Theorem of $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.

If the angles of a triangle are $30^{\circ}, 60^{\circ}$ and 90°, then the side opposite to 30° is half of the hypotenuse
and the side opposite to 60° is $\frac{\sqrt{3}}{2}$ times the
hypotenuse.
In $\triangle \mathrm{ABC}$,
$\mathrm{m} \angle \mathrm{A}=30^{\circ}$
$\mathrm{m} \angle \mathrm{C}=60^{\circ}$ and
$\mathrm{m} \angle \mathrm{B}=90^{\circ}$

$B C=\frac{1}{2} A C$ and $A B=\frac{\sqrt{3}}{2} A C$
Theorem of $45^{\circ}-45^{\circ}-90^{\circ}$ triangle.
If the angles of a triangle are $45^{\circ}, 45^{\circ}$ and 90°, then the length of the perpendicular sides are $\frac{1}{\sqrt{2}}$ times the hypotenuse.

In $\triangle \mathrm{ABC}$,
$\mathrm{m} \angle \mathrm{A}=45^{\circ}$
$\mathrm{m} \angle \mathrm{C}=45^{\circ}$ and
$\mathrm{m} \angle \mathrm{B}=90^{\circ}$

$\therefore \quad A B=B C=\frac{1}{\sqrt{2}} A C$

Practice Set - 2.1 (Textbook Page No. 39)

(4) In adjoining figure, find RP and PS using the information given in $\triangle P S R$, find RP and PS. (2 marks) Solution :

$$
\begin{aligned}
\text { In } \triangle \mathrm{PSR}, \angle \mathrm{~S} & =90^{\circ} \\
\angle \mathrm{P} & =30^{\circ} \\
\therefore \quad \angle \mathrm{R} & =60^{\circ}
\end{aligned}
$$

...(Given)
...(Given)
...(Sum of all angles of a triangle is 180°)
$\therefore \quad \triangle \mathrm{PSR}$ is $30^{\circ}-60^{\circ}-90^{\circ}$ triangle
By $30^{\circ}-60^{\circ}-90^{\circ}$ triangle theorem,
$R S=\frac{1}{2} P R$
...(side opposite to 30°)
$\therefore \quad 6=\frac{1}{2} \times \mathrm{PR}$

$$
\therefore \quad P R=12 \text { units }
$$

$P S=\frac{\sqrt{3}}{2} \times P R$
...(side opposite to 60°)
$\mathrm{PS}=\frac{\sqrt{3}}{2} \times 12$

$$
\begin{array}{ll}
\therefore & \text { PS }=6 \sqrt{3} \text { units }
\end{array}
$$

Problem Set - 2 (Textbook Pg No. 44)

(2) Solve the following
(i) Find the height of an equilateral triangle having side $2 a$.
(2 marks)

Given :

(i) $\triangle \mathrm{ABC}$ is an equilateral triangle.
(ii) $\mathrm{AB}=2 \mathrm{a}$

Construction: seg $\mathrm{AM} \perp$ side $\mathrm{BC}, \mathrm{B}-\mathrm{M}-\mathrm{C}$ To find: AM.

Solution :

In $\triangle \mathrm{AMB}, \angle \mathrm{AMB}=90^{\circ}$
$\angle B=60^{\circ} \quad \ldots$ (angle of an equilateral triangle)
$\angle \mathrm{BAM}=30^{\circ} \quad .$. (Sum of all angles of a triangle is 180°)
$\therefore \quad \triangle \mathrm{AMB}$ is $30^{\circ}-60^{\circ}-90^{\circ}$ triangle
By $30^{\circ}-60^{\circ}-90^{\circ}$ triangle theorem,
$A M=\frac{\sqrt{3}}{2} \times A B$
...(Side opposite to 60°)
$\therefore \quad \mathrm{AM}=\frac{\sqrt{3}}{2} \times 2 \mathrm{a}$
$\therefore \quad \mathbf{A M}=\sqrt{3}$ a
(3) In $\triangle \mathrm{RST}, \angle \mathrm{S}=90^{\circ}, \angle \mathrm{T}=30^{\circ}, \mathrm{RT}=12 \mathrm{~cm}$. Find RS and ST.
Solution :
In $\triangle \mathrm{PSR}, \angle \mathrm{S}=90^{\circ}$

$$
\begin{array}{rr}
\angle \mathrm{T}=30^{\circ} \mathrm{S}-90^{\circ} \\
\therefore \quad \angle \mathrm{R}=60^{\circ} \quad \ldots(\text { Sum of all angles of a } \\
\text { triangle is } \left.180^{\circ}\right)
\end{array}
$$

$\therefore \quad \triangle \mathrm{PSR}$ is $30^{\circ}-60^{\circ}-90^{\circ}$ triangle
By $30^{\circ}-60^{\circ}-90^{\circ}$ triangle theorem,
$\mathrm{RS}=\frac{1}{2} \times \mathrm{RT}$
$\therefore \quad \mathrm{RS}=\frac{1}{2} \times 12$
...(side opposite to 30°)
$\therefore \quad \mathrm{RS}=\mathbf{6 ~ c m}$
ST $=\frac{\sqrt{3}}{2} \times$ RT
...(side opposite to 60°)
$\mathrm{ST}=\frac{\sqrt{3}}{2} \times 12$
$\therefore \quad \mathrm{ST}=6 \sqrt{3} \mathrm{~cm}$
*(5) Find the length if the side and perimeter of an equilateral triangle whose height is $\sqrt{3} \mathrm{~cm}$.

Given :

(i) $\triangle \mathrm{ABC}$ is an equilateral triangle.

(ii) seg $A M \perp$ side BC, B - M - C
(iii) $\mathrm{AM}=\sqrt{3} \mathrm{~cm}$

To find : (i) $A B$ (ii) Perimeter of $\triangle A B C$.

Solution :

In $\triangle \mathrm{AMB}, \angle \mathrm{AMB}=90^{\circ}$
...(Given)
$\angle B=60^{\circ} \quad \ldots$ (Angle of an equilateral triangle)
$\therefore \quad \angle \mathrm{BAM}=30^{\circ} \quad$...(Sum of all angles of a trangle is 180°)
$\therefore \quad \triangle \mathrm{AMB}$ is $30^{\circ}-60^{\circ}-90^{\circ}$ triangle
By $30^{\circ}-60^{\circ}-90^{\circ}$ triangle theorem,
$\mathrm{AM}=\frac{\sqrt{3}}{2} \times \mathrm{AB}$
...(Side opposite to $\left.60^{\circ}\right)$
$\therefore \quad \mathrm{AB}=\frac{2}{\sqrt{3}} \times \mathrm{AM}$
$\therefore \quad \mathrm{AB}=\sqrt{3} \times \frac{2}{\sqrt{3}}$
$\therefore \quad \mathrm{AB}=2 \mathrm{~cm}$
$\therefore \quad$ Perimeter of $\mathrm{ABC}=3 \times \mathrm{AB}$

$$
=3 \times 2=6 \mathrm{~cm}
$$

$\therefore \quad$ Perimeter of $\triangle \mathrm{ABC}=6 \mathrm{~cm}$
(7) $\triangle \mathrm{ABC}$ is an equilateral triangle. Point P is on base $B C$ such that $P C=\frac{\mathbf{1}}{\mathbf{3}} B C$, if $A B=6 \mathrm{~cm}$, find $A P$.

Given :

(i) $\triangle \mathrm{ABC}$ is an equilateral triangle.
(ii) $\mathrm{AB}=6 \mathrm{~cm}$
(iii) $\mathrm{PC}=\frac{1}{3} \mathrm{BC}$

To find: AP

Construction : Draw seg $A M \perp B C, C-M-B$

Solution:

$$
\begin{array}{rlr}
& \mathrm{AB}=\mathrm{BC}=\mathrm{AC} \quad \ldots \text { (Side of an equilateral triangle) } \\
\therefore & \mathrm{BC}=\mathrm{AC}=6 \mathrm{~cm} \ldots \text { (i) } & (\because \mathrm{AB}=6 \mathrm{~cm}, \text { given) } \\
& \mathrm{PC}=\frac{1}{3} \mathrm{BC} \\
\therefore & \mathrm{PC}=\frac{1}{3} \times 6=2 \mathrm{~cm} \quad \ldots \text { (Given) } \tag{ii}\\
& \text { In } \triangle \mathrm{AMC}, \angle \mathrm{C}=60^{\circ} \quad \ldots \text { (Angle of an equilateral } \\
& & \text { triangle) }
\end{array}
$$

$$
\begin{array}{rrr}
& \angle \mathrm{AMC}=90^{\circ} & \ldots(\text { Construction }) \\
\therefore & \angle \mathrm{CAM}=30^{\circ} & \ldots(\text { Sum of all angles of a } \\
& & \text { triangle is } \left.180^{\circ}\right)
\end{array}
$$

$\therefore \quad \triangle \mathrm{AMC}$ is $30^{\circ}-60^{\circ}-90^{\circ}$ triangle By $30^{\circ}-60^{\circ}-90^{\circ}$ triangle theorem,
$\therefore \quad \mathrm{CM}=\frac{1}{2} \mathrm{AC}$
...(side opposite to 30°)
$\therefore \quad \mathrm{CM}=\frac{1}{2} \times 6 \mathrm{~cm}=3 \mathrm{~cm}$
$\mathrm{AM}=\frac{\sqrt{3}}{2} \times \mathrm{AC}$
...(side opposite to 60°)
$\therefore \quad \mathrm{AM}=\frac{\sqrt{3}}{2} \times 6=3 \sqrt{3}$
$\mathrm{PM}=\mathrm{CM}-\mathrm{CP}$
...(C - P - M)
$\therefore \quad \mathrm{PM}=3-2$
$\therefore \quad \mathrm{PM}=1 \mathrm{~cm}$
$\therefore \quad$ In $\triangle \mathrm{AMP}, \angle \mathrm{AMP}=90^{\circ}$ triangle \ldots (Construction)

$$
\mathrm{AP}^{2}=\mathrm{AM}^{2}+\mathrm{PM}^{2} \quad \ldots(\text { By Pythagoras theorem })
$$

$=(3 \sqrt{3})^{2}+1$
$A P^{2}=27+1$
$\therefore \quad \mathrm{AP}^{2}=28$
$\therefore \quad \mathrm{AP}=\sqrt{4 \times 7}$
$\therefore \quad \mathrm{AP}=2 \sqrt{7}$
...(Taking square roots)
$\therefore \quad \mathrm{AP}=2 \sqrt{7} \mathrm{~cm}$
*(16) In the adjoining figure, $\triangle P Q R$ is an equilateral triangle. Point S is on seg QR such that $\mathrm{QS}=\frac{1}{3} \mathrm{QR}$. Prove that
$9 \mathrm{PS}^{2}=7 \mathrm{PQ}^{2}$

To prove : $9 \mathrm{PS}^{2}=7 \mathrm{PQ}^{2}$

Construction :

Draw seg PT \perp side QR,
(Q-S - T-R)
Proof: $\triangle \mathrm{PQR}$ is an equilateral triangle
(Given)
Solution :
$P Q=Q R=P R$
...(i) [sides of an equilateral triangle]

In $\triangle \mathrm{PTS}, \angle \mathrm{PTS}=90^{\circ}$
...(Construction)
$\therefore \quad \mathrm{PS}^{2}=\mathrm{PT}^{2}+\mathrm{ST}^{2} \quad$...(ii) (By Pythagoras theorem)
In $\triangle \mathrm{PTQ}$,
$\angle \mathrm{PTQ}=90^{\circ}$
...(Construction)
$\angle \mathrm{PQT}=60^{\circ} \quad \ldots$ (angle of an equilated triangle)
$\angle \mathrm{QPT}=30^{\circ}$
...(remaining angle)
$\therefore \quad \triangle \mathrm{PTQ}$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle

By $30^{\circ}-60^{\circ}-90^{\circ}$ triangle theorem,
$\therefore \quad \mathrm{PT}=\frac{\sqrt{3}}{2} \mathrm{PQ}$
...(iii) (side opposite to 60°)
$\therefore \quad \mathrm{QT}=\frac{1}{2} \mathrm{PQ}$
...(iv) (Side opposite to 30°)
$\mathrm{ST}=\mathrm{QT}-\mathrm{QS}$
$\therefore \quad \mathrm{ST}=\frac{1}{2} \mathrm{PQ}-\frac{1}{3} \mathrm{QR} \quad \ldots[$ [From (iv) and given]
$\therefore \quad \mathrm{ST}=\frac{1}{2} \mathrm{PQ}-\frac{1}{3} \mathrm{PQ}$
...[From (i)]
$\therefore \quad \mathrm{ST}=\frac{3 \mathrm{PQ}-2 \mathrm{PQ}}{6}$
$\therefore \quad \mathrm{ST}=\frac{1}{6} \mathrm{PQ}$
$\therefore \quad \mathrm{PS}^{2}=\left(\frac{\sqrt{3}}{2} \mathrm{PQ}\right)^{2}+\left(\frac{1}{6} \mathrm{PQ}\right)^{2} \ldots[$ From (ii) (iii) and
$\therefore \quad \mathrm{PS}^{2}=\frac{3 \mathrm{PQ}^{2}}{4}+\frac{\mathrm{PQ}^{2}}{36}$
$\therefore \quad \mathrm{PS}^{2}=\frac{27 \mathrm{PQ}^{2}+\mathrm{PQ}^{2}}{36}$
$\therefore \quad \mathrm{PS}^{2}=\frac{28 \mathrm{PQ}^{2}}{36}$
$\therefore \quad \mathrm{PS}^{2}=\frac{7}{9} \mathrm{PQ}^{2}$
$\therefore \quad 9 \mathrm{PS}^{2}=7 \mathrm{PQ}^{2}$

Practice Set - 2.1 (Textbook Page No. 39)

(5) For finding AB and BC with the help of information in adjoining figure, complete the following activity.
(2 marks)

Solution :
$\mathrm{AB}=\mathrm{BC} \quad$...(Side opposite to congruent angle)
$\therefore \quad \angle \mathrm{BAC}=45^{\circ}$
$\therefore \quad \mathrm{AB}=\mathrm{BC}=\frac{1}{\sqrt{2}} \times \mathrm{AC}$
$=\frac{1}{\sqrt{2}} \times \sqrt{8}$

$$
=\frac{1}{\sqrt{2}} \times 2 \sqrt{2}
$$

$\therefore \quad \mathrm{AB}=\mathrm{BC}=2$ units

Points to Remember:

Application of Pythagoras Theorem
(1)

In acute angled $\triangle \mathrm{ABC}$,
$\angle C$ is an acute angle, seg $\mathrm{AD} \perp$ side BC ,

B-D - C.
Prove that:

$\mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2}-2 \mathrm{BC} \cdot \mathrm{BD}$
Proof:
In $\mathrm{AB}=c, \mathrm{AC}=b, \mathrm{AD}=p, \mathrm{BC}=a$ and $\mathrm{DC}=x$
$\therefore \quad \mathrm{BD}=a-x$
In $\triangle \mathrm{ADB}$,
$\mathrm{c}^{2}=(a-x)^{2}+p^{2} \quad \ldots$ (By Pythagoras theorem)
$\therefore \quad c^{2}=a^{2}-2 a x+x^{2}+p^{2}$
In $\triangle \mathrm{ADC}$,
$b^{2}=p^{2}+x^{2} \quad$...(By Pythagoras theorem)
$\therefore \quad p^{2}=b^{2}-x^{2}$
Substituting
(ii) in (i)
$c^{2}=a^{2}-2 a x+x^{2}+b^{2}-x^{2}$
$\therefore \quad c^{2}=a^{2}+b^{2}-2 a x$
$\therefore \quad \mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2}-2 \mathrm{BC} \times \mathrm{DC}$
(2) In $\triangle \mathrm{ABC}, \angle \mathrm{ACB}>90^{\circ}$, seg $\mathrm{AD} \perp \operatorname{seg} \mathrm{BC}$

Prove that:

$$
\mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2}+2 \mathrm{BC} \times \mathrm{CD}
$$

Proof:
Let $\mathrm{AD}=p, \mathrm{AC}=b, \mathrm{AB}=c, \mathrm{BC}=a$ and $\mathrm{DC}=x$
$\therefore \quad \mathrm{DB}=a+x$
In $\triangle \mathrm{ADB}$,
$c^{2}=(a+x)^{2}+p^{2} \quad$...(By Pythagoras theorem)
$\therefore \quad c^{2}=a^{2}+2 a x+x^{2}+p^{2}$
Similarly, In $\triangle \mathrm{ADC}$,
$b^{2}=x^{2}+p^{2}$
$\therefore \quad p^{2}=b^{2}-x^{2}$
Substituting (ii) in (i),

$$
\begin{aligned}
c^{2} & =a^{2}+2 a x+x^{2}+b^{2}-x^{2} \\
& =a^{2}+2 a x+b^{2}
\end{aligned}
$$

$\therefore \quad \mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2}+2 \mathrm{BC} \times \mathrm{CD}$

Theorem : In $\triangle A B C$, it M is a midpoint of $B C$.
then $A B^{2}+A C^{2}=2 A M^{2}+2 B M^{2}$.
Given : In $\triangle A B C, M$ is midpoint of side $B C$.
To prove $: \mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AM}^{2}+2 \mathrm{BM}^{2}$
Construction: Draw seg AD \perp seg BC
Proof: If seg AM is not perpendicular to side BC. Then $\angle A M B$ and $\angle A M C$ are either acute angle or obtuse angle.

According to figure, $\angle \mathrm{AMB}$ is on obtuse angle and $\angle \mathrm{AMC}$ is an acute angle. According examples (1) and (2) above.
$\mathrm{AB}^{2}=\mathrm{AM}^{2}+\mathrm{MB}^{2}+2 \mathrm{BM} \times \mathrm{MD}$
and $\mathrm{AC}^{2}=\mathrm{AM}^{2}+\mathrm{MC}^{2}-2 \mathrm{MC} \times \mathrm{MD}$
$A C^{2}=A M^{2}+\mathrm{MB}^{2}-2 \mathrm{BM} \times \mathrm{MD}$
$(\because B M=M C)$
adding (i) and (ii) we get,
$\mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AM}^{2}+2 \mathrm{MB}^{2}$
This is called Apollonius theorem.

Practice Set - 2.2 (Textbook Page No. 43)

(1) In $\triangle P Q R$, point S is the midpoint of side QR. If $\mathrm{PQ}=11, \mathrm{PR}=17$, $P S=13$ then find $Q R$. (2 marks) Solution :

In $\triangle \mathrm{PQR}, \mathrm{PS}$ is the median
...(By Definition)
$\therefore \quad \mathrm{PQ}^{2}+\mathrm{PR}^{2}=2 \mathrm{PS}^{2}+2 \mathrm{QS}^{2} \ldots($ Apollonius theorem $)$
$\therefore \quad 11^{2}+17^{2}=2 \times\left(13^{2}+\mathrm{QS}^{2}\right)$
$\therefore \quad 121+289=2\left(169+\mathrm{QS}^{2}\right)$

$$
\begin{aligned}
& \therefore \quad \frac{410}{2}=169+\mathrm{QS}^{2} \\
& \therefore \quad 205-169=\text { QS }^{2} \\
& \therefore \quad \mathrm{QS}^{2} \quad=36 \\
& \therefore \quad \text { QS }=6 \text { units }
\end{aligned}
$$

...(Taking square roots)

$$
\begin{array}{r}
\mathrm{QR} \quad 2 \mathrm{QS} \quad \ldots(\because \mathrm{~S} \text { is the midpoint } \\
\\
\\
\text { of } \operatorname{seg} \mathrm{QR}, \text { given })
\end{array}
$$

$\therefore \quad \mathrm{QR}=2 \times 6$
$\therefore \quad \mathrm{QR}=12$ units
(4) In $\triangle A B C$, point M is midpoint of side $B C$. If $A B^{2}+A C^{2}=290 \mathrm{~cm}^{2}$ and $A M=8 \mathrm{~cm}$, find $B C$. (2 marks)

Solution:

In $\triangle A B C$, seg $A M$ is median
...(Given)
$\therefore \quad \mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AM}^{2}+2 \mathrm{BM}^{2}$
...(Apollonius theorem)
$\therefore \quad 290=2\left(8^{2}+\mathrm{BM}^{2}\right)$
$\therefore \quad \frac{290}{2}=64+\mathrm{BM}^{2}$
$\therefore \quad 145-64=\mathrm{BM}^{2}$
$\therefore \quad \mathrm{BM}^{2} \quad=81$
$\therefore \quad B M \quad=9$ units $\quad .$. (Taking square roots)
$B C=2 B M$
... $(\because \mathrm{M}$ is the midpoint of seg BC$)$
$\therefore \quad B C \quad=2 \times 9$
$\therefore \quad B C=18 \mathrm{~cm}$
Problem Set - 2 (Textbook Pg No. 44)
(6) In $\triangle A B C$, seg $A P$ is a median. If $B C=18$, $A B^{2}+A C^{2}=260$. Find AP.

$\therefore \quad \mathrm{BP}=\frac{1}{2} \times 18$
$\therefore \quad \mathrm{BP}=9$ units
In $\triangle \mathrm{ABC}$, seg AP is median
$\therefore \quad \mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{BP}^{2}+2 \mathrm{AP}^{2}$
...(Apollonius theorem)
$\therefore \quad 260=2\left(9^{2}+\mathrm{AP}^{2}\right)$
...[From (i)]
$\therefore \quad \frac{260}{2}=81+\mathrm{AP}^{2}$
$\therefore \quad \mathrm{AP}^{2}=130-81$
$\therefore \quad \mathrm{AP}^{2}=49$
$\therefore \quad \mathrm{AP}=7$ units
...(Taking square roots)

Practice Set - 2.2 (Textbook Page No. 43)

(2) In $\triangle A B C, A B=10, A C=7, B C=9$. Find the length of the median drawn from point C to side $A B$.
Given :
(i) In $\triangle A B C$, seg CM is a median
(ii) $\mathrm{AB}=10, \mathrm{AC}=7$, $B C=9$

(3 marks)
To Find: CM.
Solution :
$\therefore \quad B M=\frac{1}{2} \times A B \quad \ldots(M$ is the midpoint of seg $A B)$
$\therefore \quad \mathrm{BM}=\frac{1}{2} \times 10$
$\therefore \quad \mathrm{BM}=5$ units
In $\triangle \mathrm{ABC}, \mathrm{CM}$ is the median
...(Given)
$\therefore \quad \mathrm{AC}^{2}+\mathrm{BC}^{2}=2 \mathrm{CM}^{2}+2 \mathrm{BM}^{2}$
...(Apollonius theorem)
$\therefore \quad 7^{2}+9^{2}=2\left(\mathrm{CM}^{2}+5^{2}\right)$
$\therefore \quad 49+81=2\left(\mathrm{CM}^{2}+25\right)$
$\therefore \quad \frac{130}{2}=\mathrm{CM}^{2}+25$
$\therefore \quad \mathrm{CM}^{2}=65-25$
$\therefore \quad \mathrm{CM}^{2}=40$
$\therefore \quad \mathrm{CM}=\sqrt{40}$
...(Taking square roots)
$\therefore \quad \mathrm{CM}=\sqrt{4 \times 10}$
$\therefore \quad C M=2 \sqrt{10}$ units

Problem Set - 2 (Textbook Pg No. 44)

(8) From the information given in the figure, Prove that: $\mathbf{P M}=\mathbf{P N}=\sqrt{3} \times a$
(4 marks)

Proof:

$$
\begin{equation*}
\mathrm{MQ}=\mathrm{QR}=\mathrm{RN}=a \tag{Given}
\end{equation*}
$$

Point Q is the midpoint of seg $M R$
$\therefore \quad$ In $\triangle \mathrm{PMR}$, seg PQ is a median
...[From (i), Definition]
$\therefore \quad \mathrm{PM}^{2}+\mathrm{PR}^{2}=2 \mathrm{PQ}^{2}+2 \mathrm{QM}^{2}$
...(Apollonius theorem)
$\therefore \quad \mathrm{PM}^{2}+a^{2}=2 a^{2}+2 a^{2}$
$\therefore \quad \mathrm{PM}^{2}=4 a^{2}-a^{2}$
$\therefore \quad \mathrm{PM}^{2}=3 a^{2}$
$\therefore \quad \mathbf{P M}=\sqrt{3} a \quad$...(Taking square roots)
Similarly we can prove, $\mathrm{PN}=\sqrt{3} a$
$\therefore \quad \mathrm{PM}=\mathrm{PN}=\sqrt{3} a$
(9) Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.
Given :
In $\square \mathrm{ABCD}$, is a parallelogram Diagonals $A C$ and BD
 intersect each other at point M.

To Prove :

$\mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}$
(5 mark)
Proof :
$\square \mathrm{ABCD}$ is a parallelogram
...(Given)

$$
\left.\begin{array}{ll}
\mathrm{AM}=\mathrm{CM}=\frac{1}{2} \mathrm{AC} & \ldots(\mathrm{i}) \tag{i}\\
\mathrm{BM}=\mathrm{DM}=\frac{1}{2} \mathrm{BD} & \ldots(\mathrm{ii)}
\end{array}\right\} \begin{aligned}
& {[\text { Diagonals }} \\
& \text { parallelogra } \\
& \text { each other }]
\end{aligned}
$$

$\therefore \quad$ In $\triangle \mathrm{ABC}$, seg BM is a median..$[$ [From (i)]
$\therefore \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}=2 \mathrm{BM}^{2}+2 \mathrm{AM}^{2} \quad$...(iii) (By Apollonius theorem)
$\therefore \quad$ In $\triangle \mathrm{ADC}$, seg DM is a median ...[From (i)]
$\therefore \quad \mathrm{CD}^{2}+\mathrm{AD}^{2}=2 \mathrm{DM}^{2}+2 \mathrm{AM}^{2}$...(iv) (By Apollonius theorem)
Adding (iii) and (iv)
$\therefore \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}=2 \mathrm{BM}^{2}+2 \mathrm{AM}^{2}+2 \mathrm{DM}^{2}+2 \mathrm{AM}^{2}$
$\therefore \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}=2 \mathrm{BM}^{2}+2 \mathrm{DM}^{2}+4 \mathrm{AM}^{2}$
$\therefore \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}=2 \mathrm{BM}^{2}+2 \mathrm{BM}^{2}+4 \mathrm{AM}^{2}$
...[From (ii)]
$\therefore \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}=4 \mathrm{BM}^{2}+4 \mathrm{AM}^{2}$
$\therefore \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}=4\left[\mathrm{BM}^{2}+\mathrm{AM}^{2}\right]$
$\therefore \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}=4\left[\left(\frac{1}{2} \mathrm{BD}\right)^{2}+\left(\frac{1}{2} \mathrm{AC}\right)^{2}\right]$
...[From (i) and (ii)]
$\therefore \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}=4\left[\frac{1}{4} \mathrm{BD}^{2}+\frac{1}{4} \mathrm{AC}^{2}\right]$
$\therefore \quad=4 \times \frac{1}{4}\left[\mathrm{BD}^{2}+\mathrm{AC}^{2}\right]$
$\therefore \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}=\mathrm{BD}^{2}+\mathrm{AC}^{2}$
$\therefore \quad \mathrm{BD}^{2}+\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}$
(12) Sum of squares of adjacent sides of a parallelogram is $130 \mathrm{~cm}^{2}$ and length of one of its diagonal is 14 cm . Find length of the other diagonal.

Given :

(i) $\square \mathrm{ABCD}$ is a parallelogram
(ii) $\mathrm{AB}^{2}+\mathrm{BC}^{2}=130 \mathrm{~cm}^{2}$
(iii) $\mathrm{AC}=14 \mathrm{~cm}$

To find: BD
Solution :
$\square \mathrm{ABCD}$ is a parallelogram
...(Given)

$\therefore \quad \mathrm{BM}=\frac{1}{2} \mathrm{BD}$
...(i)
[Diagonals of a parallelogram bisect each other]
$\therefore \quad \mathrm{AM}=\frac{1}{2} \mathrm{AC}$
$\therefore \quad \mathrm{AM}=\frac{1}{2} \times 14=7 \mathrm{~cm}$
In $\triangle \mathrm{ABC}$, seg BM is the a median
...[From (ii) and Definition]
$\therefore \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}=2 \mathrm{AM}^{2}+2 \mathrm{BM}^{2} \ldots$ (Apollonius theorem)
$130=2\left(7^{2}+\mathrm{BM}^{2}\right)$
$\therefore \quad \frac{130}{2}=49+\mathrm{BM}^{2}$
$\therefore \quad 65-49=\mathrm{BM}^{2}$
$\therefore \quad \mathrm{BM}^{2}=16$
$\therefore \quad B M=4 \mathrm{~cm}$
...(Taking square roots)
$\therefore \quad \frac{1}{2} \mathrm{BD}=4 \mathrm{~cm}$
...[From (i)]
$\therefore \quad \mathrm{BD}=8 \mathrm{~cm}$
*(14) In an isosceles triangle, length of each congruent side is 13 cm and length of the base is 10 cm . Find the distance between vertex opposite to base and centroid.

Given :

(i) In $\triangle A B C$, is an isosceles triangle
(ii) $\mathrm{AB}=\mathrm{AC}=13 \mathrm{~cm}$, $B C=10 \mathrm{~cm}$

(iii) seg AD is the median
(iv) G is the centroid of $\triangle \mathrm{ABC}$

To find : AG
(3 marks)

Solution :

$B D=\frac{1}{2} B C$
...(Median bisects opposite side)
$\therefore \quad \mathrm{BD}=\frac{1}{2} \times 10=5 \mathrm{~cm}$

In $\triangle A B C$, seg $A D$ is a median
...(Definition)
$\therefore \quad \mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AD}^{2}+2 \mathrm{BD}^{2} \ldots$ (Apollonius theorem)
$\therefore \quad 13^{2}+13^{2}=2\left(\mathrm{AD}^{2}+5^{2}\right) \quad \ldots$ [From (i) and given]
$\therefore \quad 169+169=2\left(\mathrm{AD}^{2}+25\right)$
$\therefore \quad \frac{338}{2}=\mathrm{AD}^{2}+25$
$\therefore \quad 169-25=\mathrm{AD}^{2}$
$\therefore \quad 144=\mathrm{AD}^{2}$
$\therefore \quad \mathrm{AD}=12 \mathrm{~cm}$
...(Taking square roots)
$\mathrm{AG}=\frac{2}{3} \mathrm{AD} \quad \ldots$ (Centroid divides each median in the ratio $3: 1$)
$\therefore \quad \mathrm{AG}=\frac{2}{3} \times 12$
$\therefore \quad \mathrm{AG}=8 \mathrm{~cm}$
*(17) Seg $P M$ is a median of $\triangle P Q R$. If $P Q=40$, $P R=42$ and $P M=29$, find $Q R$.
(3 marks)
Solution :
In $\triangle P Q R$, seg $P M$ is the median ...(Given)
$\therefore \quad \mathrm{PQ}^{2}+\mathrm{PR}^{2}=2 \mathrm{PM}^{2}+2 \mathrm{QM}^{2}$
...(Appollonius theorem)
$\therefore \quad 40^{2}+42^{2}=2(29)^{2}+2(\mathrm{QM})^{2}$

$\therefore \quad(40)^{2}+(42)^{2}=2\left(29^{2}+\mathrm{QM}^{2}\right)$
$\therefore \quad 1600+1764=2\left(841+\mathrm{QM}^{2}\right)$
$\therefore \quad \frac{3364}{2}=841+\mathrm{QM}^{2}$
$\therefore \quad 1682-841=\mathrm{QM}^{2}$
$\therefore \quad \mathrm{QM}^{2}=841$
$\therefore \quad \mathrm{QM}=29$
...(Taking square roots)
$\mathrm{QR}=2 \mathrm{QM}$
...(M is midpoint of seg QR)
$\therefore \quad \mathrm{QR}=2 \times 29$
$\therefore \quad \mathrm{QR}=58$ units
(18) \quad Seg $A M$ is a median of $\triangle A B C$. If $A B=22$, $A C=34, B C=24$, find $A M$. Solution :

In $\triangle \mathrm{ABC}$
$\therefore \quad \mathrm{BM}=\frac{1}{2} \mathrm{BC}$
...(M is
the midpoint of BC)

$\therefore \quad \mathrm{BM}=\frac{1}{2} \times 24=12$ units
In $\triangle A B C$, seg $A M$ is the median
...(Given)
$\therefore \quad \mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AM}^{2}+2 \mathrm{BM}^{2} \quad \ldots($ By Apollonius
theorem $)$
$\therefore \quad 22^{2}+34^{2}=2\left(\mathrm{AM}^{2}+\mathrm{BM}^{2}\right)$

$$
\begin{aligned}
& \therefore & 484+1156 & =2\left(\mathrm{AM}^{2}+12^{2}\right) \\
& \therefore & \frac{1640}{2} & =\mathrm{AM}^{2}+144 \\
& \therefore & 820-144 & =\mathrm{AM}^{2} \\
& & \mathrm{AM}^{2} & =676
\end{aligned}
$$

$\therefore \quad \mathbf{A M}=\mathbf{2 6}$ units $\quad . .($ Taking square roots)

Problem Set - 2 (Textbook Page No. 43)

MCQ's

Choose the correct alternative for each of the following.
(1 mark each)
(1) Out of the following which is the Pythagorean triplet?
(A) $(1,5,10)$
(B) $(3,4,5)$
(C) $(2,2,2)$
(D) $(5,5,2)$
(2) In a right angled triangle, if sum of the squares of the sides making right angle is 169 then what is the length of the hypotenuse?
(A) 15
(B) 13
(C) 5
(D) 12
(3) Out of the dates given below which date constitutes a Pythagorean triplet?
(A) $15 / 08 / 17$
(B) $16 / 08 / 16$
(C) $03 / 05 / 17$
(D) $04 / 09 / 15$
(4) If a, b, c are sides of a triangle and $a^{2}+b^{2}=c^{2}$, name the type of triangle.
(A) Obtuse angled triangle
(B) Acute angled triangle
(C) Right angled triangle
(D) Equilateral triangle
(5) Find perimeter of a square if its diagonal is $10 \sqrt{2} \mathrm{~cm}$.
(A) 10 cm
(B) $40 \sqrt{2}$
(C) 20 cm
(D) 40 cm
(6) Altitude on the hypotenuse of a right angle triangle divides it in two parts of lengths 4 cm and $9 \mathbf{c m}$. Find the length of the altitude.
(A) 9 cm
(B) 4 cm
(C) 6 cm
(D) 18 cm
(7) Height and base of a right angled triangle are 24 cm and 18 cm , find the length of its hypotenus.
(A) 24 cm
(B) 30 cm
(C) 15 cm
(D) 18 cm
(8) In $\triangle \mathrm{ABC} \mathrm{AB}=6 \sqrt{3} \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$. Find measure of $\angle \mathrm{A}$.
(A) 30°
(B) 60°
(C) 90°
(D) 45°

Additional MCQ's

(9)

(A) $10 \sqrt{8} \mathrm{~m}$
(B) $5 \sqrt{4} \mathrm{~m}(\mathrm{C}) 4 \sqrt{5} \mathrm{~m}$ (D) 5 m

In $\triangle \mathrm{PQR}, \angle \mathrm{PQR}=90^{\circ}$, seg $\mathrm{QM} \perp$ hyp PR, PM = 16 and $R M=9$ then $Q M=$ \qquad
(A) 12
(B) 25
(C) 7
(D) 16×9
(11)

In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}, \angle \mathrm{C}=30^{\circ}$,
$A B=6 \mathrm{~cm}$ then $A C=$ \qquad
(A) $3 \sqrt{3} \mathrm{~cm}$
(B) $2 \sqrt{3} \mathrm{~cm}$
(C) $12 \sqrt{3} \mathrm{~cm}$
(D) 12 cm
(12)

In $\triangle \mathrm{PQR}, \angle \mathrm{Q}=90^{\circ}$, $\mathrm{PQ}=\mathrm{QR}=5 \sqrt{2}$ $P R=10$ then $\angle P$ \qquad
(A) 30°
(B) 45°
(C) 60°
(D) Data not sufficient
(13) Which of the following is a Pythagorean triplet?
(a) $60,61,11$
(b) $40,41,42$
(c) $11,12,15$
(d) $9,15,17$
(14) In $\triangle Q S R, \mathrm{~m} \angle \mathrm{Q}=45^{\circ}, \mathrm{m} \angle \mathrm{S}=90^{\circ}$ and $\mathrm{SR}=4$, find QS.
(A) 3
(B) 4
(C) 5
(D) 6
(15) Appollonius theorem is a theorem relating the length of \qquad of a triangle.
(A) Altitude
(B) Angle bisector
(C) Perpendicular bisector
(D) Median and sides
(16) In the adjoining figure, $\mathrm{AB}^{2}+\mathrm{AC}^{2}=122, \mathrm{BC}=10$, then find AQ \qquad

(A) 3
(B) 6
(C) 12
(D) 36
(17) In $\triangle \mathrm{PQR}, \mathrm{m} \angle \mathrm{PQR}=90^{\circ}$, seg $\mathrm{QS} \perp$ hyp PR then.
(A) $\mathrm{QS}^{2}=\mathrm{PS} \times \mathrm{RS}$
(B) $\mathrm{PS}^{2}=\mathrm{QS} \times \mathrm{PR}$
(C) $\mathrm{PR}^{2}=\mathrm{QS} \times \mathrm{PS}$
(D) $\mathrm{PR}^{2}=\mathrm{QS}^{2} \times \mathrm{PS}^{2}$
(18) In which of the following quadrilateral sum of squares of all sides is equal to the sum of squares of diagonals?
(A) Parallelogram
(B) Rhombus
(C) Square
(D) (A), (B) and (C)

ANSWERS

(1) $\quad(B)(3,4,5)$
(2) (B) 13
(3) (A) $15 / 08 / 17$
(4) (C) Right angled
(5) $(D) 40 \mathrm{~cm}$
(6) $(C) 6 \mathrm{~cm}$
(7) (B) 30 cm
(8) $(\mathrm{A}) 30^{\circ}$
(9) (C) $4 \sqrt{5} \mathrm{~m}$
(10) (A) 12
(11) (D) 12 cm
(13) $(\mathrm{A})(60,61,11)$
(12) (B) 45°
(14) (B) 4
(15) (D) Median and sides
(16) (B) 6
(17) (A) $\mathrm{QS}^{2}=\mathrm{PS} \times \mathrm{RS}$
(18) (D) A, B and C

PROBLEMS FOR PRACTICE

Based on Practice Set 2.1

(1) In $\triangle \mathrm{XYZ}, \angle \mathrm{Y}=90^{\circ}, \angle \mathrm{Z}=a^{\circ}, \angle \mathrm{X}=\left(a+30^{\circ}\right)$.

If $X Z=24$, find $X Y$ and $Y Z$.
(3 marks)
(2) In the adjoining figure, $\angle \mathrm{L}=\angle \mathrm{MKN}=90^{\circ}$, $\angle \mathrm{MKL}=30^{\circ}$ and $\angle \mathrm{MNK}=45^{\circ}$. If $\mathrm{KL}=6 \sqrt{3}$, then find MK, ML, KN, MN and perimeter of \square MNKL. (3 marks)

(3) Sides of triangles are given below. Determine which of them are right angled triangle. (2 marks)
(i) $8,15,17$
(ii) 20, 30, 40
(iii) $11,12,15$
(iv) $20,16,12$
(4) A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from the base of the wall.
(2 marks)
(5) E is a point on hypotenuse DF of $\triangle \mathrm{DFH}$, such that seg HE \perp seg DF, seg EG \perp seg FH and
seg EK \perp seg DH. Prove that,
(i) $\mathrm{EG}^{2}=\mathrm{FG} \times \mathrm{EK}$
(ii) $\mathrm{EK}^{2}=\mathrm{DK} \times \mathrm{EG}$
(3 marks)

(6) In adjoining figure, seg $\mathrm{AD} \perp$ side $\mathrm{BC}, \mathrm{B}-\mathrm{D}-\mathrm{C}$. Prove that $\mathbf{A B}^{2}+\mathbf{C D}^{2}=\mathbf{B D}^{2}+\mathbf{A C}^{2} \quad$ (3 marks)

(7) In the adjoining figure, $\angle \mathrm{PQR}=90^{\circ}$ $\operatorname{seg} \mathrm{QS} \perp$ side $\mathrm{PR}, \mathrm{PS}=4, \mathrm{PQ}=6$. Find x, y and z.

(3 marks)
(8) $\triangle \mathrm{DEF}$ is an equilateral triangle. seg $\mathrm{DP} \perp$ side EF , E-P-F. Prove that : $\mathrm{DP}^{2}=3 E P^{2}$
(3 marks)

(9) $\triangle \mathrm{PQR}$ is an equilateral triangle, $\operatorname{seg} \mathrm{PM} \perp$ side QR , $\mathrm{Q}-\mathrm{M}-\mathrm{R}$. Prove that : $\mathrm{PQ}^{2}=4 \mathrm{QM}^{2}$
(3 marks)

(10) In the adjoining figure, seg $B D \perp$ side $A C$, C-D-A. Prove that : $A B^{2}=B C^{2}+A C^{2}-B C . A C$

Based on Practice Set 2.2

(11) In $\triangle P Q R, ~ M$ is the midpoint of side $Q R$. If $P Q=11, P R=17$ and $Q R=12$, then find $P M$.
(2 marks)
(12) In $\triangle \mathrm{ABC}, \mathrm{AP}$ is a median. If $\mathrm{AP}=7, \mathrm{AB}^{2}+\mathrm{AC}^{2}$ $=260$, find $B C$.
(2 marks)
(13) In $\triangle A B C, A B^{2}+A C^{2}=122$ and $B C=10$. Find the length of the median on side $B C$.
(2 marks)
(14) Adjacent sides of a parallelogram are 11 cm and 17 cm . If the length of one of its diagonals is 26 cm , find the length of the other.
(3 marks)
(15) If ' O ' is any point in the interior of rectangle ABCD , then prove that : $\mathrm{OB}^{2}+\mathrm{OD}^{2}=\mathrm{OA}^{2}+\mathrm{OC}^{2}$
(16) In the adjoining figure, $\triangle \mathrm{PQR}$ is an equilateral triangle. $\mathrm{QR}=\mathrm{RN}$. Prove that $\mathrm{PN}^{2}=3 \mathrm{PR}^{2}$

(17) In the adjoining figure, $\angle \mathrm{PQR}=90^{\circ} . \mathrm{T}$ is the midpoint of side QR . Prove that $\mathrm{PR}^{2}=4 \mathrm{PT}^{2}-3 \mathrm{PQ}^{2}$.

(3 marks)

ANSWERS

$$
\begin{equation*}
X Y=12, Y Z=12 \sqrt{3} \tag{1}
\end{equation*}
$$

(2) $\mathrm{MK}=12, \mathrm{ML}=6, \mathrm{KN}=12, \mathrm{MN}=12 \sqrt{2}$, Perimeter of $\square \mathrm{MNKL}=6(3+2 \sqrt{2}+\sqrt{3})$
(3) (i) and (iv) are right angled triangle
(4) $6 m$ (7) $x=5, y=2 \sqrt{5}, z=3 \sqrt{5}$ (11) 13
(12) 18 (13) 6 (14) 12 cm

ASSIGNMENT - 2

Time : 1 Hr .
Q.1. (A) Solve the following sub questions:
(1) Is 28, 21 and 35 a pythagorean triplet?
(2) In $\triangle \mathrm{PQR}, \angle \mathrm{PQR}=90^{\circ}$ seg $\mathrm{QS} \perp$ hypotenuse PR , $P S=16, R S=9$. Find $Q S$

Q.1. (B) Solve any one of the following questions:
(2)

(2) In $\triangle X Y Z, \angle Y=90^{\circ}, \angle Z=a^{\circ}, \angle X=(\mathrm{a}+30)^{\circ}$. Find $\angle \mathrm{X}$

Q.2. Solve the any one of following sub questions:

(2)
(1) In $\triangle P Q R$, seg $P M$ is a median. $\mathrm{PM}=10$ and $\mathrm{PQ}^{2}+\mathrm{PR}^{2}=328$, then find QR

(2) In m and n are two distinct numbers then prove that $m^{2}-n^{2}, 2 m n$ and $m^{2}+n^{2}$ is a pythagorean triplet.
Q.3. Solve the following sub questions: (any two)
(1) In the adjoining figure, seg $\mathrm{PS} \perp$ side QR . If $\mathrm{PQ}=\mathrm{a}, \mathrm{PR}=\mathrm{b}$, $\mathrm{QS}=\mathrm{c}$ and $\mathrm{RS}=\mathrm{d}$ then complete the following activity to prove that $(a+b)(a-b)=(c+d)(c-d)$

Proof:In $\triangle \mathrm{PSQ}, \angle \mathrm{PSQ}=90^{\circ}$
...(Given)

$$
\begin{align*}
& \therefore \quad \square^{2}=\mathrm{PS}^{2}+\square^{2} \\
& \therefore \quad \mathrm{PS}^{2}=\square^{2}-\square^{2}
\end{align*}
$$

...(Pythagoras theorem)

$$
\text { In } \triangle \mathrm{PSR}, \angle \mathrm{PSR}=90^{\circ}
$$

...(Given)

$$
\therefore \quad \square^{2}=\mathrm{PS}^{2}+\square^{2}
$$

...(Pythagoras theorem)

$$
\begin{equation*}
\therefore \quad \mathrm{PS}^{2}=\square^{2}-\square^{2} \tag{ii}
\end{equation*}
$$

$\therefore \quad \square^{2}-\square^{2}=\square^{2}-\square^{2}$
$\therefore \quad a^{2}-c^{2}=b^{2}-d^{2}$
...[From (i) and (ii)]
...(Substitution)
$\therefore \quad a^{2}-b^{2}=c^{2}-d^{2}$
$\square \times \square=\square \times \square$
(2) In $\triangle \mathrm{ABD}, \angle \mathrm{BAD}=90^{\circ}$ seg $\mathrm{AC} \perp$ hypo $\mathrm{BD}, \mathrm{B}-\mathrm{C}-\mathrm{D}$.

Show that (i) $\mathrm{AB}^{2}=\mathrm{BC}: \mathrm{BD}$ (ii) $\mathrm{AD}^{2}=\mathrm{BD}: C D$

(3) In the adjoining figure AD bisects $\angle \mathrm{BAC}, \mathrm{B}-\mathrm{D}-\mathrm{C}$.
$A D \perp B C, D M \perp A B . A-M-B . D N \perp A C . A-N-C$.
Proove that $\mathrm{AM} \times \mathrm{MB}=\mathrm{AN} \times \mathrm{NC}$

Q.4. Solve the following sub questions: (any 2)
(1) State and prove 'Pythagoras theorem'
(2) In $\triangle A C B, \angle A C B=90^{\circ} \operatorname{seg} C D \perp$ side $A B, A-D-B$, seg $\mathrm{DE} \perp$ side CB .
Show that $C^{2} \times A C=A D \times A B \times D E$.

(3) In on equilateral triangle $A B C$, the side $B C$ is triseccted at D. Prove that: $9 A D^{2}=7 A B^{2}$

Pr. S. 3.1-1(i) Pg 46	Pr. S. 3.2-4(i) Pg 51	Pr. S. 3.4-4	Pg 57	PS. 3-1	Pg 64	PS. 3-8	Pg 52	PS. 3-18	Pg 63
Pr. S. 3.1-1(ii) Pg 46	Pr. S. 3.2-4(ii) Pg 51	Pr. S. 3.4-5	Pg 57	PS. 3-2(i)	Pg 47	PS. 3-9	Pg 47	PS. 3-19	Pg 58
Pr. S. 3.1-1(iii) Pg 46	Pr. S. 3.2-4(iii) Pg 51	Pr. S. 3.4-6	Pg 58	PS. 3-2(ii)	Pg 47	PS. 3-10	Pg 48	PS. 3-20	Pg 58
Pr. S. 3.1-1(iv) Pg 46	Pr. S. 3.2-5 Pg 51	Pr. S. 3.4-7	Pg 58	PS. 3-2(iii)	Pg 47	PS. 3-11	Pg 50	PS. 3-21	Pg 64
Pr. S. 3.1-2 Pg 48	Pr. S. 3.3-1 Pg 53	Pr. S. 3.4-8	Pg 58	PS. 3-3 (i)	Pg 47	PS. 3-12	Pg	PS. 3-22	Pg 60
Pr. S. 3.1-3 Pg 49	Pr. S. 3.3-2 Pg 53	Pr. S. 3.5-1	Pg 63	PS. 3-3 (ii)	Pg 47	PS. 3-13	Pg 60	PS. 3-23	Pg 57
Pr. S. 3.1-4 Pg 46	Pr. S. 3.3-3 Pg 53	Pr. S. 3.5-2	Pg 61	PS. 3-4	Pg 49	PS. 3-14	Pg 54	PS. 3-24	Pg 61
Pr. S. 3.2-1 Pg 50	Pr. S. 3.4-1 Pg 56	Pr. S. 3.5-3	Pg 63	PS. 3-5	Pg 49	PS. 3-15	Pg 62	PS. 3-25	Pg 59
Pr. S. 3.2-2 Pg 50	Pr. S. 3.4-2 Pg 56	Pr. S. 3.5-4	Pg 62	PS. 3-6	Pg	PS. 3-16	Pg 62		
Pr. S. 3.2-3 Pg 50	Pr. S. 3.4-3 Pg 56	Pr. S. 3.5-5	Pg 64	PS. 3-7	Pg 52	PS. 3-17	Pg 57		

Points to Remember:

- Circle : The set of all points equidistant from a fixed point in a plane is called circle.

The fixed point is called the centre of the circle.
In the above figure, point P is the centre of the circle.

Basic Terms used in circle

- Radius : Distance between centre of a circle and any point on the circle is called the radius.

Seg PQ, Seg PA and Seg PB are radii.
Chord: A segment whose end points lie on a circle is called the chord.
Seg CD and Seg AB are chords.

- Diameter : A chord which passes through the centre of the circle is called the diameter.

Seg AB is a diameter.
Length of the diameter is double the radius.

- Tangent : A line in the plane of a circle which touches the circle exactly in only one point is called tangent of the circle.

The point at which the tangent touches the circle is called the point of contact.

Line XY is tangent to the circle and point R is the point of the contact.

- Secant : A line which intersects the circle in two distinct points is called the secant.
Line l is a secant.
Basic concepts related to circles.
(1) 'A Perpendicular segment drawn from the centre of a circle to the chord bisects the chord.'
Given:(1) A circle with centre P.
(2) Seg PM \perp chord AB , A-M-B.

Conclusion : $\mathrm{AM}=\mathrm{BM}$.

(2) 'A segment joining centre of a circle and the midpoint of the chord is perpendicular to the chord.'

Given:(1) A circle with centre A.
(2) Point M is midpoint of chord PQ .
Conclusion: Seg AM \perp chord PQ .

(3) 'In a circle (or in congruent circles), congruent chords subtend congruent angles at the centre.'

Given :(1) A circle with centre P
(2) Chord $\mathrm{AB} \cong$ chord CD Conclusion: $\angle \mathrm{APB} \cong \angle \mathrm{CPD}$
(4) 'In a circle (or in congruent circles) if two of more chords
 subtend congruent angles at the centre, then they are congruent.'

Given :(1) A circle with centre O.
(2) $\angle \mathrm{POQ} \cong \angle \mathrm{ROS}$

Conclusion: Chord $\mathrm{PQ} \cong$ chord RS

(5) 'In a circle (or in congruent circles), congruent chords are equidistant from the centre.'
Given :(1) A circle with centre P.
(2) $\operatorname{Seg} \mathrm{PM} \perp$ chord AB , A-M-B
(3) $\operatorname{Seg} \mathrm{PN} \perp$ chord CD , C-N-D
(4) Chord $\mathrm{AB} \cong$ chord $C D$

Conclusion: $\mathrm{PM}=\mathrm{PN}$
(6) 'In a circle (or in congruent circles), chords which are equidistant from the centre are congruent.'

Given :(1) A circle with centre O.
(2) $\mathrm{Seg} \mathrm{OM} \perp$ chord PQ , P-M-Q
(3) $\mathrm{Seg} \mathrm{ON} \perp$ chord RS, R-N-S

(4) $\mathrm{OM}=\mathrm{ON}$

Conclusion: Chord $\mathrm{PQ} \cong$ chord RS
(7) Congruent circles : Two or more circles are said to be congruent circles if their radii are equal.

In the above figure, Radius $\mathrm{PQ} \cong$ Radius AB .
\therefore Both circles are congruent.
(8) Concentric circles:Two or more circles with same centre but different radii are called concentric circles.

(9) Touching circles: Two circles in the same plane having only one point in common are called touching circles.

Externally
touching circles

Internally touching circles
(10) Intersecting circles: Two circles which have exactly two points in common are called intersecting circles.

(11) Circles passing through one point.

Two points and Three points
(i) We shall first consider one point. There are infinite number of circles passing through a point.

(ii) Circles passing through two distinct points.
There can be infinite number of circles passing through two distinct points.
Note : Centres of all these circles will pass through a line containing perpendicular
 bisector of the segment joining these two points.
(iii) Circles passing through three points.

Here, arises to cases.
Case (I): When three points are non collinear.
We can draw exactly one circle passing through three noncollinear points.

Case (II): When three points are collinear.

We can not draw any circle passing through three collinear points.
(12) Tangent theorem : A tangent at any point of a circle is perpendicular to the radius, through the point of contact.

In above figure,
line PQ is a tangent at A and Seg AO is the radius through
the point of contact A .
$\therefore \quad$ seg $\mathrm{OA} \perp$ line PQ .
(13) Converse of tangent theorem :

A line perpendicular to a radius of a circle at its outer end is a tangent to the circle.
In adjoining figure, line l is perpendicular to radius OA at its outer end A .
$\therefore \quad$ line l is a tangent.

(14) Tangent segment Theorem :

Statement : The lengths of the two tangent segments to a circle drawn from an external point are equal.
Given : (i) A circle with centre A.
(ii) D is a point in the exterior of the circle.
(iii) Points P and Q are the points of contact of the two tangents from D to the circle.

In $\triangle \mathrm{PAD}$ and $\triangle \mathrm{QAD}$,
Seg $\mathrm{PA} \cong \mathrm{AQ} \quad . .($ radii of the same circle)
$\operatorname{Seg} A D \cong \operatorname{Seg} A D$
...(Common side)
$\angle \mathrm{APD} \cong \angle \mathrm{AQD}=90^{\circ}$
...(by Tangent theorem)
$\therefore \quad \triangle \mathrm{PAD} \cong \triangle \mathrm{QAD} .$. (by Hypotenuse side test)
\therefore Seg DP \cong Seg DQ
...(c.s.c.t.)

MASTER KEY QUESTION SET - 3

Practice Set - 3.1 (Textbook Page No. 55)
(1) In the adjoining figure, the radius of a circle with centre C is 6 cm , Line $A B$ is a tangent at A ? Answer the following questions.

(i) What is the measure of $\angle \mathrm{CAB}$? Why?
(ii) What is the distance of point C from line $A B$? Why?
(iii) $d(A, B)=6 \mathrm{~cm}$, find $d(B, C)$.
(iv) What the measure of $\angle \mathrm{ABC}$? Why? . (3 marks)

Solution :

(i) Radius $\mathrm{CA} \perp$ Line AB
...(Tangent Theorem)
$\therefore \mathrm{m} \angle \mathrm{CAB}=90^{\circ}$
(ii) $\mathrm{d}(\mathrm{C}, \mathrm{A})=6 \mathrm{~cm}$
...(Radius of circle)
\therefore Distance of point C from line $A B$ is 6 cm .
(iii) In $\triangle C A B, \angle C A B=90^{\circ}$
...[From (i)]

$$
\begin{aligned}
\therefore \quad B C^{2} & =A C^{2}+A B^{2} \quad \ldots(\text { By Pythagoras theorem }) \\
& =6^{2}+6^{2} \\
B C^{2} & =36+36=72 \\
\therefore \quad B C & =6 \sqrt{2} \mathrm{~cm} \quad \ldots(\text { Taking square roots })
\end{aligned}
$$

(iv) In $\triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ}$
...[From (i)]
$A C=A B$
...(Given)
$\therefore \angle \mathrm{ACB}=\angle \mathrm{ABC}$
... (ii) (converse of isosceles triangle theorem)

In $\triangle C A B$,
$\angle \mathrm{ABC}+\angle \mathrm{ACB}+\angle \mathrm{CAB}+=180^{\circ}$
...(Sum of all angles of a triangle is 180°)
$\therefore \quad \angle \mathrm{ABC}+\angle \mathrm{ABC}+90=180 \ldots[$ [From (i) and (ii)]
$\therefore 2 \angle \mathrm{ABC}=180-90$
$\therefore 2 \angle \mathrm{ABC}=90$
$\therefore \quad \angle \mathrm{ABC}=45^{\circ}$
(4) What is the distance between two parallel tangents of a circle having radius 4.5 cm . Justify your answer.
(2 marks)

Given :

(i) A circle with centre O and radius 4.5 cm .
(ii) Line l is tangent to the circle at point A
(iii) Line m is tangent to the circle at point B
(iv) Line $l \|$ line m

To find : Distance between line l and line m

Solution :

$\left.\begin{array}{ll}\operatorname{seg} \mathrm{OA} \perp \text { line } l & \ldots .(\mathrm{i}) \\ \operatorname{seg} \mathrm{OB} \perp \text { line } m & \ldots \text { (ii) }\end{array}\right\}$ (Tangent Theorem)
line $l \|$ line m
...(iii)
...(Given)
$\therefore \quad \mathrm{A}-\mathrm{O}-\mathrm{B}$
...[From (i), (ii) and (iii)]
$\therefore \quad \mathrm{AB}=\mathrm{AO}+\mathrm{BO}$
$\therefore \quad \mathrm{AB}=4.5+4.5$
$\therefore \quad \mathrm{AB}=9 \mathrm{~cm}$
$\therefore \quad$ Distance between line l and line m is 9 cm .

Problem Set - 3 (Textbook Pg No. 83)

(2) Line l touches the circle with centre O at P ; radius of the circle is 9 cm . Answer the following.
(i) Find $\mathrm{d}(\mathrm{O}, \mathrm{P})=$ write reason

(ii) $\mathrm{d}(\mathrm{O}, \mathrm{Q})=8 \mathrm{~cm}$. Where does the point Q lie?
(iii) $d(O, R)=15$ How many such ' R ' contained in line l. What is the distance of those points from ' R^{\prime} ? (3 marks)

Solution :

(i) Radius of the circle is 9 cm .
$\therefore \mathrm{d}(\mathrm{O}, \mathrm{P})=9 \mathrm{~cm}$
(ii) $\mathrm{d}(\mathrm{O}, \mathrm{Q})=8 \mathrm{~cm}$
$\mathrm{d}(\mathrm{Q}, \mathrm{O})<$ Radius
$\therefore \quad$ Point Q lies in the interior of the circle.
(iii) Pointcanhavetwodifferent positions on line l as shown in the adjoining figure.

In $\triangle \mathrm{OPR}, \angle \mathrm{OPR}=90^{\circ}$
...(Tangent Theorem)
$\therefore \mathrm{OR}^{2}=\mathrm{OP}^{2}+\mathrm{PR}^{2}$
...(Pythagoras theorem)
$\therefore \quad 15^{2}=9^{2}+P R^{2}$
$\therefore \quad \mathrm{PR}^{2}=225-81=144$
$\therefore \quad \mathrm{PR}^{2}=144$
$\therefore \quad \mathrm{PR}=12$ units
...(Taking square roots)
\therefore Two such 'R' contained in line l
(3) In the adjoining figure, M is the centre of the circle and seg $K L$ is a tangent segment. If $\mathrm{MK}=12, \mathrm{KL}=6 \sqrt{3}$, then
(i) Find radius of the circle.

(ii) Find measure of $\angle \mathrm{K}$ and $\angle \mathrm{M}$.
(3 marks)
Solution :
(i) $\operatorname{In} \triangle \mathrm{MLK}, \angle \mathrm{MLK}=90^{\circ}$
...(Tangent and radius \perp at the point of contact) (i)
$\therefore \quad \mathrm{MK}^{2}=\mathrm{ML}^{2}+\mathrm{LK}^{2} \quad$...(Pythagoras theorem)
$\therefore \quad 12^{2}=\mathrm{ML}^{2}+(6 \sqrt{3})^{2}$
$\therefore \quad 144=\mathrm{ML}^{2}+108$
$\therefore \quad M L^{2}=144-108$
$\therefore \quad \mathrm{ML}^{2}=36$
$\therefore \quad M L=6$ units
...(ii) (Taking square roots)
$\therefore \quad$ Radius of the circle is $\mathbf{6}$ units.
(ii) In $\triangle \mathrm{MLK}, \angle \mathrm{MLK}=90^{\circ}$
...[From (i)] $M L=\frac{1}{2} \mathrm{MK} \quad \ldots[$ [From (ii) and given]
$\therefore \quad \angle \mathrm{K}=30^{\circ}$...(Converse of $30^{\circ}-60^{\circ}-90^{\circ}$ theorem)
$\therefore \quad \angle \mathrm{M}=60^{\circ} \quad$...(Sum of all angles of a triangle is 180°)
(9) In the adjoining figure, line l touches the circle at P. O is the centre. Q is the mid point of radius OP. Chord RS || line l. $R S=12$, find radius of the
 circle.
(2 marks)

Solution :

Take a point T on line l as shown in the figure.
$\angle \mathrm{OPT}=90^{\circ}$
... (i) (Tangent Theorem)
chord RS || line l
...(Given)
$\therefore \quad \angle \mathrm{OPT} \cong \angle \mathrm{OQR}$
(Corresponding angles theorm)
$\therefore \angle \mathrm{OQR}=90^{\circ}$
[From (i) and (ii)]
$\therefore \quad$ seg $O Q \perp$ chord RS ... [From (iii)]
$\therefore \mathrm{QR}=\frac{1}{2} \mathrm{RS}$
...(Perpendicular drawn from the centre of the circle to the chord bisects the chord.)
$\therefore \mathrm{QR}=\frac{1}{2} \times 12$
$\therefore \mathrm{QR}=6$ units
Let the radius of the circle be x units.
$\therefore \mathrm{OR}=\mathrm{OP}=x$ units \ldots (Radii of the same circle)
$\therefore \mathrm{OQ}=\frac{1}{2} \mathrm{OP} \quad(\because \mathrm{Q}$ is midpoint of seg OP$)$
$\therefore \mathrm{OQ}=\frac{1}{2} \times x$
$\therefore \mathrm{OQ}=\frac{x}{2}$
In $\triangle \mathrm{OQR}$,
$\angle \mathrm{OQR}=90^{\circ}$
... [From (iii)]
$\therefore \quad \mathrm{OR}^{2}=\mathrm{OQ}^{2}+\mathrm{QR}^{2} \ldots$ (By Pythagoras theorem)
$\therefore \quad x^{2}=\left(\frac{x}{2}\right)^{2}+(6)^{2}$
$\therefore \quad x^{2}=\frac{x^{2}}{4}+36$
$\therefore \quad 4 x^{2}=x^{2}+144$
...(Multiplying throughout by 4)
$\therefore 4 x^{2}-x^{2}=144$
$\therefore 3 x^{2}=144$
$\therefore x^{2}=\frac{144}{3}$
$\therefore x^{2}=48$
$\therefore x=\sqrt{48}$
...(taking square roots)
$\therefore x=\sqrt{16 \times 3}$
$\therefore x=4 \sqrt{3}$
$\therefore \quad \mathrm{OR}=\mathrm{OP}=4 \sqrt{3}$ units
$\therefore \quad$ Radius of the circle is $4 \sqrt{3}$ units.
(10) In the adjoining figure, seg $A B$ is a diameter of a circle with centre C. Line $P Q$ is a tangent, it touches the circle at T. segs $A P$ and $B Q$ are
 perpendiculars to line $P Q$. Prove seg $C P \cong \operatorname{seg} C Q$.
(2 marks)

Construction :

Draw seg CT, seg CP and seg CQ.

Proof:

seg $\mathrm{AP} \perp$ line PQ
...(i) (Given)
seg $C T \perp$ line $P Q$
...(ii) (Tangent Theorem
seg $\mathrm{BQ} \perp$ line PQ
...(iii) (Given)
$\therefore \quad$ seg AP $\|$ seg CT $\|$ seg BQ ...[Perpendiculares drawn to the same line are parallel to each other from (i), (ii) and (iii)]
On transversals $A B$ and $P Q$,
$\frac{\mathrm{PT}}{\mathrm{QT}}=\frac{\mathrm{AC}}{\mathrm{BC}}$
...(iv) [Property of intercepts made by three parallel lines]
But, $\mathrm{AC}=\mathrm{BC}$...(Radii of the same circle)

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{AC}}{\mathrm{BC}}=1 \\
\therefore & \frac{\mathrm{PT}}{\mathrm{QT}}=1 \\
\therefore & \mathrm{PT}=\mathrm{QT}
\end{array}
$$

In $\triangle \mathrm{PTC}$ and $\triangle \mathrm{QTC}$,
$\operatorname{seg} \mathrm{CT} \cong \operatorname{seg} \mathrm{CT}$
$\angle \mathrm{CTP} \cong \angle \mathrm{CTQ}$...(Common side)
$\operatorname{seg} \mathrm{PT} \cong \operatorname{seg} \mathrm{QT}$...[Each is 90° from (ii)]
$\therefore \quad \Delta \mathrm{PTC} \cong \Delta \mathrm{QTC} \ldots$...By SAS test of congruency)
$\therefore \operatorname{seg} C P \cong \operatorname{seg} C Q$

Practice Set - 3.1 (Textbook Page No. 55)

(2) In the adjoining figure, O is the centre of the circle. From point R, Seg RM and RN are tangent segments,
 touch the circle at M, N. $(O, R)=10 \mathrm{~cm}$, radius of the circle $=5 \mathrm{~cm}$, then find (2 marks)
(i) the length of each tangent segment?
(ii) Measure of $\angle \mathrm{MRO}$?
(iii) Measure of $\angle \mathrm{MRN}$

Construction: Draw seg OM and seg ON

Solution :
Radius $\mathrm{OM} \perp$ tangent RM ... (i) (Tangent Theorem)
In $\triangle \mathrm{OMR}, \angle \mathrm{OMR}=90^{\circ}$
[From (i)]
$\therefore \mathrm{OR}^{2}=\mathrm{OM}^{2}+\mathrm{RM}^{2}$
$\therefore 10^{2}=5^{2}+\mathrm{RM}^{2}$
$\therefore \quad \mathrm{RM}^{2}=100-25$
$\therefore \quad \mathrm{RM}^{2}=75$
$\therefore \quad \mathrm{RM}=5 \sqrt{3} \mathrm{~cm} \ldots$ (ii) (Taking square roots)
$\therefore \quad \mathrm{MR}=\mathrm{RN} \quad$ (Tangent segments Theorem)
$\therefore \quad \mathrm{RM}=5 \sqrt{3} \mathrm{~cm}$
... [From (ii)]
In $\triangle \mathrm{OMR}, \angle \mathrm{OMR}=90^{\circ}$
[From (i)]
$\therefore \mathrm{OM}=\frac{1}{2} \mathrm{OR}$ (Given)
$\therefore \angle \mathrm{MRO}=30^{\circ}$
... (iii) (Converse of $30^{\circ}-60^{\circ}-90^{\circ}$)
Similarly we can prove,

$$
\begin{align*}
& \angle \mathrm{NRO}=30^{\circ} \tag{iv}\\
& \angle \mathrm{MRN}=\angle \mathrm{MRO}+\angle \mathrm{NRO} \\
& \ldots(\text { (Angle addition property) } \\
&=30^{\circ}+30^{\circ} \\
& \therefore \quad \angle \mathrm{MRN}=60^{\circ}
\end{align*}
$$

(3) In the figure, Seg RM and seg RN are tangent segments of a circle with centre O. Prove that seg OR divides $\angle M R N$ as well as $\angle M O N$.
(2 marks)

Construction : Draw seg OM and seg ON

Proof:
In $\triangle \mathrm{OMR}$ and $\triangle \mathrm{ONR}$,
(i) $\angle \mathrm{OMR}=\angle \mathrm{ONR}=90^{\circ} \quad$...(Tangent Theorem)
(ii) $\operatorname{seg} \mathrm{OR} \cong \operatorname{seg} \mathrm{OR}$
(Common side)
(iii) $\operatorname{seg} \mathrm{OM} \cong \operatorname{seg} \mathrm{ON}$
(Radii of same circle)
$\therefore \quad \triangle \mathrm{OMR} \cong \triangle \mathrm{ONR} \quad$ [Hypotenuse - side test]
$\therefore \quad \angle \mathrm{MOR} \cong \angle \mathrm{NOR} . .$. (i)
$\therefore \quad \angle \mathrm{MRO} \cong \angle \mathrm{NRO}$
(ii) $\}$
[c.a.c.t.]
\therefore seg OR bisects $\angle \mathrm{MRN}$ and $\angle \mathrm{MON}$
... [From (i) and (ii)]
Problem Set - 3 (Textbook Pg No. 83)
(4) In the adjoining figure, O is the centre of the circle. Seg AB, seg AC are tangent segments. Radius of the circle is r and $l(A B)=r$, Prove $\square \mathrm{ABOC}$ is a square.

(2 marks)
Proof:
$\operatorname{seg} \mathrm{AB} \cong \operatorname{seg} \mathrm{AC} . .$. (i) (Tangent segment Theorem)
$l(\mathrm{AB})=r \ldots(\mathrm{ii})$
...(Given)
$l(\mathrm{AB})=l(\mathrm{AC})=r$
...(iii) [From (i) and (ii)]
$l(\mathrm{OB})=l(\mathrm{OC})=r \quad \ldots(\mathrm{iv})$ (Radii of the same circle)
In $\square \mathrm{ABOC}, \operatorname{seg} \mathrm{AB} \cong \operatorname{seg} \mathrm{AC} \cong \operatorname{seg} \mathrm{OB} \cong \operatorname{seg} \mathrm{OC}$
... [From (iii) and (iv)]
$\therefore \quad \square \mathrm{ABOC}$ is a rhombus
...(v) (Definition)
But, $\angle \mathrm{OBA}=90^{\circ}$
...(vi) (Tangent Theorem
In rhombus $\mathrm{ABOC}, \angle \mathrm{OBA}=90^{\circ}$
... [From (v) and (vi)]
$\therefore \quad \square \mathrm{ABOC}$ is a square
(Definition)
(5) In the adjoining figure, $\square \mathrm{ABCD}$ is a parallelogoam. It circumscribs the circle with centre T. Point E, F, G, H are touching points. $\mathrm{AE}=4.5, \mathrm{~EB}=5.5$, find AD .

(3 marks)

Solution :

$$
\left.\begin{array}{r}
\mathrm{AE}=\mathrm{AH}=4.5 \quad \ldots(\mathrm{i}) \\
\mathrm{BE}=\mathrm{BF}=5.5 \ldots(\mathrm{ii}) \\
\mathrm{DH}=\mathrm{DG}=x
\end{array}\right\} \begin{array}{r}
\\
\mathrm{CG}
\end{array}=\mathrm{CF}=y \quad \ldots(\mathrm{iii}), \begin{array}{r}
\text { (Tangent segment of } \\
\text { Theorem and } \\
\text { supportion) } \tag{array}
\end{array}
$$

$\square \mathrm{ABCD}$ is a parallelogram
...(Given)
$\therefore \quad A B=C D$
...[Opposite sides of parallelogram are equal]
$\therefore \quad \mathrm{AE}+\mathrm{BE}=\mathrm{DG}+\mathrm{CG} \quad \ldots[\mathrm{A}-\mathrm{E}-\mathrm{B}$ and $\mathrm{D}-\mathrm{G}-\mathrm{C}]$
$\therefore \quad 4.5+5.5=x+y \quad \ldots[$ [From (i), (ii), (iii) and (iv)]
$\therefore x+y=10$
$\therefore \mathrm{AD}=\mathrm{BC}$
...[Opposite sides of parallelogram are equal]
$\therefore \mathrm{AH}+\mathrm{DH}=\mathrm{BF}+\mathrm{CF} \quad . .[\mathrm{A}-\mathrm{H}-\mathrm{D}$ and B-F-C]
$\therefore \quad 4.5+x=5.5+y \quad \ldots[$ [From (i), (ii), (iii) and (iv)]
$\therefore x-y=5.5-4.5$
$\therefore x-y=1$
Adding (v) and (vi),
$x+y+x-y=10+1$
$\therefore 2 x=11$
$\therefore \quad x=\frac{11}{2}$
$\therefore \quad x=5.5$

$$
\begin{equation*}
\mathrm{AD}=\mathrm{AH}+\mathrm{DH} \tag{A-H-D}
\end{equation*}
$$

$\therefore \quad \mathrm{AD}=4.5+x$...[From (iii)]
$\therefore \quad \mathrm{AD}=4.5+5.5$
...[From (iii)]
$\therefore \mathrm{AD}=10$ units

- Points to Remember:

- Theorem

If two circles are touching circles, then the common point lies on the line joining their centres.

- Externally touching circles:

In the adjoining figure, two circles with centres O and A are touching externally at point P.

\therefore O-P - A

- Internally touching circles :

In the adjoining figure, two circles with centres O and A are touching
 internally at point P .

```
\thereforeO-A-P
```

Practice Set - 3.2 (Textbook Page No. 58)
(1) Two circles having radii 3.5 cm and 4.8 cm touch each other internally Find the distance between their centres.
(2 marks)

Given :
(i) Two circles with centers A and B touch each other internally at point P.
(ii) Radius of circle with centre A is 4.8 cm .
(iii) Radius of circle with centre B is 3.5 cm .

To Find: $A B$

Solution :

$$
\begin{equation*}
\mathrm{AP}=4.8 \mathrm{~cm}, \mathrm{BP}=3.5 \mathrm{~cm} \tag{Given}
\end{equation*}
$$

...(When two circles touch each other, the point of contact lies on the line joining the centres.)
$\therefore \quad \mathrm{AP}=\mathrm{AB}+\mathrm{BP}$
$\therefore 4.8=\mathrm{AB}+3.5$
$\therefore \quad \mathrm{AB}=4.8-3.5$
$\therefore \quad \mathrm{AB}=1.3 \mathrm{~cm}$
$\therefore \quad \mathrm{AB}=1.3 \mathrm{~cm}$
(2) Two circles having radii $5.5 \mathrm{~cm}, 4.2 \mathrm{~cm}$ touch each other externally. Find distance between their centres?
(2 marks)

Given :
(i) Two circles with centres P and Q touch each other externally at point R .
(ii) Radius of circle with centre P is 5.5 cm
(iii) Radius of circle with centre Q is 4.2 cm

To Find: PQ, QR
Solution :

$$
\begin{equation*}
\mathrm{PR}=5.5 \mathrm{~cm}, \mathrm{QR}=4.2 \mathrm{~cm} \tag{Given}
\end{equation*}
$$

P-R-Q
...(When two circles touch each other, the point of contact lies on the line joining the two centres.)

$$
\begin{array}{ll}
& P Q=P R+Q R \\
\therefore & P Q=5.5+4.2 \\
\therefore & P Q=9.7 \mathrm{~cm} \\
\therefore & P Q=9.7 \mathrm{~cm}
\end{array}
$$

(3) If radii of two circles are $4 \mathrm{~cm}, 2.8 \mathrm{~cm}$. Draw figures of circles touching each other, (i) externally (ii) internally.
(2 marks)

Solution :

Case (i): Externally touching circles.
$\mathrm{PA}=4 \mathrm{~cm}, \mathrm{QA}=2.8 \mathrm{~cm}$

Case (ii) Internally touching circles.
$\mathrm{PA}=4 \mathrm{~cm}, \mathrm{QA}=2.8 \mathrm{~cm}$

Problem Set - 3 (Textbook Pg No. 83)

(11) Draw circles with centres A, B, C each of radius 3 cm . Such that each circle touches the remaining 2 circles.
(2 marks)

Solution :

Draw an equilateral triangle ABC with each side measuring 6 cm . Taking A as centre draw a circle with radius 3 cm . Repeat same thing taking B and C as centres.

Practice Set - 3.2 (Textbook Page No. 58)

(4) In the adjoining figure, the circles with centres P and Q touch each other at R. A line passing through R meets the circles at A and B respectively then

Prove that :

(i) Seg AP $\|$ seg BQ.
(ii) $\triangle \mathrm{APR} \sim \triangle \mathrm{RQB}$.
(ii) Find $\angle \mathrm{RQB}$, if $\angle \mathbf{P A R}=35^{\circ}$
(3 marks)
Proof and Solution :
P-R-Q
...(When two circles touch each other, then point of contact lies on the line joining the two centres.)
$\therefore \quad \angle \mathrm{PRA} \cong \angle \mathrm{QRB}$
...(i) [Vertically opposite angles]

In \triangle PRA, seg PA $\cong \operatorname{seg} P R \quad$...(Radii of same circle)
$\therefore \quad \angle \mathrm{PRA} \cong \angle \mathrm{PAR} \quad$...(ii) [Isosceles triangle theorem]

In $\triangle Q R B, \operatorname{seg} Q R \cong \operatorname{seg} Q B \quad . .($ Radii of same circle)
$\therefore \quad \angle \mathrm{QRB} \cong \angle \mathrm{QBR} \quad$...(iii) [Isosceles triangle theorem]
$\therefore \quad \angle \mathrm{PRA} \cong \angle \mathrm{PAR} \cong \angle \mathrm{QRB} \cong \angle \mathrm{QBR} \quad . .$. (iv)
[From (i), (ii) and (iii)]
$\therefore \quad \angle \mathrm{PAR} \cong \angle \mathrm{QBR}$
...[From (iv)]
Seg AP \| seg BQ ...(Alternate angles test)
In $\triangle A P R$ and $\triangle R Q B$,
(i) $\angle \mathrm{PAR} \cong \angle \mathrm{QRB}$
...[From (iv)]
(ii) $\angle \mathrm{PRA} \cong \angle \mathrm{QBR}$
...[From (iv)]
$\therefore \quad \triangle \mathrm{APR} \sim \triangle \mathrm{RQB}$
...(By AA test of similarity)
$\therefore \angle \mathrm{PAR}=35^{\circ}$
(Given)
$\therefore \quad \angle \mathrm{QRB}=\angle \mathrm{QBR}=35^{\circ}$
...(vi) [From (iv) and (v)]
In $\triangle \mathrm{QRB}$

$$
\angle \mathrm{RQB}+\angle \mathrm{QRB}+\angle \mathrm{QBR}=180^{\circ}
$$

...(Sum of all angles of a Δ is 180°)
$\therefore \quad \angle \mathrm{RQB}+35^{\circ}+35^{\circ}=180^{\circ} \quad \ldots[$ [From (vi)]
$\therefore \quad \angle \mathrm{RQB}=180^{\circ}-70^{\circ}$
$\therefore \quad \angle \mathrm{RQB}=11 \mathbf{0}^{\circ}$
(5) In the adjoining figure, the circles with centres A and B touch each other at E Line l is a common tangent that touches the
 circle at C and D respectively.
Find length of seg CD if the radii of the circles are $4 \mathrm{~cm}, 6 \mathrm{~cm}$?
(3 marks)

Construction :

Draw seg AC and seg BD
Draw seg AF \perp seg BD, B-F-D.

Solution :

A-E-B
... (i) [When two circles touch each other, the point of contact lies on the line joining the centres.]
$\therefore \quad \mathrm{AC}=\mathrm{AE}=4 \mathrm{~cm} \quad$...(ii) [Given, radii of same circle]
$\therefore \quad \mathrm{BD}=\mathrm{BE}=6 \mathrm{~cm} \quad$...(iii) [Given, radii of same circle]

$$
\begin{aligned}
& \mathrm{AB}=\mathrm{AE}+\mathrm{BE} \\
& \therefore \quad \mathrm{AB}=4+6 \\
& \text { [A-E-B, from (i)] } \\
& \therefore \quad \mathrm{AB}=10 \mathrm{~cm} \quad \text {...(iv) } \\
& \text { In } \square \mathrm{ACDF}, \angle \mathrm{ACD}=90^{\circ}\left\{\begin{array}{l}
{[\text { Tangent and radius }} \\
\angle \mathrm{FDC}=90^{\circ}
\end{array}\right\} \begin{array}{l}
\text { are } \perp \text { to each other at } \\
\text { the point of contact] }
\end{array} \\
& \angle \mathrm{AFD}=90^{\circ} \\
& \text {...(Construction) } \\
& \angle \mathrm{FAC}=90^{\circ} \\
& \text {...(Remaining angle) }
\end{aligned}
$$

$\therefore \square \mathrm{ACDF}$ is a rectangle.
...(Definition)
$\therefore \quad \mathrm{CD}=\mathrm{AF} \quad \ldots(\mathrm{v})\}[$ Opposite sides of
$\mathrm{FD}=\mathrm{AC}$
...(vi) $\}$
rectangle are equal]
$\therefore \quad \mathrm{FD}=4 \mathrm{~cm}$
...(vii)
...[From (ii) and (vi)]
$B D=B F+F D$
$\therefore \quad 6=\mathrm{BF}+4$
...[From (iii) and (vii)]
$\therefore \quad \mathrm{BF}=6-4=2 \mathrm{~cm}$
In $\triangle \mathrm{AFB}, \angle \mathrm{AFB}=90^{\circ}$
...(Construction)
$\therefore \quad \mathrm{AB}=\mathrm{AF}^{2}+\mathrm{BF}^{2} \quad \ldots$ (By Pythagoras theorem)
$\therefore \quad 10^{2}={A F^{2}}^{2}+2^{2}$
$\therefore \quad \mathrm{AF}^{2}=100-4$
$\therefore \quad \mathrm{AF}^{2}=96$
$\therefore \quad \mathrm{AF}=\sqrt{96} \quad$...(Taking square roots)
$\therefore \quad \mathrm{AF}=\sqrt{16 \times 6}$
$\therefore \quad \mathrm{AF}=4 \sqrt{6} \mathrm{~cm}$
$\therefore \quad C D=4 \sqrt{6} \mathrm{~cm}$
...[From (v)]

Problem Set - 3 (Textbook Pg No. 83)

(7) In the adjoining fig. circles with centres X, Y touch each other at Z. A secant passing through Z meets the circles at A and
 B respectively.
Prove that, Radius XA || radius YB.
Fill in the blanks and complete the proof.(3 marks)

Construction :

Draw segments $X Z$ and seg YZ

Proof:

By theorem of touching circles,
points $\mathrm{X}, \mathrm{Z}, \mathrm{Y}$ are collinear points
$\angle \mathrm{XZA} \cong \angle \mathrm{BZY} \quad$...(Vertically Opposite angles)
Let $\angle \mathrm{XZA}=\angle \mathrm{BZY}=\mathrm{a}$
$\operatorname{seg} X A \cong \operatorname{seg} X Z \quad$ Radii of the same circle
$\therefore \quad \angle \mathrm{XAZ}=\angle \mathrm{XZA}=\mathrm{a} \quad$... (ii) (Isosceles triangle theorem)
seg $Y B \cong$ seg YZ \because Radii of the same circle
$\therefore \quad \angle \mathrm{BZY}=\angle \mathrm{YBZ}=\mathrm{a} \quad$...(iii) (Isosceles triangle theorem)
$\mathrm{m} \angle \mathrm{XAZ}=\mathrm{m} \angle \mathrm{YBZ}=\mathrm{a} \quad \ldots$ [From (i), (ii) and (iii)]
\therefore Radius $\mathrm{XA} \|$ radius YB
...Converse of alternate angles test
(8) In the adjoining fig., circles with centres \mathbf{X}, Y touch at Z internally. Chord BZ of bigger circle, intersects inner circle at A. Prove : seg AX || seg BY.
(3 marks)

Construction :

Draw seg ZY.

Proof:

Y-X-Z ..,(Theorem of touching circle)
In $\triangle X A Z, \operatorname{seg} X A \cong \operatorname{seg} X Z$
 ...(Radii of the same circle)
$\therefore \quad \angle \mathrm{XAZ} \cong \angle \mathrm{XZA}$ (Isosceles triangle theorem)
$\therefore \quad \angle \mathrm{XAZ} \cong \angle \mathrm{YZB}$
...(i) $[\mathrm{Y}-\mathrm{X}-\mathrm{Z}, \mathrm{Z}-\mathrm{A}-\mathrm{B}]$
In $\triangle Y B Z$, seg $Y B \cong \operatorname{seg} Y Z \quad$...(Radii of same circle)
$\therefore \quad \angle \mathrm{YBZ} \cong \angle \mathrm{YZB} \quad . .$. (ii) (Isosceles triangle theorem)
$\therefore \quad \angle \mathrm{XAZ} \cong \angle \mathrm{YBZ}$
...[From (i) and (ii)]
\therefore seg $A X \|$ seg $B Y . . .($ Corresponding angles test)

1) Points to Remember:

- Arc of a circle : A part of a circle is called an arc of a circle.

In the adjoining figure, points A and B divide circle into two arcs, viz arc AXB and arc AYB.

Fig. I

- Measure of an arc: Measure of an arc equals to its corresponding central angle.
$\mathrm{m}(\operatorname{arc} \mathrm{PXQ})=\mathrm{m} \angle \mathrm{POQ}$

- Types of arc:

Fig. II
On the basis of measure of arc, arcs can be classified into three types:
(1) Minor arc: An arc whose measure is less than 180° is called the minor arc.
Note : Minor arcs are often named using two letters via in fig I and fig. II, arc AXB and arc PXQ ; can be named arc $A B$ and arc $P Q$ respectively.
(2) Major arc: An arc measuring more than 180° is called the major arc.
Measure of major arc $=360^{\circ}-$ Measure of minor arc.
(3) Semicircle: An arc whose measure is 180° is called the semicircle.

Note: A diameter divides a circle into two semicircles.
Theorem : In a circle (or in congruent circles), congruent arcs have corresponding chords congruent.
Given : (1) A circle with centre P. (2) $\operatorname{arc} A X B \cong \operatorname{arc} C Y D$

To prove : chord $A B \cong$ chord $C D$ Proof :
$\operatorname{arc} \mathrm{AXB} \cong \operatorname{arc} C Y D$

...(i) [Given]
$\mathrm{m}(\operatorname{arc} \mathrm{AXB})=\mathrm{m} \angle \mathrm{APB}$...(ii) \} [Definition of
$\mathrm{m}(\operatorname{arc} \mathrm{CYD})=\mathrm{m} \angle \mathrm{CPD} \ldots$...(iii) $\}$ measure of a minor arc]

$$
\therefore \mathrm{m} \angle \mathrm{APB}=\mathrm{m} \angle \mathrm{CPD} \ldots \text { (iv) }
$$

[From (i), (ii) and (iii)]
In $\triangle \mathrm{APB}$ and $\triangle \mathrm{CPD}$,
(i) $\operatorname{seg} \mathrm{PA} \cong \operatorname{seg} \mathrm{PC} \quad$ (Radii of a circle),
(ii) $\angle \mathrm{APB} \cong \angle \mathrm{CPD}$
[From (iv)]
(iii) $\operatorname{Seg} \mathrm{PB} \cong \operatorname{Seg} \mathrm{PD}$

Radii of same circle
$\therefore \quad \triangle \mathrm{APB} \cong \triangle \mathrm{CPD} \ldots$...by SAS Test of congruence)
\therefore chord $\mathrm{AB} \cong$ chord $C D$
...(c.s.c.t.)

- Theorem: In a circle (or in congruent circles), congruent chords have their corresponding minon arcs congruent.
Given: (i) A circle with centre P.
(ii) chord $\mathrm{DE} \cong$ chord FG

To prove : $\operatorname{arc} \mathrm{DXE} \cong \operatorname{arc}$ FYG
Proof:

(1) In $\triangle \mathrm{DPE}$ and $\triangle \mathrm{FPG}$,
(i) side $\mathrm{DP} \cong$ side FP \}
(ii) side $\mathrm{PE} \cong$ side PG$\}$.
(Radii of the same circle)
(iii) side $\mathrm{DE} \cong$ side FG
...(Given),
(2) $\therefore \quad \triangle \mathrm{DPE} \cong \triangle \mathrm{FPG}$...(SSS Test)
(3) $\therefore \angle \mathrm{DPE} \cong \angle \mathrm{FPG}$
[c.a.c.t.]
(4) $\mathrm{m}(\operatorname{arc} \mathrm{DXE})=\mathrm{m} \angle \mathrm{DPE}$ [Definition of
(5) $\mathrm{m}(\operatorname{arc} \mathrm{FYG})=\mathrm{m} \angle \mathrm{FPG}$ measure of a minor arc]
(6) $\quad \therefore \mathrm{m} \angle \mathrm{DPE}=\mathrm{m} \angle \mathrm{FPG} \quad \ldots[$ From (i), (ii) and (iii)]
i.e. $\angle \mathrm{DPE} \cong \angle \mathrm{FPG}$
$\therefore \quad \operatorname{arc} \mathrm{DXE} \cong \operatorname{arc} \mathrm{FYG}$
Arc addition Property: Intheadjoiningfigurepoints A, X, B, Y and C are on the same circle and arc AXB and arc BYC has exactly one end point common.

$\therefore \mathrm{m}(\operatorname{arc} A X B)+\mathrm{m}(\operatorname{arc} B Y C)=\mathrm{m}(\operatorname{arc} A B C)$

Practice Set - 3.3 (Textbook Page No. 63)

(1) In the adjoining figure, G, D, E, F are concyclic points of a circle with centre C. $\angle E C F=70^{\circ}$, $\mathrm{m}(\operatorname{arc} \mathrm{DGF})=200^{\circ}$ find (i) m arc DE (iii) m(arc DEF). (2 marks)
 Solution :
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{EF})=\mathrm{m} \angle \mathrm{ECF} \quad \begin{array}{r}\text { (Definition of } \\ \text { measure of a minor arc) }\end{array}$
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{EF})=70^{\circ}$
$\mathrm{m}(\operatorname{arc} \mathrm{DE})+\mathrm{m}(\operatorname{arc} E F)+\mathrm{m}(\operatorname{arc} \mathrm{DGF})=360^{\circ}$
...(Measure of a circle is 360°)
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{DE})+70^{\circ}+200^{\circ}=360^{\circ}$
...[From (i) and given]
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{DE})=360^{\circ}-270^{\circ}$
$\therefore \quad \mathrm{m}(\operatorname{arc} \mathrm{DE})=90^{\circ}$
$\mathrm{m}(\operatorname{arc} \mathrm{DEF})+\mathrm{m}(\operatorname{arc} \mathrm{DE})+\mathrm{m}(\operatorname{arc} E F)$
...(Arc addition property)
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{DEF})=90^{\circ}+70^{\circ} \ldots$ [From (i) and given]
$\therefore \quad \mathrm{m}(\operatorname{arc} \mathrm{DEF})=160^{\circ}$
(2) In the adjoining figure, $\triangle \mathrm{QRS}$ is an equilateral triangle.
Prove (1) $\operatorname{arc} R S \cong \operatorname{arc} \mathrm{QS} \cong \operatorname{arc} \mathrm{QR}$
(2) $\mathrm{m}(\operatorname{arc} Q R S)=240^{\circ}$.

(3 marks)
Proof :
$\triangle \mathrm{QRS}$ is an equilateral triangle.
\therefore chord $\mathrm{QR} \cong$ chord $\mathrm{RS} \cong$ chord QS
...(Sides of equilateral Δ are equal)
$\operatorname{arc} R S \cong \operatorname{arc} Q S \cong \operatorname{arc} Q R$
(In circle, congruent chords have corresponding minor arcs are congruent]
Let $\mathrm{m}(\operatorname{arcRS})=\mathrm{m}(\operatorname{arc} \mathrm{QS})=\mathrm{m}(\operatorname{arc} \mathrm{QR})=x$
...(ii) [From (i) and supposition]
$\therefore \mathrm{m}(\operatorname{arc} R S)+\mathrm{m}(\operatorname{arc} \mathrm{QS})+\mathrm{m}(\operatorname{arc} \mathrm{QR})=360^{\circ}$
...(Measure of a circle is 360°)
$\therefore x+x+x=360^{\circ}$
$\therefore 3 x=360^{\circ}$
$\therefore \quad x=120^{\circ}$
$\therefore \mathrm{m}(\operatorname{arc} R S)=\mathrm{m}(\operatorname{arc} Q S)+\mathrm{m}(\operatorname{arc} Q R)=120^{\circ}$
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{QRS})=\mathrm{m}(\operatorname{arc} Q R)+\mathrm{m}(\operatorname{arc} R S)$
...(Arc addition property)
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{QRS})=120^{\circ}+120^{\circ}$
[From (iii)]
$\therefore \quad \mathrm{m}(\operatorname{arc}$ QRS $)=240^{\circ}$
(3) In the adjoining figure, chord $A B=$ chord $C D$, prove that, $\operatorname{arc} A C=\operatorname{arc} B D$
(2 marks)

Proof:
...(Gven)
chord $A B \cong$ chord $C D$
$\operatorname{arc} A C B \cong \operatorname{arc} D B C$
[In a circle, congruent chords have their corresponding minor arcs are congruent]
$m(\operatorname{arc} A C B)=m(\operatorname{arc} D B C)$
$\mathrm{m}(\operatorname{arc} \mathrm{AC})+\mathrm{m}(\operatorname{arc} C B)=\mathrm{m}(\operatorname{arc} C B)+\mathrm{m}(\operatorname{arc} B D)$...(Arc addition property)
$m(\operatorname{arc} A C)=m(\operatorname{arc} B D)$
$\operatorname{arc} A C \cong \operatorname{arc} B D$

Problem Set - 3 (Textbook Pg No. 87)

(14) In a circle with centre ' O ',chord $\mathrm{PQ} \cong$ chord RS.
If $\mathrm{m} \angle \mathrm{POR}=70^{\circ}$ and $\mathrm{m}(\operatorname{arc}$ RS) $=80^{\circ}$, then find.
(1) m (arc PR)

(2) m (arc QSR)
(3) m (arc QS)
(3 marks)

Solution :

$\mathrm{m}(\operatorname{arc} \mathrm{PR})=\mathrm{m} \angle \mathrm{POR}$
...(Definition of measure of minor arc)
$\therefore \quad \mathrm{m}(\operatorname{arc} \mathrm{PR})=70^{\circ}$
chord $\mathrm{PQ} \cong$ chord RS
$(\operatorname{arc} \mathrm{PQ}) \cong(\operatorname{arcRS})$
...(In a circle, congruent chords have corresponding minor arcs congruent)
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{PQ})=80^{\circ}$
$m(\operatorname{arc} P R)+m(\operatorname{arc} R S)+m(\operatorname{arc} P Q)+m(\operatorname{arc} Q S)$
$=360^{\circ}$
...(Measure of circle)
$\therefore 70^{\circ}+80^{\circ}+80^{\circ}+\mathrm{m}(\operatorname{arc} \mathrm{QS})=360^{\circ}$
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{QS})=360^{\circ}-230^{\circ}$
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{QS})=130^{\circ}$
$m(\operatorname{arc} Q S R)=m(\operatorname{arc} Q S)+m(\operatorname{arc} S R)$
...(Arc addition property)
$\therefore \quad \mathrm{m}(\operatorname{arc} \mathrm{QSR})=130^{\circ}+80^{\circ}$
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{QSR})=210^{\circ}$

Points to Remember:

- Inscribed angle :

An angle is said to be an inscribed angle, if
(i) the vertex is on the circle
(ii) both the arms are secants. In the adjoining figure, $\angle \mathrm{ABC}$
 is an inscribed angle, because vertex B lies on the circle and both the arms BA and $B C$ are secants.

In other words, $\angle \mathrm{ABC}$ is inscribed in arc ABC .

- Intercepted arc :

Given an arc of the circle and an angle, if each side of the angle contains an end point of the arc and all other points of the arc except the end points lie in the interior of the angle, then the arc is said to be intercepted by the angle.

(a)

(c)

(b)

(d)

(f)
(i) In figures (a), (b) and (c), $\angle A B C$ has its vertex B outside the circle and intercepts two arcs.
(ii) In figures (d) and (e), $\angle A B C$ has its vertex on the circle and intercepts only one arc.
(iii) In figure (f), $\angle A B C$ has its vertex B inside the circle and intercepts only one arc.

- Inscribed Angle Theorem

The measure of an inscribed angle is half of the measure of its intercepted arc.

In the adjoining figure, $\angle \mathrm{ABC}$ is an inscribed angle and arc AXC is the intercepted arc.

$\therefore \mathrm{m} \angle \mathrm{ABC}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{AXC})$
\Rightarrow Corollary -1 :
An angle inscribed in a semicircle is a right angle.
In the adjoining figure, $\angle A B C$ is inscribed in the semicircle $A B C$.
$\therefore \quad \mathrm{m} \angle \mathrm{ABC}=90^{\circ}$

\Rightarrow Corollary -2 :

Angles inscribed in the same arc are

 congruent.In the adjoining figure, $\angle \mathrm{ABC}$ and $\angle \mathrm{ADC}$, both are inscribed in the same arc $A B C$.
$\therefore \quad \angle \mathrm{ABC} \cong \angle \mathrm{ADC}$

Note

Inscribed angles, $\angle \mathrm{ABC}$ and $\angle \mathrm{ADC}$ both intercept the same arc AC. $\therefore \angle \mathrm{ABC}=\angle \mathrm{ADC}$

- Cyclic Quadrilateral : A quadrilateral whose all four vertices lie on a circle is called cyclic quadrilateral.
In the adjoining figure, $\square A B C D$ is cyclic, as all the four vertices
 $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D , lie on a circle.
;- Theorem
Statement:
The opposite angles
of a cyclic quadrilateral are supplementary.

Given : $\square A B C D$ is a cyclic quadrilateral.
To Prove:
$\mathrm{m} \angle \mathrm{ABC}+\mathrm{m} \angle \mathrm{ADC}=180^{\circ}$
$\mathrm{m} \angle \mathrm{BAD}+\mathrm{m} \angle \mathrm{BCD}=180^{\circ}$
Proof:
$\mathrm{m} \angle \mathrm{ABC}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{ADC})$
...(i) (Inscribed angle
$\mathrm{m} \angle \mathrm{ADC}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{ABC})$
...(ii) theorem)

Adding (i) and (ii), we get
$\mathrm{m} \angle \mathrm{ABC}+\mathrm{m} \angle \mathrm{ADC}$
$=\frac{1}{2} \mathrm{~m}(\operatorname{arc} A D C)+\frac{1}{2} \mathrm{~m}(\operatorname{arc} A B C)$
$\therefore \quad \mathrm{m} \angle \mathrm{ABC}+\mathrm{m} \angle \mathrm{ADC}$
$=\frac{1}{2}[m(\operatorname{arc} A D C)+m(\operatorname{arc} A B C)]$
$\therefore \mathrm{m} \angle \mathrm{ABC}+\mathrm{m} \angle \mathrm{ADC}=\frac{1}{2} \times 360$
...(Measure of a circle is 360°)
$\therefore \mathrm{m} \angle \mathrm{ABC}+\mathrm{m} \angle \mathrm{ADC}=180^{\circ}$
In $\square A B C D$,
$\mathrm{m} \angle \mathrm{BAD}+\mathrm{m} \angle \mathrm{BCD}+\mathrm{m} \angle \mathrm{ABC}+\mathrm{m} \angle \mathrm{ADC}=360^{\circ}$
(Sum of measure of angles of a quadrilateral is 360°)
$\therefore \mathrm{m} \angle \mathrm{BAD}+\mathrm{m} \angle \mathrm{BCD}+180^{\circ}=360^{\circ}$...[From (iii)]
$\therefore \mathrm{m} \angle \mathrm{BAD}+\mathrm{m} \angle \mathrm{BCD}=180^{\circ}$

- Converse of cyclic quadrilateral theorem :

If the opposite angles of a quadrilateral are
supplementary, then it is a cyclic quadrilateral.

In $\square A B C D$, if $\mathrm{m} \angle \mathrm{A}+$
$\mathrm{m} \angle \mathrm{C}=180^{\circ}$
or $\mathrm{m} \angle \mathrm{B}+\mathrm{m} \angle \mathrm{D}=180^{\circ}$
then, $\square \mathrm{ABCD}$ is a cyclic quadrilateral.

- Corollary :

An exterior angle of cyclic quadrilateral is congruent to the angle opposite to adjacent interior angle.

In the adjoining figure, $\square \mathrm{ABCD}$ is cyclic $\angle \mathrm{DCE}$ is an exterior angle.
$\therefore \quad \angle \mathrm{DCE} \cong \angle \mathrm{BAD}$

- If end points of a segment forms congruent angles on the same side of the segment,
 then the vertices of those angles and end points of the segment are concyclic.

$\angle \mathrm{ABD} \cong \angle \mathrm{ACD}$

$\therefore \quad$ Points A, B, C and D are concyclic.
Note: Concyclic means points lying on the same circle.

- Two special properties

(i)

(ii)

Practice Set - 3.4 (Textbook Page No. 73)

(1) In the adjoining figure, point O is the centre of the circle. Length of chord $A B$ is equal to the radius of the circle. Find (i) $\angle A O B$ (ii) $\angle A C B$ (iii) $\mathrm{m}(\operatorname{arc} \mathrm{AB})($ iv) $\mathrm{m}(\operatorname{arc} \mathrm{ACB})$

(3 marks)

Solution :

$\mathrm{OA}=\mathrm{OB}$
...(i) (Radii of the same circle)
$A B=$ Radius of the given circle
..(ii) (Given)
$\therefore \quad \mathrm{AB}=\mathrm{OA}=\mathrm{OB}$
...[From (i) and (ii)]
$\therefore \quad \triangle \mathrm{OAB}$ is an equilateral triangle... (By definition)
$\therefore \quad \angle \mathrm{AOB}=60 \quad$... (iii) (Measure of an angle of an equilateral triangle)
$m(\operatorname{arc} A B)=m \angle A O B$
...(Definition of measure of minor arc)
$\therefore \quad \mathrm{m}(\operatorname{arcAB})=60^{\circ}$
... (iv) [From (iii)]
$\angle \mathrm{ACB}=\frac{1}{2}(\operatorname{arc} \mathrm{AB}) \ldots($ Inscribed angle theorem $)$
$\angle \mathrm{ACB}=\frac{1}{2} \times 60=30^{\circ}$
... (v) [From (iv)]
$m(\operatorname{arc} A C B)+m(\operatorname{arc} A B)=360^{\circ}$
...(Measure of a circle is 360°)
$\mathrm{m}(\operatorname{arc} \mathrm{ACB})+60^{\circ}=360^{\circ}$...[From (v)]
$\mathrm{m}(\operatorname{arc} \mathrm{ACB})=360^{\circ}-60^{\circ}$
$\therefore \quad \mathrm{m}(\operatorname{arcACB})=300^{\circ}$
(2) In the adjoining figure,
\square PQRS is a cyclic quadrilateral, side $\mathrm{PQ} \cong$ side RQ. $\angle \mathrm{PSR}=110^{\circ}$. Find
(i) $\angle \mathrm{PQR}$ (ii) m (arc PQR)
(iii) \mathbf{m} (arc QR) (iv) $\angle P R Q$
(3 marks)

Solution :
$\square \mathrm{PQRS}$ is a cyclic quadrilateral
(Given)
$\therefore \quad \angle \mathrm{PQR}+\angle \mathrm{PSR}=180^{\circ} \quad$...(Cyclic quadrilateral theorem)
$\therefore \quad \angle \mathrm{PQR}+110^{\circ}=180^{\circ}$
$\therefore \quad \angle \mathrm{PQR}=180^{\circ}-110^{\circ}$
$\mathrm{m} \angle \mathrm{PQR}=70^{\circ}$
$\angle \mathrm{PSR}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{PQR}) \ldots($ Inscribed angle theorem $)$
$\therefore \quad 110^{\circ}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{PQR})$
... (v) [From (iv)]
$\therefore \quad \mathrm{m}(\operatorname{arc} \mathrm{PQR})=220^{\circ}$
$\therefore \quad$ In $\triangle P Q R$, side $P Q \cong$ side $R Q$
$\therefore \quad \angle \mathrm{QPR} \cong \angle \mathrm{QPR} . .$. (iii) (Isosceles triangle theorem) In $\triangle \mathrm{PQR}$,
$\angle \mathrm{PQR}+\angle \mathrm{PRQ}+\angle \mathrm{QPR}=180^{\circ}$ (Sum of all angles of a triangle is 180°)
$\therefore \quad 70^{\circ}+\angle \mathrm{QPR}+\angle \mathrm{QPR}=180^{\circ} \quad \ldots$ (From (i) and (ii)]
$\therefore \quad 2 \angle \mathrm{QPR}=180^{\circ}-70^{\circ}$
$\therefore \quad 2 \angle \mathrm{QPR}=110^{\circ}$
$\therefore \quad \angle \mathrm{QPR}=55^{\circ}$
$\angle \mathrm{QPR}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{QR}) \ldots($ Inscribed angle theorem $)$
$\therefore \quad 55=\frac{1}{2} \times \mathrm{m}(\operatorname{arc} \mathrm{QR})$
$\therefore \quad \mathrm{m}(\operatorname{arc} \mathrm{QR})=110^{\circ}$
.[From (iii) and (iv)]
$\therefore \quad \angle \mathrm{PRQ}=55^{\circ}$
(3) In cyclic $\square \mathrm{MRPN}$, $\angle \mathrm{R}=(5 x-13)^{\circ}$ and $\angle N=(4 x+4)^{\circ}$. Find the measure of $\angle \mathbf{R}$ and $\angle \mathbf{N}$.
(2 marks)

Solution :

$\square \mathrm{MRPN}$ is a cyclic quadrilateral
...(Given)
$\therefore \quad \angle \mathrm{R}+\angle \mathrm{N}=180^{\circ} \ldots$ (Cyclic quadrilateral theorem)
$\therefore \quad 5 x-13+4 x+4=180$
$\therefore \quad 9 x-9=180$

$$
\begin{array}{ll}
\therefore & 9 x=180+9 \\
\therefore & 9 x=189 \\
\therefore & x=\frac{189}{9} \\
\therefore & x=21 \\
\therefore & \mathrm{~m} \angle \mathrm{R}=5 x-13=5 \times 21-13=105-13=92^{\circ} \\
\therefore & \mathrm{m} \angle \mathrm{~N}=4 x+4=4 \times 21+4=84+4=88^{\circ}
\end{array}
$$

(5) Prove that any rectangle is a cyclic quadrilateral.
(2 marks)
Given : $\square \mathrm{PQRS}$ is a rectangle
To Prove: $\square P Q R S$ is a cyclic quadrilateral

Proof: $\square \mathrm{PQRS}$ is a rectangle
...(Given)
$\therefore \quad \angle \mathrm{P}=\angle \mathrm{Q}=\angle \mathrm{R}=\angle \mathrm{S}=90^{\circ}$
$\angle \mathrm{P}+\angle \mathrm{R}=90^{\circ}+90^{\circ}$
$\therefore \quad \angle \mathrm{P}+\angle \mathrm{R}=180^{\circ}$
i.e. opposite angles of $\square \mathrm{PQRS}$ are supplementary
$\square P Q R S$ is cyclic quadrilateral.
(converse of cyclic quadrilateral theorem)

Problem Set - 3 (Textbook Pg No. 83)

(23) In the adjoining figure, two circles intersect each other at points M and N. Secants drawn from points M and N intersect cirecls at point R, S, P and Q as shown in the figure.
(3 marks)
To Prove : seg PR || segQS

Construction : Draw seg MN.
Proof : \square PNMR is a cyclic quadrilateral
...(Definition)
$\angle \mathrm{MNQ}$ is an exterior angle of $\square \mathrm{PNMR}$
...(Definition)
$\therefore \quad \angle \mathrm{MNQ} \cong \angle \mathrm{PRM}$
$\square \mathrm{MNQS}$ is cyclic quadrilateral
...(Definition)
$\therefore \quad \angle \mathrm{MNQ}+\angle \mathrm{MSQ}=180^{\circ} \ldots$ (ii) (Opposite angles of a cyclic quadrilateral are supplementary)
$\therefore \quad \angle \mathrm{PRM}+\angle \mathrm{MSQ}=180^{\circ}$
...[From (i) and (ii)]
$\therefore \quad \angle \mathrm{PRS}+\angle \mathrm{RSQ}=180^{\circ}$
$\therefore \quad \operatorname{seg} P R \| \operatorname{seg} Q S$...(Interior angles test)

Practice Set - 3.4 (Textbook Page No. 73)

(4) In the adjoining figure, seg RS is the diameter of the circle with centre ' O^{\prime}. Point T is in the exterior of the circle. Prove that \angle RTS is an acute angle. (3 marks)

Construction : Draw seg PS
Proof :
seg RS is the diameter of the circle.
...(Given)
$\therefore \quad \angle \mathrm{RPS}=90^{\circ} \quad$...(i) (Diameter subtends a right angle at any point of the circle)
\angle RPS is an exterior angle of $\triangle \mathrm{PTS}$...(Definition)
$\therefore \quad \angle \mathrm{RPS}>\angle \mathrm{PTS} \quad$ (Exterior angle theorem)
i.e. $\angle \mathrm{PTS}<\angle \mathrm{RPS}$
$\therefore \quad \angle \mathrm{PTS}<90^{\circ}$
[From (i)]
i.e. $\angle \mathrm{RTS}<90^{\circ}$
i.e. \angle RTS is an acute angle.

Problem Set - 3 (Textbook Pg No. 83)

(17) In the adjoining diagram,
chord EF $\|$ chord GH. Prove that chord $\mathrm{EG} \cong$ chord FH.
[Complete the following for the proof] (2 marks)

Proof: Draw seg GF
$\angle \mathrm{EFG}=\angle \mathrm{FGH}$
...(i) (Alternate angles theorem)
$\angle \mathrm{EFG}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{EG})$
...(ii) (Inscribed angle theorem)
$\angle \mathrm{FGH}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{FH})$
...(iii) (Inscribed angle theorem)
$\therefore \quad \mathrm{m}(\operatorname{arc} \mathrm{EG})=\mathrm{m}(\operatorname{arc} \mathrm{FH})$...[From (i), (ii) and (iii)]
\therefore chord $\mathrm{EG} \cong$ chord $\mathrm{FH} \quad .$. (In a circle, congruent arcs have their corresponding chords congruent)
(19) A circle with centre C touches the circle with centre D internally in the point E. Point D lies on the smaller circle. Chord EB of the external circle intersects internal
 circle at point A. Prove that seg $E A \cong \operatorname{seg} A B$.
(3 marks)
Construction: Draw seg DE and seg DA
Proof: E-C - D ...(Theorem on touching circles)
Seg DE is the diameter.
(Definition)
$\angle \mathrm{DAE}=90^{\circ}$
...(i) (Diameter subtends a right angle at any point of circle other than its end points)

Consider circle with centre D.
$\therefore \quad$ seg DA \perp chord BE
...[From (i)]
$\therefore \quad \boldsymbol{s e g} \mathbf{E A} \cong \boldsymbol{s e g} \mathbf{A B} \quad$...(Perpendicular drawn from the centre to the chord bisects the chord)
(20) In the adjoining figure,
seg $A B$ is a diameter of a circle with centre O. Bisector of inscribed $\angle A C B$ intersects circle at point D. (3 marks)

Prove that: $\operatorname{seg} \mathrm{AD} \cong \operatorname{seg} \mathrm{BD}$
Proof: Draw seg OD.
$\angle \mathrm{ACB}=90^{\circ}(\because$ Angle inscribed in a semicircle $)$
$\angle D C B=45^{\circ} \quad(\because$ CD bisects $\angle A C B)$
$\mathrm{m}(\operatorname{arc} \mathrm{DB})=90^{\circ} \quad \ldots$ (Inscribed angle theorem)
$\angle \mathrm{DOB}=90^{\circ}$
...(i) (Definition of measure of an arc)
$\operatorname{seg} \mathrm{OA} \cong \operatorname{seg} \mathrm{OB}$
... (ii) (Radii of same circle)
$\therefore \quad \operatorname{seg} \mathrm{OD}$ is ... Perpendicular bisector of seg AB
[From (i) and (ii)]
$\therefore \quad \boldsymbol{\operatorname { s e g }} \mathbf{A D} \cong \mathbf{s e g} \mathbf{B D} \quad . . .(\because$ Perpendicular bisector theorem)

Practice Set - 3.4 (Textbook Page No. 73)

(6) In the adjoining figure, $\operatorname{seg} Y Z$ and seg XT are altitudes of $\triangle W X Y$, which intersect each other at point P.

(3 marks)
To Prove:
(i) $\square W Z P T$ is a cyclic quadrilateral
(ii) Points X, Z, T and Y are concyclic points.

Proof:

\[

\]

$\angle X Z Y=\angle X T Y=90^{\circ}$
...(Given)
$\therefore \quad \angle X Z Y=\angle X T Y$
$\therefore \quad$ seg $X Y$ subtends congruent angle at points Z and T which are on the same side of line $X Y$.
$\therefore \quad$ Point $\mathrm{X}, \mathrm{Z}, \mathrm{T}$ and Y are concyclic points.
(7) In the adjoining figure, $m(a r c N S)=125^{\circ}$, $m(\operatorname{arc} E F)=37^{\circ}$. Find $\mathbf{m} \angle$ NMS. (1 mark)

Solution :

$$
\begin{aligned}
\mathrm{m} \angle \mathrm{NMS} & =\frac{1}{2}[\mathrm{~m}(\operatorname{arc} \mathrm{NS})-\mathrm{m}(\operatorname{arc} \mathrm{EF})] \\
& =\frac{1}{2}\left(125^{\circ}-37^{\circ}\right) \\
& =\frac{1}{2} \times 88
\end{aligned}
$$

$$
\therefore \quad \mathrm{m} \angle \mathrm{NMS}=44^{\circ}
$$

(8) In the adjoining figure, chord AC and and chord DE intersect at point B. If $\angle A B E=108^{\circ}$ and $m(\operatorname{arc} A E)=95^{\circ}$, then find $m(\operatorname{arc} D C)$.

(1 mark)

Solution :

$$
\mathrm{m} \angle \mathrm{ABE}=\frac{1}{2}[\mathrm{~m}(\operatorname{arc} \mathrm{DC})+\mathrm{m}(\operatorname{arc} \mathrm{AE})]
$$

$\therefore 108=\frac{1}{2}\left[\mathrm{~m}(\operatorname{arc} \mathrm{DC})+95^{\circ}\right]$
$\therefore 216=\mathrm{m}(\operatorname{arc} \mathrm{DC})+95^{\circ}$
$\therefore \quad \mathrm{m}(\operatorname{arc} \mathrm{DC})=216-95^{\circ}$
$\therefore \quad \mathrm{m}(\operatorname{arc} \mathrm{DC})=121^{\circ}$

Problem Set - 3 (Textbook Pg No. 83)

(25) In the adjoining diagram, seg BD and seg CE are altitudes.

To Provet that:
(i) \square AEFD is cyclic
 quadrilateral
(ii) Points B, E, D, C are con-cyclic points.
[Complete the following for the proof] (3 marks)
Proof: $\angle \mathrm{AEF}=90^{\circ}$
...(i) (Given)
$\angle \mathrm{ADF}=90^{\circ}$
...(ii) (Given)
Adding (i) and (ii),
$\angle \mathrm{AEF}+\angle \mathrm{ADF}=90^{\circ}+90^{\circ}$
$\angle \mathrm{AEF}+\angle \mathrm{ADF}=180^{\circ}$
\square AEFD is cyclic
(Converse of cyclic quadrilateral theorem)
$\angle \mathrm{BEC}=\angle \mathrm{BDC}=90^{\circ}$...(Given)
$\therefore \quad \angle \mathrm{BEC}=\angle \mathrm{BDC}$
$\therefore \quad$ Seg BC subtends congruent angles at points E and D which are on the same side of line $B C$.
$\therefore \quad$ Points B, E, D and C are con-cyclic.

side touches the circle and the other intersects the circle in two points, then the measure of the angle is half the measure of its intercepted arc.

In the above three figures,
$\angle A B C$ has its vertex B on the circle, line $B C$ is tangent to circle at B and ray BA is a secant.
$\therefore \mathrm{m} \angle \mathrm{ABC}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{ADB})$

- Segment of a circle : A secant divides the circular region into two parts. Each part is called a segment of the circle.
- Alternate segment : Each of the two segments formed by the secant of a circle is called alternate segment in relation with the other.
- Angle formed in a segment : An angle inscribed in the arc of a segment is called an angle formed in that segment. In the adjoining figure, secant AB divides the circular region into two segments R_{1} and
 R_{2}.
R_{1} and R_{2} are alternate segments in relation with each other.
$\angle A C B$ is inscribed in arc $A C B$ of segment R_{1}.
$\therefore \quad \angle \mathrm{ACB}$ is an angle formed in segment R_{1}.
- - - - - - - - - - - - - - - - - - - - - - - - - - -
- Angles in Alternate Segment

If a line touches a circle and from the point of contact a chord is drawn, then the angles which this chord makes with the given line is equal respectively to
 the angle formed in the corresponding alternate segment.
In the above figure,
$\mathrm{m} \angle \mathrm{ABC}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{AXB})$
...(Tangent secant theorem)
$\mathrm{m} \angle \mathrm{ADB}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{AXB})$
...(Inscribed angle theorem)
$\therefore \mathrm{m} \angle \mathrm{ABC}=\mathrm{m} \angle \mathrm{ADB} \quad . . .[$ From (i) and (ii)]
$\therefore \quad \angle \mathrm{ABC} \cong \angle \mathrm{ADB}$

- Theorem

If two secants of a circle intersect inside or outside the circle then the area of the rectangle formed by the two line segments corresponding to one secant is equal in area to
 the rectangle formed by the two line segments corresponding to the other.
In the adjoining figure,
chords $A B$ and $C D$ intersect each
other at point O inside the circle.
$\therefore \quad \mathrm{OA} \times \mathrm{OB}=\mathrm{OC} \times \mathrm{OD}$
In the adjoining figure, chords $A B$ and $C D$
intersect each other at point P outside the circle.

$\therefore \quad \mathrm{OA} \times \mathrm{OB}=\mathrm{OC} \times \mathrm{OD}$

Tangent Secant Segment Theorem

Statement: If a secant and a tangent of a circle intersect in a point outside the circle, then the area of the rectangle formed by the two line segments corresponding to the secant is equal to the area of the square formed by the line segment corresponding to the other tangent.

Given :

(i) line PAB is a secant intersecting the circle at points A and B .
(ii) line PT is a tangent to the circle at point T.
To Prove: $\mathrm{PA} \times \mathrm{PB}=\mathrm{PT}^{2}$

Construction: Draw seg BT and seg AT.
Proof:
In $\triangle \mathrm{PTA}$ and $\triangle \mathrm{PBT}$,
$\angle \mathrm{TPA} \cong \angle \mathrm{BPT}$
(Common angle)
$\angle \mathrm{PTA} \cong \angle \mathrm{PBT} \quad$ (Angles in alternate segment)
$\therefore \quad \triangle \mathrm{PTA} \sim \triangle \mathrm{PBT} \quad$ (By AA test of similarity)
$\therefore \quad \frac{\mathrm{PT}}{\mathrm{PB}}=\frac{\mathrm{PA}}{\mathrm{PT}}$
(Corresponding sides of similar triangles)
$\mathbf{P A} \times \mathbf{P B}=\mathbf{P T}^{\mathbf{2}}$

Problem Set - 3 (Textbook Pg No. 83)

(22) In the adjoining figure, two circles intersect each other in point R and point S. Line PQ

is a common tangent touching circle at points P and Q .
(2 marks)
Prove that: $\angle \mathrm{PRQ}+\angle \mathrm{PSQ}=180^{\circ}$
Construction: Draw seg RS
Proof: $\quad \angle \mathrm{PSR} \cong \angle \mathrm{RPQ} \quad$...(i) $\}$ (Angles in alternate

$$
\begin{equation*}
\angle \mathrm{QSR} \cong \angle \mathrm{RQP} \tag{ii}
\end{equation*}
$$ segments)

In $\triangle \mathrm{PRQ}$,

$$
\begin{array}{r}
\angle \mathrm{PRQ}+\angle \mathrm{RPQ}+\angle \mathrm{RQP}=180^{\circ} \ldots(\text { sum of angles } \\
\left.\quad \text { of a triangle is } 180^{\circ}\right)
\end{array}
$$

$\therefore \quad \angle \mathrm{PRQ}+\angle \mathrm{PSR}+\angle \mathrm{QSR}=180^{\circ} \ldots[$ [rom (i) and (ii)]
$\therefore \quad \angle \mathrm{PRQ}+\angle \mathrm{PSQ}=180^{\circ} \quad$...(Angle addition property)
(13) In the adjoining figure, line PR touches the circle at the point Q. Using the information given in the diagram, answer the following questions.

(i) What is the sum of $\angle \mathrm{TAQ}$ and $\angle \mathrm{TSQ}$?
(ii) Write names of angles congruent to $\angle A Q P$.
(iii) Write names of angles congruent to $\angle \mathrm{QTS}$.
(iv) If $\angle \mathrm{TAQ}=65^{\circ}$, then find $\angle \mathrm{TQS}$ and arc TS.
(v) It $\angle \mathrm{AQP}=42^{\circ}$ and $\angle \mathrm{SQR}=58^{\circ}$, then find $\angle \mathrm{ATS}$.

Solution:
(4 marks)
(i) \square TAQS is a cyclic quadrilateral ...(Definition)
$\therefore \quad \angle \mathrm{TAQ}+\angle \mathrm{TSQ}=18 \mathbf{0}^{\circ} \quad$...(Cyclic quadrilateral
(ii) $\left.\begin{array}{rl}\angle \mathrm{ATQ} \cong & \angle \mathrm{AQP} \\ \angle \mathrm{ASQ} \cong \angle \mathrm{AQP}\end{array}\right\}$ (Angles in alternate segments)
(iii) $\angle \mathrm{QAS} \cong \angle \mathrm{QTS}$...(Angles inscribed in the same arc)
$\angle \mathrm{RQS} \cong \angle \mathrm{QTS} \quad$...(Angles in alternate segment)
(iv) $\angle \mathrm{TQS} \cong \angle \mathrm{TAS} \quad$...(Angles inscribed in the same arc)
$\angle \mathrm{TAS}=65^{\circ}$
...(Given)
$\therefore \quad \angle \mathrm{TQS}=65^{\circ}$
$\angle \mathrm{TQS}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{TS}) \ldots$...(Inscribed angle theorem)
$\therefore \quad 65^{\circ}=\frac{1}{2} \mathrm{~m}(\operatorname{arc~TS})$
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{TS})=65^{\circ} \times 2$
$\therefore \quad \mathrm{m}(\operatorname{arc~TS})=130^{\circ}$
(v) $\angle \mathrm{ATQ} \cong \angle \mathrm{AQP} \ldots$...(Angles in alternate segments)
$\therefore \quad \angle \mathrm{ATQ}=42^{\circ}$
$\angle \mathrm{STQ} \cong \angle \mathrm{SQR} \quad$...(Angles in alternate segments)
$\therefore \quad \angle \mathrm{STQ}=58^{\circ}$
$\angle \mathrm{ATS}=\angle \mathrm{ATQ}+\angle \mathrm{STQ} \quad$...(Angle addition property)
$\angle \mathrm{ATS}=42^{\circ}+58^{\circ}$
...[From (i) and (ii)]
$\therefore \quad \angle$ ATS $=100^{\circ}$
(24) In the adjoining figure, two circles intersect each other at points A and E. Their common secant through E intersects the circle at points B and D. The tangents of the circles at point B and D intersect each other at point C. Prove that $\square \mathrm{ABCD}$ is cyclic.

Proof: $\quad \angle \mathrm{BAE}=\angle \mathrm{EBC} \quad . . .(\mathrm{i}) ~$ (Angles in alternate $\angle \mathrm{DAE} \cong \angle \mathrm{EDC}$ segments) In $\triangle B C D$,

$$
\angle \mathrm{BCD}+\angle \mathrm{DBC}+\angle \mathrm{BDC}=180^{\circ} \quad . .(\text { Sum of angle }
$$ of atriangle is 180°)

$\therefore \quad \angle \mathrm{BCD}+\angle \mathrm{EBC}+\angle \mathrm{EDC}=180^{\circ}$
$\angle \mathrm{BCD}+\angle \mathrm{BAE}+\angle \mathrm{DAE}=180^{\circ} \ldots$...[From (i) \& (ii)]
$\angle \mathrm{BCD}+\angle \mathrm{BAD}=180^{\circ} \quad$...(Angle addition property)
$\therefore \quad \square A B C D$ is a cyclic ...(Converse of cyclic quadrilateral Theorem)

Practice Set - 3.5 (Textbook Page No. 82)

(2) In theadjoining figure, chord MN and RS intersect each other at point D.
(i) If $\mathrm{RD}=15, \mathrm{DS}=4$, $\mathrm{MD}=8$ then $\mathrm{DN}=$?
(ii) If $\mathrm{RS}=18, \mathrm{MD}=9$, DN $=8$, then find DS.

(3 marks)

Solution :

(i) Chord MN and Chord RS intersect each other in the interior of the circle at point D .
$\therefore \quad \mathrm{DM} \times \mathrm{DN}=\mathrm{DR} \times \mathrm{DS}$
...(Theorem of internal division of chords)
$\therefore \quad 8 \times \mathrm{DN}=15 \times 4$
$\therefore \quad \mathrm{DN}=\frac{15 \times 4}{8}$
$\therefore \quad \mathrm{DN}=7.5$ units
(ii) Let DS $=x$
...(i) (Supposition)
$\mathrm{RS}=\mathrm{DR}+\mathrm{DS}$
$\therefore \quad 18=\mathrm{DR}+x$
$\therefore \quad \mathrm{DR}=(18-x)$
Chord MN and Chord RS intersect each other in the interior of the circle at point D .
$\therefore \quad \mathrm{DM} \times \mathrm{DN}=\mathrm{DR} \times \mathrm{DS} \quad$ (Theorem of internal division of chords)
$\therefore \quad 9 \times 8=x(18-x)$
$\therefore \quad 72=18 x-x^{2}$
$\therefore \quad x^{2}-18 x+72=0$
$\therefore \quad x^{2}-12 x-6 x+72=0$
$\therefore \quad x(x-12)-6(x-12)=0$
$\therefore \quad(x-12)(x-6)=0$
$\therefore \quad x-12=0$ or $x-6=0$
$\therefore \quad x=12$ or $x=6$
$\therefore \quad$ DS $=12$ units or DS $=6$ units

Problem Set - 3 (Textbook Pg No. 87)

(15) In the adjoining figure, $\mathrm{m}(\mathrm{arc} \mathrm{WY})=44$, $m(\operatorname{arc} Z X)=68$ then,
(i) Find $m \angle Z T X$ and $\mathrm{m}(\operatorname{arc} \mathrm{WZ})$
(ii) If $l(\mathrm{WT})=4.8, l(\mathrm{TX})=8$, $l(\mathrm{YT})=6.4$, then find $l(\mathrm{TZ})$

(iii) If $l(\mathrm{WX})=12.8, l(\mathrm{YT})=6$, $l(\mathrm{TX})=6.4$, then find $l(\mathrm{WT})$
(3 marks)

Solution:

(i) $\mathrm{m} \angle \mathrm{ZTX}=\frac{1}{2}[\mathrm{~m}(\operatorname{arc} \mathrm{WY})+\mathrm{m}(\operatorname{arc} \mathrm{ZX})]$

$$
\begin{aligned}
& =\frac{\overline{1}}{2}[44+68] \\
& =\frac{1}{2} \times 112
\end{aligned}
$$

$\mathrm{m} \angle \mathrm{ZTX}=56^{\circ}$
(ii) $\mathrm{WT} \times \mathrm{TX}=\mathrm{TZ} \times \mathrm{YT}$
...(Theorem on internal division of chords)
$\therefore \quad 4.8 \times 8=\mathrm{TZ} \times 6.4$
$\therefore \quad \mathrm{TZ}=\frac{4.8 \times 8}{6.4}$
$\therefore \quad \mathrm{TZ}=6$ units
(iii) $\mathrm{WX}=\mathrm{WT}+\mathrm{TX}$
...($\mathrm{W}-\mathrm{T}-\mathrm{X}$)
$\therefore \quad 12.8=\mathrm{WT}+6.4$
$\therefore \quad \mathrm{WT}=12.8-6.4$
$\therefore \quad \mathrm{WT}=6.4$ units
Practice Set - 3.5 (Textbook Page No. 82)
(4) In the adjoining figure, if $\mathrm{PQ}=6, \mathrm{QR}=10$, $P S=8$, then find TS.
(2 marks)

Solution :

$P R=P Q+Q R$
$(P-Q-R)$
$\therefore \quad \mathrm{PR}=6+10$
$\therefore \quad \mathrm{PR}=16$ units

Secants PST and PQR intersect each other in the exterior of the circle at point P .
$\therefore \quad \mathrm{PT} \times \mathrm{PS}=\mathrm{PR} \times \mathrm{PQ}$
...(Theorem of external division of chords)
$\therefore \quad \mathrm{PT} \times 8=16 \times 6$
...[From (i) and given]
$\therefore \mathrm{PT}=\frac{16 \times 6}{8}$
$\therefore \quad \mathrm{PT}=12$ units
$\therefore \quad \mathrm{PT}=\mathrm{PS}+\mathrm{TS}$
$\therefore \quad 12=8+\mathrm{TS}$
$\therefore \quad \mathrm{TS}=12-8$
$\therefore \quad$ TS $=4$ units

Problem Set - 3 (Textbook Pg No. 88)
(16) In the adjoining figure,
(i) It m(arc CE $)=54^{\circ}$, $\mathbf{m}(\operatorname{arc} B D)=23^{\circ}$, then find $\angle \mathrm{CAE}$
(ii) If $\mathrm{AB}=4.2$, $B C=5.4$

$\mathrm{AE}=12$, then find AD
(iii) If $\mathrm{AB}=3.6, \mathrm{AC}=9.0, \mathrm{AD}=5.4$, then find AE .
(3 marks)

Solution:

(i) $\angle \mathrm{CAE}=\frac{1}{2}[\mathrm{~m}(\operatorname{arc} \mathrm{CE})-\mathrm{m}(\operatorname{arc} B D)]$

$$
\begin{aligned}
& =\frac{1}{2}(54-23) \\
& =\frac{1}{2} \times 31
\end{aligned}
$$

$\angle \mathrm{CAE}=15.5^{\circ}$
(ii) $\mathrm{AD} \times \mathrm{AE}=\mathrm{AB} \times \mathrm{AC}$
...(Theorem of external division of chords)

$$
\begin{array}{ll|rl}
\therefore & \mathrm{AD} \times 12= & 4.2 \times 9.6 & \mathrm{AC} \\
=\mathrm{AB}+\mathrm{BC} \\
& & \mathrm{AD} & =\frac{4.2 \times 9.6}{12}
\end{array}
$$

$\therefore \quad \mathrm{AD}=3.36$ units
(iii) $\mathrm{AE} \times \mathrm{AD}=\mathrm{AC} \times \mathrm{AB}$
...(Theorem of external division of chords)
$\therefore \quad \mathrm{AE} \times 5.4=9 \times 3.6$
$\therefore \mathrm{AE}=\frac{9 \times 3.6}{5.4}$
$\therefore \quad \mathrm{AE}=6$ units

Practice Set - 3.5 (Textbook Page No. 82)

(1) In the adjoining figure, point Q is the point of contact. If $\mathrm{PQ}=12$, $P R=8$, then find PS and RS. (2 marks)
Solution:
Tangent PQ and secant

PRS intersect each other at point P.
$\therefore \quad \mathrm{PQ}^{2}=\mathrm{PR} \times \mathrm{PS}$
...(Tangent secant segments theorem)
$\therefore \quad 12^{2}=8 \times \mathrm{PS}$
$\therefore \quad \frac{12 \times 12}{8}=\mathrm{PS}$
$\therefore \quad$ PS $=18$ units
$\mathrm{PS}=\mathrm{PR}+\mathrm{RS}$
$\therefore \quad 18=8+\mathrm{RS}$
$\therefore \quad \mathrm{RS}=18-8$
$\therefore \quad$ RS $=10$ units
Problem Set - 3 (Textbook Pg No. 88)
(18) In the adjoining diagram,
(i) $\mathrm{m}(\operatorname{arc} \mathrm{PR})=140^{\circ} \mathrm{m} \angle \mathrm{POR}$ $=36^{\circ}$. Find $\mathrm{m}(\operatorname{arc} \mathrm{PQ})$
(ii) If $\mathrm{OP}=7.2, \mathrm{OQ}=3.2$, then find QR
(iii) If $\mathrm{OP}=7.2, \mathrm{OR}=16.2$ then
 find QR
(3 marks)
Solution:
(i) $\angle \mathrm{POR}=\frac{1}{2}[\operatorname{marc} \mathrm{PR}-\operatorname{marc} \mathrm{PQ}]$
$\therefore \quad 36^{\circ}=\frac{1}{2}\left[140^{\circ}-\operatorname{marc} \mathrm{PQ}\right]$
$\therefore \quad 36 \times 2=140^{\circ}-\operatorname{marc} \mathrm{PQ}$
$\therefore \quad \mathrm{m}(\operatorname{arc} \mathrm{PQ})=140^{\circ}-72^{\circ}$
$\therefore \quad m$ arc $P Q=68^{\circ}$
(ii) $\mathrm{OP}^{2}=\mathrm{OQ} \times \mathrm{OR} \quad$...(Tangent secant segment theorem)
$\therefore \quad 7.2 \times 7.2=3.2 \times \mathrm{OR}$
$\therefore \quad \mathrm{OR}=\frac{7.2 \times 7.2}{3.2}$
$\therefore \quad \mathrm{OR}=16.2$ units
$O R=O Q+Q R$
... $(\mathrm{O}-\mathrm{Q}-\mathrm{R})$
$\therefore \quad 16.2=3.2+Q R$
$\therefore \quad \mathrm{QR}=16.2-3.2$
$\therefore \quad \mathrm{QR}=13$ units
(iii) $\mathrm{OP}^{2}=\mathrm{OQ} \times \mathrm{OR} \quad$...(Tangent secant segment theorem)
$\therefore \quad 7.2 \times 7.2=\mathrm{OQ} \times 16.2$
$\therefore \quad \mathrm{OQ}=\frac{7.2 \times 7.2}{16.2}$
$\therefore \quad \mathrm{OQ}=3.2$
$O Q+Q R=O R$
$\therefore \quad 3.2+\mathrm{QR}=16.2$
$\therefore \quad \mathrm{QR}=16.2-3.2$
$\therefore \quad \mathrm{QR}=13$ units
Practice Set - 3.5 (Textbook Page No. 82)
(3) In the adjoining figure, point B is the point of contact and point O is the centre of the
 circle. Seg OE \perp
Seg $A D$, if $A B=12, A C=8$, then find (i) $A D$ (ii) DC and (iii) DE

Solution :
Tangent AB and Secant ACD intersect at point A.
$\therefore \quad \mathrm{AB}^{2}=\mathrm{AC} \times \mathrm{AD} \quad$...(Tangent secant segments theorem)
$\therefore \quad 12^{2}=8 \times \mathrm{AD}$
$\therefore \quad \frac{12 \times 12}{8}=\mathrm{AD}$
$\therefore \quad \mathrm{AD}=18$ units
$\therefore \quad \mathrm{AD}=\mathrm{AC}+\mathrm{DC}$
$\therefore \quad 18=8+\mathrm{DC}$
$\therefore \quad \mathrm{DC}=18-8$
$\therefore \quad \mathrm{DC}=10$ units
$\therefore \quad$ Seg DE \perp chord CD
...(Given)
$\therefore \quad \mathrm{OE}=\frac{1}{2}+\mathrm{CD} \quad$ (Perpendicular drawn from the centre of the circle to the chord bisects the chord)
[From (i)]
$\therefore \quad \mathrm{DE}=\frac{1}{2} \times 10$
$\therefore \quad \mathrm{DE}=5$ units
(5) In the adjoining figure, seg EF is the diameter of the circle with centre H . Line DF is tangent at point F. If r is the radius of the circle, then prove that $\mathrm{DE} \times \mathrm{GE}=4 r^{2}$
(3 marks)
To prove: DE \times GE $-4 r^{2}$
Construction: Draw seg GF
Proof : $\angle \mathrm{EGF}=90^{\circ} \quad$...(i) (Diameter subtends a right angle at any point on the circle)
In $\triangle \mathrm{EFD}$,
$\angle \mathrm{EFD}=90^{\circ} \quad \ldots$ (Tangent and radius are seg FG \perp hypotenuse ED
...[From (i)]
$\therefore \quad \Delta \mathrm{EFD} \sim \Delta \mathrm{EGF} \sim \Delta \mathrm{FGD}$
...(ii) (similarity in right angled triangles)
$\therefore \quad \triangle \mathrm{EFD} \sim \Delta \mathrm{EGF}$
...[From (ii)]
$\therefore \quad \frac{\mathrm{EF}}{\mathrm{GE}}=\frac{\mathrm{DE}}{\mathrm{EF}}$
...(c.s.c.t.)
$\therefore \quad \mathrm{DE} \times \mathrm{GE}=\mathrm{EF}^{2}$
$\therefore \quad \mathrm{DE} \times \mathrm{GE}=(2 r)^{2} \quad \ldots$ (diameter is twice the radius)
$\therefore \quad \mathrm{DE} \times \mathrm{GE}=4 r^{2}$

Problem Set - 3 (Textbook Pg No. 89)

(21) In the adjoining figure, seg MN is a chord of a circle with centre O. $l(\mathrm{MN})=25$. Point L on chord MN such that $l(\mathrm{ML})=9$ and $l(\mathrm{OL})=5$, then find radius of the circle.

Construction:

(3 marks)

Draw seg OM and seg OA \perp chord MN
(M-A-N)
Solution:
Seg OA \perp chord MN
...(Construction)
$\therefore \quad \mathrm{MA}=\frac{1}{2} \times \mathrm{MN} \ldots$ (Perpendicular drawn from the centre to the chord bisects the chord
$\therefore \quad \mathrm{MA}=\frac{1}{2} \times 25=12.5$ units
$\mathrm{MA}=\mathrm{ML}+\mathrm{LA}$
...(M-L-A)
$\therefore \quad 12.5=9+\mathrm{LA}$
..[From (i) and given]
$\therefore \quad 12.5-9=\mathrm{LA}$
$\therefore \quad \mathrm{LA}=3.5$ units

In $\triangle \mathrm{OAL}, \angle \mathrm{OAL}=90^{\circ}$
$\therefore \quad \mathrm{OL}^{2}=\mathrm{OA}^{2}+\mathrm{LA}^{2}$...(Pythagoras theorem)
$\therefore \quad 5^{2}=\mathrm{OA}^{2}+(3.5)^{2}$
...[From (ii) and given]
$\therefore \quad \mathrm{OA}^{2}=25-12.25$
$\therefore \quad \mathrm{OA}^{2}=12.75$
In $\triangle \mathrm{OAM}, \angle \mathrm{OAM}=90^{\circ}$
...(Construction)
$\therefore \quad \mathrm{OM}^{2}=\mathrm{OA}^{2}+\mathrm{MA}^{2}$
...(Pythagoras theorem)
$\therefore \quad \mathrm{OM}^{2}=12.75+(12.5)^{2}$
...[From (iii) and given]
$\therefore \quad \mathrm{OM}^{2}=12.75+156.25$
$\therefore \quad \mathrm{OM}^{2}=169$
$\therefore \quad \mathrm{OM}=13$ units
...(Taking square roots)

$\therefore \quad$ Radius of the circle is $\mathbf{1 3}$ units

Problem Set - 3 (Textbook Pg No. 89)

MCQ's

(1) Choose the correct alternative for each of the following.
(1 mark each)
(1)
$\angle \mathrm{QPR}=60^{\circ}$
$\therefore \angle \mathrm{AOB}=$ \qquad

(A) 60°
(B) 90°
(C) 120°
(D) Can not be found
(2) Angle between external end point of radius and tangent is \qquad .
(A) 90°
(B) Acute angle
(C) Obtuse angle
(D) Can not say
(3) Point \mathbf{P} is on the circle. AB is diameter of the circle, $\angle \mathrm{APB}$ is
(a) Reflex angle
(b) Acute angle
(c) Right angle
(d) Obtuse angle
(4) $\quad \mathrm{MN}$ is tangent at M and AM is radius. Find AM.

(A) 6
(b) 3
(c) $3 \sqrt{3}$
(d) 1
(5) $\angle \mathrm{ADC}=80^{\circ}$, then
$\angle \mathrm{CBE}=$?

(A) 100°
(B) 10°
(C) 80°
(D) 280°
(6) $\angle \mathrm{XYZ}=40^{\circ}, \angle \mathrm{AYZ}=20^{\circ}$, line $A Y$ is tangent at point Y.
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{XY})=$ \qquad

(A) 80°
(B) 40°
(C) 60°
(D) 120°
(7) $\quad A B$ is tangent at B.
$\mathrm{AB}=12, \mathrm{AP}=6$
$\therefore \mathrm{PQ}=$ \qquad

(A) 18
(B) 6
(C) 12
(D) 20
(8) Line PT is tangent at point T. Which of the following is true?

(A) $\angle \mathrm{ABT} \cong \angle \mathrm{APT}$
(B) $\angle \mathrm{ABT} \cong \angle \mathrm{BAT}$
(C) $\angle \mathrm{BAT} \cong \angle \mathrm{BTQ}$
(D) None of the (A), (B), (C)
(9) A circle with centre P.

Line $A B$ and line AC are tangents from point A at points B and C respectively. Which of
 the following is/are true?
(A) $\angle \mathrm{BPA} \cong \angle \mathrm{CPA}$
(B) $\angle \mathrm{BAP} \cong \angle C A P$
(C) $\angle \mathrm{PBA} \cong \angle \mathrm{PCA}$
(D) All three (A), (B), (C)
(10) In adjoining figure,
$P Q=Q R . \angle P=60^{\circ}$
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{PR})=$ \qquad

(A) 120°
(B) 60°
(C) 90°
(D) 240°

ANSWERS

(1) (C) 120°
(2) $(\mathrm{A}) 90^{\circ}$
(3) (C) Right angle
(4) (B) 3
(5) (C) 80°
(6) (D) 120°
(7)
(A) 18
(8) (C) $\angle \mathrm{BAT} \cong \angle \mathrm{BTQ}$
(9)
(D) All three (A), (B), (C)
(10) (A) 120°

PROBLEMS FOR PRACTICE

Based on Practice Set 3.1

(1) In the adjoining figure, point P is the centre of the circle and line $A B$ is the tangent to the circle at T . The radius of the circle is 6 cm . Find PB if $\angle \mathrm{TPB}=60^{\circ}$.

(2 marks)
(2) In the adjoining figure, point A is the centre of the circle $\mathrm{AN}=10 \mathrm{~cm}$. Line NM is tangent at M. $\mathrm{MN}=5 \mathrm{~cm}$. Find the radius.
(2 marks)

(3) A circle with centre.

O Point A is in the exterior of the circle. Line AP and line $A Q$ are tangents at point P and point Q
 respectively $\mathrm{P}-\mathrm{A}-\mathrm{S}, \mathrm{Q}-\mathrm{A}-\mathrm{R} \quad \angle \mathrm{PAR}=130^{\circ}$. Find $\angle A O P$.
(2 marks)
(4) Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that $\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$.
(2 marks)
(5) In the adjoining figure, O is the centre and seg AB is a diameter. At point C on the circle, the tangent CD is drawn. Line $B D$ is tangent at B. Prove that seg OD \| seg AC.

(2 marks)

Based on Practice Set 3.2

(6) If two circles of radii 5 cm and 3 cm touch externally. Find the distance between them. (1 mark)
(7) Find the distance between two internally touching circles whose radii are 10 cm and 2 cm .
(1 marks)
(8) The circles which are not congruent touch externally. The sum of their areas is $130 \pi \mathrm{~cm}^{2}$ and distance between their centres is 14 cm . Find the radii of the two circles.
(9) In the adjoining figure circles with centres A and C touch internally at point T. Line $A B$ is tangent to the smaller

circle at point P. Point B lies on the bigger circle. Radii are 16 cm and 6 cm . Find AP. (2 marks)
(10) The radii of two circles are 25 cm and 9 cm . The distance between their centres is 34 cm . Find the length of the common tangent segment to these circles.
(2 marks)

Based on Practice Set 3.3

(11)

In the adjoining figure, A circle with centre ' O ' $\operatorname{arc} \mathrm{PQ}=\operatorname{arc} \mathrm{QR}=\operatorname{arc}$ PR. Find measure of each of above arcs.
(2 marks)

(12) A circle with centre ' O ' chord $\mathrm{PQ} \cong$ chord RS . $m\left(\right.$ arc PXQ) $=260^{\circ}$. Then find $m(\operatorname{arc} R X S)$.
(1 marks)

(13) A circle with centre P. arc $A B=\operatorname{arc} B C$ and arc $\mathrm{AXC}=2$ arc AB . Find measure of arc $A B$, arc $B C$ and arc AXC. Prove chord $A B \cong$ chord $B C$.

(3 marks)

In the adjoining figure, chord $A D \cong$ chord $B C$. $\mathrm{m}(\operatorname{arc} \mathrm{ADC})=100^{\circ}$, $m(\operatorname{arc} C D)=60^{\circ}$. Find $\mathrm{m}(\operatorname{arc} \mathrm{AB})$ and $\mathrm{m}(\operatorname{arc}$ $B C$).
(3 marks)

Based on Practice Set 3.4
If $m(\operatorname{arc} A P C)=60^{\circ}$ and $\angle B A C=80^{\circ}$. Find (a) $\angle A B C$
(b) $\mathrm{m}(\operatorname{arc} B Q C)$.
(2 marks)

(16) Chords AB and CD of a circle intersect in point Q in the interior of a circle of as shown in the figure. If m (arc $\mathrm{AD})=20^{\circ}$, and m (arc
 $B C)=36^{\circ}$, then find $\angle B Q C$.
(3 marks)

Secants containing chords RS and PQ of a circle intersect each other in point A in the exterior
 of a circle. If m (arc $P C R)=26^{\circ}$ and $m(\operatorname{arc} Q D S)=48^{\circ}$, then find (1) $\angle \mathrm{AQR}(2) \angle \mathrm{SPQ}$
(3) \angle RAQ.
(3 marks)
(18) In the adjoining figure, O is the centre of the circle. Find the value of $\angle \mathrm{ABP}$ if $\angle \mathrm{POB}=90^{\circ}$
(2 marks)

(19) Tangents drawn at points A and C of a circle intersect each other in point P. If $\angle \mathrm{APC}=50^{\circ}$, then find $\angle A B C$.
(2 marks)

(20) If two consecutive angles of cyclic quadrilateral are congruent, then prove that one pair of opposite sides is congruent and other is parallel.
(4 marks)
(21) $\square A B C D$ is a parallelogram. Side BC intersects circle at point $\mathrm{DC}=\mathrm{DP}$. P. Prove that
(3 marks)

In the adjoining figure, chord PQ and chord AB intersect at point M. If $\mathrm{PM}=\mathrm{AM}$, then prove that $\mathrm{BM}=\mathrm{QM}$.
(2 marks)

Based on Practice Set 3.5

Seg AB and seg AD are the chords of the circle. C is a point on tangent of the circle at point A. If
$\mathrm{m}(\operatorname{arc} \mathrm{APB})=80^{\circ}$
 and $\angle \mathrm{BAD}=30^{\circ}$.
Then find (i) $\angle B A C$ (ii) $m(\operatorname{arc} B Q D) . \quad(3$ marks)
(24) Secant AC and secant AE intersects in point A. Points of intersections of the circle
 and secants are B and D respectively. If $C B=5, A B=7$, $\mathrm{EA}=20$. Determine $\mathrm{ED}-\mathrm{AD}$.
(3 marks)
(25) In the adjoining figure line PA is tangent at point A. Line PBC is a secant. If $\mathrm{AP}=15$ and $B P=10$, find
BC. (2 marks)

(26) $\square \mathrm{ABCD}$ is a rectangle. Taking AD as a diameter, a semicircle AXD is drawn which intersects the diagonal BD at X . If $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{AD}=9 \mathrm{~cm}$, then find values of $B D$ and $B X$.
(3 marks)
(27) In the adjoining figure, point O is the centre of the circle. Line PB is a tangent and line PAC is a
 secant. Find $\mathrm{PA} \times \mathrm{PC}$ if $\mathrm{OP}=25$ and radius is 7 .
(3 marks)

ANSWERS

12 (2) $5 \sqrt{3}$
(3) 65°
(6) 8 cm
(7) 8 cm
(8) $11 \mathrm{~cm}, 3 \mathrm{~cm}$ (9) 8 units (10) 30 units
(11) 120° (12) 260°
(13) $\mathrm{m}(\operatorname{arcAB})=90^{\circ}, \mathrm{m}\left(\operatorname{arc} \mathrm{BC}=90^{\circ} \mathrm{m}(\operatorname{arcAXC})=180^{\circ}\right.$
(14)
(16) $m(\operatorname{arc} A D)=m(\operatorname{arc} B C)=100^{\circ}(15) 30^{\circ}, 160^{\circ}$
30.5° (17) $13^{\circ}, 24^{\circ}, 11^{\circ}$ (18) 45° (19) 65°
(23)
(i) 40° (ii) 60° (24) 11.6 units (25) 12.3 units
(26) $\mathrm{BD}=15, \mathrm{BX}=9.6$ (27) 576 units

ASSIGNMENT - 3

Time : 1 Hr .
Q.1. (A) Solve the following sub questions:
(1) Radius of a circle with centre ' O ' is $5 \mathrm{~cm}, \mathrm{OA}=4 \mathrm{~cm}, \mathrm{OB}=5.5 \mathrm{~cm}$. Find the position of point A and B with respect to circle.
(2) Two circles with diameters 6 cm and 9 cm touch each other externally. Find the distance between their centres.
Q.1. (B) Solve the following any one questions:
(1) Line PA is a tangent at point A . Line PBC is a secant $\mathrm{AP}=15, \mathrm{BP}=10$, find BC .

(2) Secants AB and CD are intersecting in point Q . $\mathrm{m}(\operatorname{arc} \mathrm{AD})=25^{\circ}$ and $\mathrm{m}(\operatorname{arc} B C)=36^{\circ}$, then find: $\angle \mathrm{BQC}$

Q.2. Perform any on of the activities

(1) Measure of a major arc of a circle is four times the measure of corresponding minor arc. Complete the following acitivity to find the measure of each arc.

Sol. Let the measure of minor arc be x.
\therefore Measure of major arc $=\square$
$\therefore x+\square=360^{\circ}\left(\right.$ Measure of a circle is 360°)
$\therefore \square x=360^{\circ}$
$\therefore x=$ \qquad
$\therefore \quad$ Measure of minor arc $=x=$ \qquad
$\therefore \quad$ Measure of major arc $=\square=\square \times x=$ \qquad
(2) Line PA and line PB are tangents to the circle at points A and B. If $\angle \mathrm{APB}=60^{\circ}$, then find $m(\operatorname{arc} A X B)$.

Q.3. Solve the following sub questions: (any two)
(1) Two circles with centres P and Q touch each other at point A. $\angle B P A=60^{\circ}$. Find $m \angle Q C A$ and $m \angle C Q P$.

(2) Line PQ is a tangent to the circle at point A . $\operatorname{arc} \mathrm{AB} \cong \operatorname{arc} \mathrm{AC}$. Complete the following activity to prove $\triangle \mathrm{ABC}$ as isosceles triangle.

(3) Two circles intersect each other in points A and B. Secants through A and B intersect circles in C, D and M, N as shown in the figure. Prove that: $\mathrm{CM} \| \mathrm{DN}$

Q.4. Solve any two of the following questions:
(1) A circle with centre ' O ' is incircle of $\triangle \mathrm{ABC} . \angle \mathrm{ACB}=90^{\circ}$. Radius of the circle is r.

Prove that : $2 \mathrm{r}=\mathrm{a}+\mathrm{b}-\mathrm{c}$.

(2) In the adjoining figure line PA is a tangent to the circle at point A. Secant PQZ intersects chord AY in point X, such that $\mathrm{AP}=\mathrm{PX}=\mathrm{XY}$. If $\mathrm{PQ}=1$ and $\mathrm{QZ}=8$. Find AX .
(3) In the adjoining figure line PA is a tangent to the circle at

4 Geometric Constructions

... INDEX

Pr. S. 4.1-1 Pg 70	Pr. S. 4.2-1 Pg 75	Pr. S. 4.2-4 Pg 75	Pr. S. 4.2-7 Pg 79	PS. 4 - 3 Pg 78	PS. $4-6 \mathrm{Pg} 81$
Pr.S.4.1-2 Pg 72	Pr.S.4.2-2 Pg 75	Pr. S. 4.2-5 Pg 76	PS. 4 - 1 Pg 81	PS. $4-4 \mathrm{Pg} 80$	PS. $4-7 \mathrm{Pg} 73$
Pr.S.4.1-3 Pg 71	Pr.S.4.2-3 Pg 77	Pr. S. 4.2-6 Pg 79	PS. 4 - 2 Pg 80	PS. 4 - 5 Pg 76	PS. $4-8 \mathrm{Pg} 73$
Pr. S. 4.1-4 Pg 73					

Points to Remember:

- Construction of various geometrical figures is a very important part of the study of geometry for understanding the concepts learnt in theoretical geometry.

Basic Constructions

(i) To draw a perpendicular bisector of a given line segment.

(ii) To draw an angle bisector of a given angle.

(iii) To draw a perpendicular to a line at a given point on it.

(iv) To draw a perpendicular to a given line from a point outside it.

(v) To draw an angle congruent to a given angle, using scale and compass only.

(vi) To draw a line parallel to a given line through a point outside it.

- Similar Triangles

Construction of similar triangle to a given triangle: For a given one-to-one correspondence between the vertices of two triangles, if their corresponding angles are congruent and corresponding sides are in proportion, then these two triangles are called 'Similar triangles'.

Using these properties, we should construct similar triangles to the given triangle.

Here, we shall see two types of constructions as discussed below.
(A) Both triangles do not have any angle in common Example: $\triangle \mathrm{ABC} \sim \triangle \mathrm{XYZ} . \mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and $A C=10 \mathrm{~cm} . A B: X Y=2: 1$ Construct $\triangle X Y Z$.

Solution: $\triangle \mathrm{ABC} \sim \triangle \mathrm{XYZ}$
....(Given)

$$
\begin{aligned}
& \frac{A B}{X Y}=\frac{B C}{Y Z}=\frac{A C}{X Z} \\
& \frac{A B}{X Y}=\frac{2}{1} \\
\therefore \quad & \frac{A B}{X Y}=\frac{B C}{Y Z}=\frac{A C}{X Z}=\frac{2}{1} \quad \ldots .(\text { (i) (c.s.s.t.) } \\
\therefore \quad & \frac{8}{X Y}=\frac{6}{Y Z}=\frac{10}{X Z}=\frac{2}{1} \\
\therefore \quad & \frac{8}{X Y}=\frac{2}{1} ; \frac{6}{Y Z}=\frac{2}{1} ; \frac{10}{X Z}=\frac{2}{1} \\
\therefore \quad & X Y=\frac{8}{2} ; Y Z=\frac{6}{2} ; X Z=\frac{10}{2} \\
\therefore \quad & X Y=4 \mathrm{~cm}, Y Z=3 \mathrm{~cm}, X Z=5 \mathrm{~cm} \text { (i) and (ii)] }
\end{aligned}
$$

$\Delta X Y Z$ is the required triangle.

MASTER KEY QUESTION SET - 4

Practice Set - 4.1 (Textbook Page No. 96)
(1)
$\triangle \mathrm{ABC} \sim \Delta \mathrm{LMN}$, In $\triangle \mathrm{ABC} \mathrm{AB}=5.5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and $C A=4.5 \mathrm{~cm}$. Construct $\triangle A B C$ and $\triangle L M N$, such that $\frac{\mathrm{BC}}{\mathrm{MN}}=\frac{5}{4}$.
(4 marks)

Solution :

$$
\begin{aligned}
& \Delta \mathrm{ABC} \sim \Delta \mathrm{LMN} \\
\therefore & \frac{\mathrm{AB}}{\mathrm{LM}}=\frac{\mathrm{BC}}{\mathrm{MN}}=\frac{\mathrm{AC}}{\mathrm{LN}} \\
& \frac{\mathrm{BC}}{\mathrm{MN}}=\frac{5}{4} \quad \text { (Given) } \\
\therefore & \frac{\mathrm{AB}}{\mathrm{LM}}=\frac{\mathrm{BC}}{\mathrm{MN}}=\frac{\mathrm{AC}}{\mathrm{LN}}=\frac{5}{4} \quad \quad \text { [from (i) (i) and (ii)] } \quad \text { (c.s.s.t.) } \\
\therefore & \frac{\mathrm{AB}}{\mathrm{LM}}=\frac{5}{4}, \frac{\mathrm{BC}}{\mathrm{MN}}=\frac{5}{4}, \frac{\mathrm{AC}}{\mathrm{LN}}=\frac{5}{4} \\
\therefore & \frac{5.5}{\mathrm{LM}}=\frac{5}{4}, \frac{6}{\mathrm{MN}}=\frac{5}{4}, \frac{4.5}{\mathrm{LN}}=\frac{5}{4} \\
\therefore & \mathrm{LM}=\frac{5.5 \times 4}{5} ; \mathrm{MN}=\frac{6 \times 4}{5} ; \mathrm{LN}=\frac{4.5 \times 4}{5} \\
\therefore & \mathrm{LM}=4.4 \mathrm{~cm}, \mathrm{MN}=4.8 \mathrm{~cm}, \mathrm{LN}=3.6 \mathrm{~cm}
\end{aligned}
$$

Analytical figure:

$\triangle \mathrm{LMN}$ is the required triangle similar to the $\triangle \mathrm{ABC}$.
(3) Δ RST $\sim \Delta X Y Z, ~ I n ~ \Delta R S T, ~ R S ~=~ 4.5 ~ c m, ~$ $\angle \mathrm{RST}=40^{\circ}, \mathrm{ST}=5.7 \mathrm{~cm}$. Construct $\Delta \mathrm{RST}$ and $\Delta X Y Z$, such that $\frac{R S}{X Y}=\frac{3}{5}$
(4 marks)
Solution :

$$
\begin{aligned}
& \Delta \mathrm{RST} \sim \Delta \mathrm{XYZ} \\
& \therefore \quad \angle \mathrm{RST} \cong \angle X Y Z \\
& \therefore \quad \angle X Y Z=40^{\circ} \\
& \frac{R S}{X Y}=\frac{S T}{Y Z} \\
& \left(\because \angle \mathrm{RST}=40^{\circ} \text {, given }\right) \\
& \text { But, } \frac{R S}{X Y}=\frac{3}{5} \\
& \text {... (i) (c.s.s.t.) } \\
& \text {... (ii) (given) } \\
& \therefore \quad \frac{\mathrm{RS}}{\mathrm{XY}}=\frac{\mathrm{ST}}{\mathrm{YZ}}=\frac{3}{5} \quad \text { [from (i) and (ii)] } \\
& \therefore \quad \frac{\mathrm{RS}}{\mathrm{XY}}=\frac{3}{5} ; \frac{\mathrm{ST}}{\mathrm{YZ}}=\frac{3}{5} \\
& \therefore \quad \frac{4.5}{X Y}=\frac{3}{5} \quad \frac{5.7}{Y Z}=\frac{3}{5} \\
& \therefore \quad \mathrm{XY}=\frac{4.5 \times 5}{3} \quad \therefore \mathrm{YZ}=\frac{5.7 \times 5}{3} \\
& \therefore X Y=7.5 \mathrm{~cm} \quad \therefore Y Z=9.5 \mathrm{~cm}
\end{aligned}
$$

Analytical figure:

$\Delta X Y Z$ is the required triangle similar to the $\triangle \mathrm{RST}$.

Points to Remember:

- Basic Construction

To divide a line segment in the given ratio.
Example: Divide seg AB of length 8 cm in the ratio 3:2

Steps of construction:
(1) Draw seg $A B$ of length 8 cm . Draw ray $A X$ on either side of seg $A B$.
(2) Make five equal parts $\mathrm{AA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{~A}_{3}$ $=A_{3} A_{4}=A_{4} A_{5}$ on ray $A X$.
(3) Draw seg BA_{5}.
(4) Draw angle \cong to $\angle \mathrm{AA}_{5} \mathrm{~B}$ at vertex A_{3}.

Let its arm intersect seg $A B$ at P. Point P divides seg $A B$ in the ratio $A P: P B ;$ i.e., $3: 2$.
(B) To construct similar triangle when one pair of angle is common.

Example: Construct $\Delta \mathrm{SVJ}$, if $\Delta \mathrm{SHR} \sim \Delta \mathrm{SVJ}$, $\mathrm{SH}=7.5 \mathrm{~cm}, \mathrm{HR}=8.5 \mathrm{~cm}, \mathrm{SR}=9.5 \mathrm{~cm}$, SV : SH = $3: 5$
[Note : In this case, we need not do any calculation, we have to use the basic construction that we did in the previous question.]

Steps of construction:

(1) Draw seg SR as base [Note: Base should be taken that side in which vertex of common angle is contained.]
(2) On either side of seg $S R$, draw ray $S X$ and on ray SX make five equal parts ${S S_{1}}_{1}=S_{1} S_{2}=S_{2} S_{3}=S_{3} S_{4}=$ $S_{4} S_{5}$. [As bigger triangle has to be divided in five equal parts.]
(3) Draw seg RS_{5}. Draw an angle \cong to $\angle \mathrm{SS}_{5} \mathrm{R}$ at vertex S_{3}. Let it's arm intersect side $S R$ at point J.
(4) Draw $\angle S J V \cong \angle S R H$, intersecting side SH at point 'V'.
$\Delta \mathrm{SVJ}$ is the required triangle.

Practice Set - 4.1 (Textbook Page No. 96)

(2) $\triangle P Q R \sim \Delta L T R$, In $\triangle P Q R, P Q=4.2 \mathrm{~cm}$, $\mathrm{QR}=5.4 \mathrm{~cm}, \mathrm{PR}=4.8 \mathrm{~cm}$. Construct $\triangle \mathrm{PQR}$ and $\Delta L T R$, such that $\frac{P Q}{L T}=\frac{3}{4}$.
(4 marks)

Solution :

Analytical figure:

$\Delta \mathrm{LTR}$ is the required triangle similar to the $\triangle \mathrm{PQR}$.
(4) \triangle ATM ~ \triangle AHE. In \triangle AMT, AM $=6.3 \mathrm{~cm}$, $\angle \mathrm{TAM}=50^{\circ}$, and $\mathrm{AT}=5.6 \mathrm{~cm} \cdot \frac{\mathrm{AM}}{\mathrm{AH}}=\frac{7}{5}$. Construct \triangle AHE. (4 marks)

Solution :

Analytical figure:

$\triangle \mathrm{AHE}$ is the required triangle similar to the $\triangle \mathrm{AMT}$.

Problem Set - 4 (Textbook Pg No. 99)

(7) $\triangle \mathrm{ABC} \sim \triangle \mathrm{LBN}$. In $\triangle \mathrm{ABC}, \mathrm{AB}=5.1 \mathrm{~cm}, \angle \mathrm{~B}=40^{\circ}$, $\mathrm{BC}=4.8 \mathrm{~cm}, \frac{\mathrm{AC}}{\mathrm{LN}}=\frac{4}{7}$. Construct $\triangle \mathrm{ABC}$ and \triangle LBN. (4 marks)

Solution :

Analytical figure:

$\triangle \mathrm{LBN}$ is the required triangle similar to the $\triangle \mathrm{ABC}$.
(8) Construct $\triangle P Y Q$ such that $P Y=6.3 \mathrm{~cm}, Y Q=7.2$ $\mathrm{cm}, P Q=5.8 \mathrm{~cm}$. If $\frac{Y Z}{Y Q}=\frac{6}{5}$, then construct $\Delta X Y Z$ similar to $\triangle P Y Q$.

Solution :

Analytical figure:

$\Delta X Y Z$ is the required triangle similar to the $\triangle P Y Q$.

Points to Remember:

(II) Construction of a tangent to the circle.
(A) Construction of tangent to a circle at a point on the circle using the centre of the circle.

The tangent of a circle is perpendicular to the radius at its outer end. We use the same property to do this construction.
Example: To construct a tangent to a circle of radius 3.5 cm at a point P on it.
Solution:
Analytical figure:

Steps of construction:

(1) Draw circle with given radius with centre ' O^{\prime} '.
(2) Take a point 'P' on the circle.
(3) Draw ray OP.
(4) Draw perpendicular to ray OP at point P. Name line as l.

Line ' l ' is tangent to the circle (as perpendicular at outer end of radius is tangent.)

Practice Set - 4.2 (Textbook Page No. 98)

(1) Construct a tangent to a circle with centre P and radius 3.2 cm at any point M on it. (2 marks)

Solution :

Analytical figure

line l is the required tangent to the circle passing through point M on the circle.
(2) Draw a circle of radius 2.7 cm . Draw a tangent to the circle at any point on it.
(2 marks)

Solution :

Analytical figure:

line l is the required tangent to the circle passing through point M on the circle.
(4) Draw a circle of radius 3.3 cm . Draw a chord PQ of length 6.6 cm . Draw tangents to the circle at points P and Q. Write your observation about the tangents.
(3 marks)
Solution : Analytical figure:
Radius $=3.3 \mathrm{~cm}$ (Given) Chord $=6.6 \mathrm{~cm}$ (Given)
\therefore Chord is twice of radius.
$\therefore \quad$ Chord PQ is a diameter.

line l and m are the required tangents to the circle at point P and point Q .

Tangents at the end points of a diameter are parallel to each other.

Problem Set - 4 (Textbook Page No. 99)

(5) Draw a circle with centre P. Draw an arc AB of 100° measure. Draw tangents to the circle at points A and point B.
(3 marks)

Solution :

Analytical figure:

Line $A Q$ and line $B Q$ are tangents to the circle at points A and B respectively.

Practice Set - 4.2 (Textbook Page No. 99)

(5) Draw a circle with radius 3.4 cm . Draw a chord MN of length 5.7 cm in it. Construct tangent at point M and N to the circle.
(3 marks)
Solution :
Analytical figure:

Line MP and line NP are required tangents to the circle at point M and point N respectively.

1 Points to Remember:

(B) Construction of a tangent to the circle from a point on the circle without using the centre.

If a line drawn through an end point of a chord of a circle and an angle formed by it with the chord is equal to the angle subtended by the chord in the corresponding alternate segment, then the line is a tangent to the circle.
Example: Draw a circle of radius 3 cm . Take any point K on it. Draw a tangent to the circle at K without using centre of the circle.

Solution:

Analytical figure:

Line ' m ' is the tangent to the circle

Steps of construction:

(1) Draw a circle with radius 3 cm .
(2) Take a point K on the circle. Draw chord KL.
(3) Take a point N in the alternate arc of arc KXL.
(4) Draw seg LN and seg KN to form $\angle \mathrm{LNK}$.
(5) Draw an angle congruent to $\overline{\angle \mathrm{L}} \overline{\mathrm{LNK}} \overline{\mathrm{N}}$ at vertex $\overline{\mathrm{K}}$, taking LK as one side.
(6) The line m is the required tangent.

Practice Set - 4.2 (Textbook Page No. 98)

(3) Draw a circle of radius 3.6 cm . Draw a tangent to the circle at any point on it without using the centre.
(2 marks)
Solution :
Analytical figure:

Line m is the required tangent to the circle at point C.

Problem Set - 4 (Textbook Page No. 99)

(3) Draw any circle. Take any point A on it and construct tangent at A without using the centre of the circle.
(2 marks)

Solution :

Analytical figure:

Line l is the required tangent to the circle at point A.

Points to Remember:

(C) Construction of tangents to a circle from a point outside the circle.

The angle inscribed in a semicircle is a right angle, using this property we shall draw a tangent to a circle from a point outside it.
Note: We can draw two tangents from a point outside the circle.
Example: Draw tangent to the circle of radius 2.5 cm from a point ' P ' at a distance 6 cm from the centre.

Solution:

Analytical figure:

Steps of construction:

(1) Draw a circle with centre 'O' and radius 2.5 cm .
(2) Take a point ' P ' such that $\mathrm{OP}=6 \mathrm{~cm}$.

(3) Draw perpendicular bisector of seg OP and obtain midpoint M of seg OP.
(4) Taking ' M ' as centre and MO as radius draw a circle, intersecting the circle at points A and B.
(5) Draw ray PA and ray PB.
(6) Line PA and line PB are tangents to the circle at points A and B respectively from point ' P '.

Practice Set - 4.2 (Textbook Page No. 99)

(6) Draw a circle with centre P and radius 3.4 cm . Take point Q at a distance 5.5 cm from the centre. Construct tangents to the circle from point Q .

Solution :

Analytical figure:

line $M Q$ and line $N Q$ are the required tangents to the circle from point Q.
(7) Draw a circle with radius 4.1 cm . Construct tangents to the circle from a point at a distance 7.3 cm from the centre.

Solution :

Analytical figure:

Line $M Q$ and line $N Q$ are the required tangents to the circle from point Q.

Problem Set - 4 (Textbook Pg No. 99)

(2) Draw a circle with centre O and radius 3.5 cm . Take a point P at a distance 5.7 cm from the centre. Draw tangents to the circle from point P.
(3 marks)

Solution :

Analytical figure:

(4) Draw a circle of diameter 6.4 cm . Take a point R at a distance equal to its diameter from the centre. Draw tangents from point R.

Solution :

Analytical figure:

line RA and line RB are the required tangents to the circle at points A and B respectively from point R.

(6) Draw a circle of radius 3.4 cm and centre E. Take a point F on the circle. Take another point A such that E-F-A and FA -4.1 cm . Draw tangents to the circle from point A. Solution :

Analytical figure:

Line $A P$ and line $A Q$ are the required tangents from point A to the circle with centre E.

Problem Set - 4 (Textbook Pg No. 99)

$M C Q^{\prime} s$

(1) Select correct alternative for each of the following questions.
(1 mark each)
*(1) The number of tangents that can be drawn to a circle at a point on the circle is \qquad .. .
(A) 3
(B) 2
(C) 1
(D) 0
*(2) The maximum number of tangents that can be drawn to a circle from a point outside it is \qquad
(A) 2
(B) 1
(C) one and only one
(D) 0
*(3) $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}, \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{7}{5}$ then \qquad ..
(A) $\triangle A B C$ is a bigger
(B) $\triangle \mathrm{PQR}$ is bigger
(C) Both triangles will be equal
(D) Can not be decided.

Additional MCQ's

(4) \qquad . number of tangent/s can be drawn from a point inside the circle.
(A) 0
(B) 1
(C) 2
(D) Infinite
(5) The lengths of the two tangent segments drawn
to a circle from an external point are \qquad ..
(A) Equal
(B) Unequal
(C) Infinite
(D) Can't say
(6) Tangents drawn at the endpoints of a diameter of a circle are \qquad .. .
(A) Equal
(B) Perpendicular
(C) Parallel
(D) Intersecting each other
(7) In $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}, \mathrm{AB}: \mathrm{PQ}=2: 3$. If $\mathrm{BC}=4$, then QR = \qquad .
(A) 4
(B) 6
(C) 9
(D) 8
(8) If $\mathrm{AB}: \mathrm{BC}=3: 5$, then how many equal parts seg $A C$ divided to get point B \qquad
(a) 3
(b) 5
(c) 8
(d) Can't say

ANSWERS

(1)
(C) 1
(2) (A) 2
(3) (A) $\triangle A B C$ is a bigger
(4) (A) 0
(5)
(A) Equal
(6) (C)
C) Parallel (7)
7) (B) 6 (8)
(C) 8

PROBLEMS FOR PRACTICE

Based on Practice Set 4.1

(1) Draw a line segment $\mathrm{PQ}=8 \mathrm{~cm}$. Take a point R on it such that $l(\mathrm{PR}): l(\mathrm{RQ})=3: 2$.
(2 marks)
(2) $\quad l(\mathrm{AB}): l(\mathrm{BC})=3: 2$. Draw seg AB , if $l(\mathrm{AB})=7.2 \mathrm{~cm}$.
(2 marks)
(3) $\triangle \mathrm{XYZ} \sim \triangle \mathrm{ABC}, \angle \mathrm{X}=40^{\circ}, \angle \mathrm{Y}=80^{\circ}, \mathrm{XY}=6 \mathrm{~cm}$. Draw $\triangle \mathrm{ABC}$, if $\mathrm{AB}: \mathrm{XY}=3: 2 \quad$ (3 marks)
(4) Draw $\triangle \mathrm{ABC}$ with side $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$, and $\angle A B C=60^{\circ}$. Also, construct $\triangle X Y Z$ whose sides are $\frac{3}{4}$ of the corresponding sides of $\triangle X Y Z$.
(4 marks)
(5) $\quad \triangle \mathrm{PQR} \sim \triangle \mathrm{ABC}, \mathrm{PQ}=3 \mathrm{~cm}, \mathrm{QR}=4 \mathrm{~cm}, \mathrm{PR}=5 \mathrm{~cm}$. $\mathrm{A}(\triangle \mathrm{PQR}): \mathrm{A}(\triangle \mathrm{ABC})=1: 4$. Construct both triangles
(4 marks)
(6) $\triangle \mathrm{PQR} \sim \triangle \mathrm{PEF}, \mathrm{m} \angle \mathrm{P}=70^{\circ}, \mathrm{PQ}=5 \mathrm{~cm}, \mathrm{PR}=3.5 \mathrm{~cm}$. Construct $\triangle \mathrm{PEF}$, if $\mathrm{PQ}: \mathrm{PE}=5: 7 . \quad$ (4 marks)
(7) $\triangle \mathrm{PQR} \sim \triangle \mathrm{PAB}, \mathrm{m} \angle \mathrm{P}=60^{\circ}, \mathrm{PQ}=6 \mathrm{~cm}, \mathrm{PR}=4 \mathrm{~cm}$. Construct $\triangle \mathrm{PAB}$, if $\mathrm{PQ}: \mathrm{PA}=3: 2$. (4 marks)
(8) $\triangle \mathrm{AMT} \sim \triangle \mathrm{AHE}$, construct $\triangle \mathrm{AMT}$ such that $\mathrm{MA}=6.3 \mathrm{~cm}, \angle \mathrm{MAT}=120^{\circ}, \mathrm{AT}=4.9 \mathrm{~cm}$ and $\frac{\mathrm{MA}}{\mathrm{HA}}=\frac{7}{5}$, then construct $\triangle \mathrm{AHE}$.
(4 marks)

Based on Practice Set 4.2

(9) Draw a tangent to a circle of radius 3 cm and centre ' O ' at any point ' K ' on the circle. (3 marks)
(10) Draw a circle with centre ' P ' and radius 2.6 cm . Draw a chord AB of length 3.8 cm . Draw tangent to the circle through points A and B. (3 marks)
(11) Draw a circle with radius 3.4 cm . Draw tangent to the circle, passing through point B on the circle, without using centre.
(2 marks)
(12) Construct a circle with centre ' O^{\prime} and radius 4.3 cm . Draw a chord AB of length 5.6 cm . Construct the tangents to the circle at point A and B without using centre.
(3 marks)
(13) Draw a circle with centre M and diameter 6 cm . Draw a tangent to the circle from a point N at distance of 9 cm from the centre. (3 marks)
(14) Draw a circle with ' O ' as centre and radius 3.8 cm . Take two points P and Q such that $\angle P O Q=120^{\circ}$ Draw tangents at P and Q without using centre.
(3 marks)
(15) Draw a circle with ' O ' as centre and radius 4 cm . Take a point P at a distance of 7.5 cm from ' O^{\prime} '. Draw tangents to the circle through the point P .
(4 marks)

1-1(i) Pg 84	Pr.S.5.1-7 Pg 87	Pr.S.5.2-9 Pg 99	Pr. S. 5.3-3(ii) Pg 105	PS 5	Pg 94	PS 5		
Pr. S. 5.1-1(ii) Pg 84	Pr.S.5.1-8 Pg 87	Pr. S. 5.2-10 Pg 95	Pr. S. 5.3-3(iii) Pg 105	PS 5	Pg 93	PS 5	- 14	Pg 100
Pr. S. 5.1-1(iii) Pg 85	Pr. S. 5.2-1 Pg 92	Pr. S. 5.2-11 Pg 95	Pr. S. 5.3-3(iv) Pg 105	PS 5	5 Pg 86	PS 5	- 15	
Pr. S. 5.1-1(iv) Pg 85	Pr. S. 5.2-2(i) Pg 92	Pr. S. 5.2-12 Pg 96	Pr. S. 5.3-3(v) Pg 105	PS 5	- 6 (i) Pg 85	PS 5	16	
Pr. S. 5.1-1(v) Pg 85	Pr. S. 5.2-2(ii) Pg 92	Pr. S. 5.3-1(i) Pg 101	Pr. S. 5.3-3(vi) Pg 106	PS 5	- 6 (ii) Pg 85	PS 5	- 17	Pg 93
Pr. S. 5.1-1(vi) Pg 85	Pr. S. 5.2-2(iii) Pg 92	Pr. S. 5.3-1(ii) Pg 101	Pr. S. 5.3-4 Pg 107	PS 5	- 6 (iii) Pg 86	PS 5	18	Pg 109
Pr. S. 5.1-2 (i) Pg 103	Pr. S. 5.2-3 Pg 92	Pr. S. 5.3-1(iii) Pg 101	Pr. S. 5.3-5 Pg 107	PS 5	- $7 \quad \mathrm{Pg} 89$	PS 5	- 19	Pg 97
Pr. S. 5.1-2(ii) Pg 103	Pr. S. 5.2-4 Pg 94	Pr. S. 5.3-2(i) Pg 102	Pr. S. 5.3-6 Pg 107	PS 5	- 8 (i) Pg 87	PS 5	- 20	
Pr. S. 5.1-2(iii) Pg 104	Pr.S.5.2-5 Pg 93	Pr. S. 5.3-2(ii) Pg 102	Pr. S. 5.3-7 Pg 108	PS 5	- 8 (ii) Pg 88	PS 5	21	
Pr. S. 5.1-2(iv) Pg 104	Pr.S.5.2-6 Pg 94	Pr. S. 5.3-2(iii) Pg 103	Pr. S. 5.3-8 Pg 108	PS 5	- 8 (iii) Pg 88	PS 5	22	Pg 110
Pr.S.5.1-3 Pg 86	Pr. S. 5.2-7(i) Pg 99	Pr. S. 5.3-2(iv) Pg 103	PS 5-1 Pg 110	PS 5	$9 \quad \mathrm{Pg} 108$			
Pr.S.5.1-4 Pg 86	Pr. S. 5.2-7(ii) Pg 99	Pr. S. 5.3-2(v) Pg 103	PS 5-2(i) Pg 106	PS 5	- 10 Pg 108			
Pr.S.5.1-5 Pg 95	Pr. S. 5.2-7(iii) Pg 99	Pr. S. 5.3-2(vi) Pg 103	PS 5 - 2(ii) Pg 106	PS 5	- 11 Pg 108			
Pr.S.5.1-6 Pg 87	Pr. S. 5.2-8 Pg 99	Pr. S. 5.3-3(i) Pg 104	PS 5 - 2(iii) Pg 106	PS 5	- 12 Pg 109			

Points to Remember:

(1) To find distance any two points on an axis.
(i) To find distance between two points on X -axis.

In the above figure, points $\mathrm{A}\left(x_{1}, 0\right)$ and $\mathrm{B}\left(x_{2}, 0\right)$ are on X -axis such that, $x_{2}>x_{1}$
$\therefore \mathrm{d}(\mathrm{A}, \mathrm{B})=x_{2}-x_{1}$
(ii) To find distance between two points on Y-axis.

In the above figure, points $\mathrm{P}\left(0, y_{1}\right)$ and $\mathrm{Q}\left(0, y_{2}\right)$ are on Y-axis such that, $y_{2}>y_{1}$
$\therefore \mathrm{d}(\mathrm{P}, \mathrm{Q})=y_{2}-y_{1}$
(2) To find the distance between two points if the segment joining these point is parallel to any axis in the $X Y$ plane.
(i)

In the figure, seg $A B$ is parallel to X -axis.
$\therefore y$ co-ordinates of points A and B are equal.
Draw seg AL and seg BM perpendicular to X-axis.
$\therefore \quad \square \mathrm{ABML}$ is a rectangle.
$\therefore \mathrm{AB}=\mathrm{LM}$
But, $\mathrm{LM}=x_{2}-x_{1}$
$\mathrm{d}(\mathrm{A}, \mathrm{B})=x_{2}-x_{1}$
(ii)

In the figure, seg PQ is parallel to Y -axis.
$\therefore \quad x$ co-ordinates of points P and Q are equal.
Draw seg PR and seg QS perpendicular to Y -axis.
$\therefore \quad \square \mathrm{ABML}$ is a rectangle.
$\therefore P Q=R S$

$$
\text { But, RS }=y_{2}-y_{1}
$$

$$
\mathrm{d}(\mathrm{P}, \mathrm{Q})=y_{2}-y_{1}
$$

- Distance Formula :

If $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are two points, then distance between these points is given by the following formula :
$\mathrm{d}(\mathrm{A}, \mathrm{B})=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
or
$\mathrm{d}(\mathrm{A}, \mathrm{B})=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
Note : If $\mathrm{P}(x, y)$ is a point, then its distance from the origin is given by
$\mathrm{d}(\mathrm{O}, \mathrm{P})=\sqrt{x^{2}+y^{2}}$

Activity - I

(Textbook page no. 102)
In the figure given below, seg $\mathrm{AB} \| y$ - axis, $\operatorname{seg} \mathrm{CB} \| x$ - axis.
Coordinates of points A and C are given.
To find AC, fill in the following boxes

According to Pythagoras theorem,
$(\mathrm{AB})^{2}+(\mathrm{BC})^{2}=\mathrm{AC}^{2}$
First find coordinates of B to find lengths $A B$ and BC.
$C B \| X$ - axis $\therefore y$ coordinate of $B=2$
BA \| $\mid \mathrm{Y}$ - axis $\therefore x$ coordinate of $\mathrm{B}=2$

$$
\begin{array}{ll}
\therefore & \mathrm{AB}=\boxed{3}-\boxed{2}=\square \\
& B C=2 \\
\therefore & A C^{2}=(1)^{2}+4^{2}=1+2 \\
\therefore & A C=\sqrt{17}
\end{array}
$$

MASTER KEY QUESTION SET - 5

Practice Set - 5.1 (Textbook Page No. 107)

(1) Find the distance between each of the following pairs of the points.
(2 marks each)
(i) $\quad \mathrm{A}(2,3), \mathrm{B}(4,1)$

Solution :
$\mathrm{A}(2,3)=\left(x_{1}, y_{1}\right)$
$\mathrm{B}(4,1)=\left(x_{2}, y_{2}\right)$
By distance formula,

$$
\begin{aligned}
\mathrm{d}(\mathrm{~A}, \mathrm{~B}) & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(4-2)^{2}+(1-3)^{2}} \\
& =\sqrt{(2)^{2}+(-2)^{2}} \\
& =\sqrt{4+4} \\
& =\sqrt{8} \\
& =\sqrt{4 \times 2} \\
\therefore \quad \mathbf{d}(\mathbf{A}, \mathbf{B}) & =2 \sqrt{2} \text { units }
\end{aligned}
$$

(ii) $\quad P(-5,7), Q(-1,3)$

Solution :

$$
\begin{aligned}
& \mathrm{P}(-5,7)=\left(x_{1}, y_{1}\right) \\
& \mathrm{Q}(-1,3)=\left(x_{2}, y_{2}\right)
\end{aligned}
$$

By distance formula,

$$
\begin{aligned}
\mathrm{d}(\mathrm{P}, \mathrm{Q}) & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{[-1-(-5)]^{2}+(3-7)^{2}} \\
& =\sqrt{(-1+5)^{2}+(-4)^{2}} \\
& =\sqrt{(4)^{2}+16} \\
& =\sqrt{16+16} \\
& =\sqrt{32} \\
& =\sqrt{16 \times 2} \\
\therefore \quad \mathrm{~d}(\mathbf{P}, \mathrm{Q}) & =4 \sqrt{2} \text { units }
\end{aligned}
$$

(iii) $\mathrm{R}(0,-3), \mathrm{S}\left(0, \frac{5}{2}\right)$

Solution :

$$
\begin{aligned}
& \mathrm{R}(0,-3)=\left(x_{1}, y_{1}\right) \\
& \mathrm{S}\left(0, \frac{5}{2}\right)=\left(x_{2}, y_{2}\right)
\end{aligned}
$$

By distance formula,

$$
\begin{aligned}
\mathrm{d}(\mathrm{R}, \mathrm{~S}) & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(0-0)^{2}+\left(\frac{5}{2}-(-3)\right)^{2}} \\
& =\sqrt{(0)^{2}+\left(\frac{5}{2}+3\right)^{2}} \\
& =\sqrt{0+\left(\frac{11}{2}\right)^{2}} \\
& =\sqrt{\frac{121}{4}} \\
\therefore \mathrm{~d}(\mathbf{R}, \mathrm{~S}) & =\frac{\mathbf{1 1}}{\mathbf{2}} \text { units }
\end{aligned}
$$

(iv) $\mathrm{L}(5,-8), \mathrm{M}(-7,-3)$

Solution :

$$
\begin{aligned}
& \mathrm{L}(5,-8)=\left(x_{1}, y_{1}\right) \\
& \mathrm{M}(-7,-3)=\left(x_{2}, y_{2}\right)
\end{aligned}
$$

By distance formula,

$$
\begin{aligned}
\mathrm{d}(\mathrm{~L}, \mathrm{M}) & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-7-5)^{2}+[-3-(-8)]^{2}} \\
& =\sqrt{(-12)^{2}+(-3+8)^{2}} \\
& =\sqrt{(-12)^{2}+5^{2}} \\
& =\sqrt{144+25} \\
& =\sqrt{169}
\end{aligned}
$$

$\therefore \mathrm{d}(\mathrm{L}, \mathrm{M})=13$ units
(v) $T(-3,6), R(9,-10)$

Solution :

$$
\begin{aligned}
& \mathrm{T}(-3,6)=\left(x_{1}, y_{1}\right) \\
& \mathrm{R}(9,-10)=\left(x_{2}, y_{2}\right)
\end{aligned}
$$

By distance formula,

$$
\begin{aligned}
\mathrm{d}(\mathrm{~T}, \mathrm{R}) & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{[9-(-3)]^{2}+(-10-6)^{2}} \\
& =\sqrt{(9+3)^{2}+(-16)^{2}} \\
& =\sqrt{(12)^{2}+256}
\end{aligned}
$$

$$
\begin{gathered}
=\sqrt{144+256} \\
=\sqrt{400}
\end{gathered}
$$

$\therefore \mathrm{d}(\mathrm{T}, \mathrm{R})=20$ units
(vi) $\mathrm{W}\left(\frac{-7}{2}, 4\right), \mathrm{X}(11,4)$

Solution :
$\mathrm{W}\left(\frac{-7}{2}, 4\right)=\left(x_{1}, y_{1}\right)$
$X(11,4)=\left(x_{2}, y_{2}\right)$
By distance formula,

$$
\begin{aligned}
\mathrm{d}(\mathrm{~W}, \mathrm{X}) & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{\left[11-\left(\frac{-7}{2}\right)\right]^{2}+(4-4)^{2}} \\
& =\sqrt{\left(11+\frac{7}{2}\right)^{2}+0^{2}} \\
& =\sqrt{\left(\frac{22+7}{2}\right)^{2}+0} \\
& =\sqrt{\left(\frac{29}{2}\right)^{2}} \\
\therefore \mathrm{~d}(\mathbf{W}, \mathbf{X}) & =\frac{29}{2} \text { units }
\end{aligned}
$$

Problem Set - 5 (Textbook Pg No. 122)

(6) Find the distance between the following pairs of points.
(2 marks each)
(i) $\mathrm{A}(a, 0), \mathrm{B}(0, a)$

Solution:
Let $\mathrm{A}(a, 0)=\left(x_{1}, y_{1}\right)$
$\mathrm{B}(0, a)=\left(x_{2}, y_{2}\right)$
By distance formula,

$$
\begin{aligned}
\mathrm{d}(\mathrm{~A}, \mathrm{~B})= & \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(0-a)^{2}+(a-0)^{2}} \\
& =\sqrt{(-a)^{2}+a^{2}} \\
& =\sqrt{a^{2}+a^{2}} \\
& =\sqrt{2 a^{2}} \\
\therefore \quad \mathrm{~d}(\mathbf{A}, \mathbf{B}) & =\sqrt{2} a \text { units }
\end{aligned}
$$

(ii) $\quad \mathrm{P}(-6,-3), \mathrm{Q}(-1,9)$

Solution :

Let $\mathrm{P}(-6,-3)=\left(x_{1}, y_{1}\right)$
$\mathrm{Q}(-1,9)=\left(x_{2}, y_{2}\right)$
By distance formula,

$$
\begin{aligned}
\mathrm{d}(\mathrm{P}, \mathrm{Q}) & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{[-1-(-6)]^{2}+[-9-(-3)]^{2}} \\
& =\sqrt{(-1+6)^{2}+(9+3)^{2}} \\
& =\sqrt{(5)^{2}+(12)^{2}} \\
& =\sqrt{25+144} \\
& =\sqrt{169} \\
\therefore & \mathbf{d}(\mathbf{P}, \mathbf{Q})=13 \text { units }
\end{aligned}
$$

(iii) $\mathrm{R}(-3 a, a), \mathrm{S}(a,-2 a)$

Solution :

$$
\begin{aligned}
\text { Let } \mathrm{R}(-3 a, a) & =\left(x_{1}, y_{1}\right) \\
\mathrm{S}(a,-2 a) & =\left(x_{2}, y_{2}\right)
\end{aligned}
$$

By distance formula,

$$
\begin{aligned}
\mathrm{d}(\mathrm{R}, \mathrm{~S}) & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{[a-(-3 a)]^{2}+(-2 a-a)^{2}} \\
& =\sqrt{(a+3 a)^{2}+(-3 a)^{2}} \\
& =\sqrt{(4 a)^{2}+(-3 a)^{2}} \\
& =\sqrt{16 a^{2}+9 a^{2}} \\
& =\sqrt{25 a^{2}}
\end{aligned}
$$

$\therefore \quad \mathrm{d}(\mathrm{R}, \mathrm{S})=5 a$ units

Practice Set - 5.1 (Textbook Page No. 107)

(3) Find the point on X -axis which is equidistant from $A(-3,4)$ and $B(1,-4)$.
(2 marks)

Solution :

Let $\mathrm{P}(x, 0)$ be a point on X axis which is equidistant from $\mathrm{A}(-3,4)$ and $\mathrm{B}(1,-4)$.
$\therefore \quad \mathrm{d}(\mathrm{P}, \mathrm{A})=\mathrm{d}(\mathrm{P}, \mathrm{B})$
By distance formula,

$$
\begin{aligned}
& & \sqrt{[x-(-3)]^{2}+(0-4)^{2}} & =\sqrt{(x-1)^{2}+[0-(-4)]^{2}} \\
& \therefore & \sqrt{(x+3)^{2}+(-4)^{2}} & =\sqrt{(x-1)^{2}+(4)^{2}}
\end{aligned}
$$

Squaring both the sides we get,

$$
\begin{array}{lllc}
& (x+3)^{2}+16 & = & (x-1)^{2}+16 \\
\therefore & x^{2}+6 x+9 & = & x^{2}-2 x+1 \\
\therefore & x^{2}+6 x-x^{2}+2 x & = & 1-9 \\
\therefore & 8 x & = & -8 \\
\therefore & x= & -1 &
\end{array}
$$

$\therefore \quad P(-1,0)$ is the required point.

Problem Set-5 (Textbook Pg No. 122)

(5) Find a point on X-axis which is equidistant from $P(2,-5)$ and $Q(-2,9)$.
(2 marks)

Solution :

Let $\mathrm{A}(a, 0)$ be a point equidistant from $\mathrm{P}(2,-5)$ and $Q(-2,9)$.
$\therefore \quad \mathrm{d}(\mathrm{P}, \mathrm{A})=\mathrm{d}(\mathrm{Q}, \mathrm{A})$
Using distance formula,

$$
\sqrt{(a-2)^{2}+[0-(-5)]^{2}}=\sqrt{[a-(-2)]^{2}+(0-9)^{2}}
$$

Squaring both the sides we get,

$$
\begin{array}{lclc}
& (a-2)^{2}+5^{2} & = & (a+2)^{2}+(-9)^{2} \\
\therefore & a^{2}-4 a+4+25 & = & a^{2}+4 a+4+81 \\
\therefore & a^{2}-4 a-a^{2}-4 a & = & 81-25 \\
\therefore & -8 a & = & 56 \\
\therefore & a & = & \frac{56}{-8} \\
\therefore & a & & -7
\end{array}
$$

$(-7,0)$ is a point on X-axis equidistant
$\therefore \quad$ from $P(2,-5)$ and $Q(-2,9)$.

Practice Set - 5.1 (Textbook Page No. 107)

(4) Verify that points $P(-2,2), Q(2,2)$ and $R(2,7)$ are vertices of a right angled triangle.
(3 marks)
Solution :
$P(-2,2), Q(2,2)$ and $R(2,7)$ be the vertices of a triangle
Using distance formula,

$$
\begin{aligned}
\mathrm{d}(\mathrm{P}, \mathrm{Q}) & =\sqrt{(-2-2)^{2}+(2-2)^{2}} \\
& =\sqrt{(-4)^{2}+0^{2}} \\
& =\sqrt{16} \\
\therefore \quad \mathrm{~d}(\mathrm{P}, \mathrm{Q}) & =4 \text { units } \\
\text { i.e. } \mathrm{PQ} & =4 \text { units } \\
\mathrm{d}(\mathrm{Q}, \mathrm{R}) & =\sqrt{(2-2)^{2}+(2-7)^{2}} \\
& =\sqrt{0^{2}+(-5)^{2}} \\
\mathrm{~d}(\mathrm{Q}, \mathrm{R}) & =\sqrt{25} \\
\therefore \quad \mathrm{QR} & =5 \text { units } \\
\mathrm{d}(\mathrm{P}, \mathrm{R}) & =\sqrt{(-2-2)^{2}+(2-7)^{2}} \\
& =\sqrt{(-4)^{2}+(-5)^{2}} \\
& =\sqrt{16+25} \\
\therefore \quad \mathrm{~d}(\mathrm{P}, \mathrm{R}) & =\sqrt{41} \text { units } \\
\text { i.e. PR } & =\sqrt{41} \text { units }
\end{aligned}
$$

$\mathrm{PR}^{2}=41$
$\mathrm{PQ}^{2}+\mathrm{QR}^{2}=4^{2}+5^{2}$
$\therefore \mathrm{PQ}^{2}+\mathrm{QR}^{2}=16+25=41 \ldots$ (ii)
$\therefore \quad \mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}$
...[From (i) and (ii)]
$\therefore \quad \triangle \mathrm{PQR}$ is a right angled triangle
...(Converse of Pythagoras theorem)
(6) $\quad A(-4,-7), B(-1,2), C(8,5)$ and $D(5,-4)$ are the vertices of rhombus $A B C D$.
(3 marks)

Solution :

$\mathrm{A}(-4,-7), \mathrm{B}(-1,2), \mathrm{C}(8,5)$ and $\mathrm{D}(5,-4)$ are the vertical it a quadrilateral
By distance formula,

$$
\begin{align*}
\mathrm{d}(\mathrm{~A}, \mathrm{~B}) & =\sqrt{[-4-(-1)]^{2}+(-7-2)^{2}} \\
& =\sqrt{(-3)^{2}+(-9)^{2}} \\
& =\sqrt{9+81} \\
\therefore \mathrm{~d}(\mathrm{~A}, \mathrm{~B}) & =\sqrt{90} \text { units } \ldots(\mathrm{i}) \\
\mathrm{d}(\mathrm{~B}, \mathrm{C}) & =\sqrt{(-1-8)^{2}+(2-5)^{2}} \\
& =\sqrt{(-9)^{2}+(-3)^{2}} \\
& =\sqrt{81+9} \\
\therefore \quad \mathrm{~d}(\mathrm{~B}, \mathrm{C}) & =\sqrt{90} \text { units } \ldots(\mathrm{ii}) \\
\mathrm{d}(\mathrm{C}, \mathrm{D}) & =\sqrt{(8-5)^{2}+[5-(-4)]^{2}} \\
& =\sqrt{(3)^{2}+(5+4)^{2}} \\
& =\sqrt{9+81} \\
\therefore \quad \mathrm{~d}(\mathrm{C}, \mathrm{D}) & =\sqrt{90} \text { units } \ldots(\mathrm{iii}) \\
\mathrm{d}(\mathrm{~A}, \mathrm{D}) & =\sqrt{(-4-5)^{2}+[-7-(-4)]^{2}} \\
& =\sqrt{(-9)^{2}+(-3)^{2}} \tag{iv}\\
& =\sqrt{81+9}
\end{align*}
$$

$\therefore \mathrm{d}(\mathrm{A}, \mathrm{D})=\sqrt{90}$ units
$\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}$
...[From (i), (ii), (iii) and (iv)]
$\therefore \quad \square \mathrm{ABCD}$ is a rhombus. ...(By Definition)
(7) Find x if distance between points $\mathrm{L}(x, 7)$ and $\mathbf{M}(1,15)$ is 10.
(2 marks)

Solution :

$\mathrm{L}(x, 7)$ and $\mathrm{M}(1,15)$
By distance formula,

$$
\begin{aligned}
\mathrm{d}(\mathrm{~L}, \mathrm{M}) & =\sqrt{(x-1)^{2}+(7-15)^{2}} \\
\therefore \quad 10 & =\sqrt{(x-1)^{2}+(-8)^{2}}
\end{aligned}
$$

Squaring both the sides we get,

$$
100=(x-1)^{2}+64
$$

$\therefore 100-64=(x-1)^{2}$
$\therefore(x-1)^{2}=36$
$\therefore x-1= \pm 6 \quad$...(Taking square roots)
$\therefore x-1=6$ or $x-1=-6$
$\therefore x=6+1$ or $x=-6+1$
$\therefore x=7 \quad$ or $\quad x=-5$
$\therefore x=7$ or $x=-5$
(8) Show that the points $A(1,2), B(1,6)$ and $C(1+2 \sqrt{3}, 4)$ are the vertices of an equilateral triangle.
(3 marks)
Solution :
$A(1,2), \quad B(1,6)$ and $C(1+2 \sqrt{3}, 4) \quad$ be the vetices of triangle
Using distance formula,

$$
\begin{align*}
\mathrm{d}(\mathrm{~A}, \mathrm{~B}) & =\sqrt{(1-1)^{2}+(2-6)^{2}} \\
& =\sqrt{0^{2}+(-4)^{2}} \\
& =\sqrt{0+16} \\
& =\sqrt{16} \\
\therefore \quad \mathrm{~d}(\mathrm{~A}, \mathrm{~B}) & =4 \text { units } \quad \ldots(\mathrm{i}) \\
\mathrm{d}(\mathrm{~B}, \mathrm{C}) & =\sqrt{(1+2 \sqrt{3}-1)^{2}+(4-6)^{2}} \\
& =\sqrt{(2 \sqrt{3})^{2}+(-2)^{2}} \\
& =\sqrt{12+4} \\
\therefore \quad \mathrm{~d}(\mathrm{~B}, \mathrm{C}) & =\sqrt{16} \\
\mathrm{~d}(\mathrm{~B}, \mathrm{C}) & =4 \text { units } \quad \ldots(\mathrm{ii}) \\
\mathrm{d}(\mathrm{~A}, \mathrm{C}) & =\sqrt{(1+2 \sqrt{3}-1)^{2}+(4-2)^{2}} \\
& =\sqrt{(2 \sqrt{3})^{2}+(2)^{2}} \\
& =\sqrt{12+4} \\
& =\sqrt{16} \\
\therefore \quad \mathrm{~d}(\mathrm{~A}, \mathrm{C}) & =4 \text { units } \quad \ldots \text { (iii) } \tag{iii}\\
\therefore \quad \mathrm{AB}=\mathrm{BC} & =\mathrm{AC}
\end{align*}
$$

$\therefore \quad \triangle \mathrm{ABC}$ is an equilateral triangle
...(By Definition)

Problem Set - 5 (Textbook Pg No. 123)

(8) In the following examples, can the segment joining the given points form a triangle? If triangle is formed, state the type of the triagle cosidering sides of the triangle. (3 marks each)
(i) $\mathrm{L}(6,4), \mathrm{M}(-5,-3), \mathrm{N}(-6,8)$

Solution :

Let $\mathrm{L}(6,4), \mathrm{M}(-5,-3), \mathrm{N}(-6,8) \quad$ be the given points

$$
\begin{align*}
\mathrm{d}(\mathrm{~L}, \mathrm{M}) & =\sqrt{[6-(-5)]^{2}+[4-(-3)]^{2}} \\
& =\sqrt{(6+5)^{2}+(4+3)^{2}} \\
& =\sqrt{11^{2}+7^{2}} \\
& =\sqrt{121+49} \\
\therefore \mathrm{~d}(\mathrm{~L}, \mathrm{M}) & =\sqrt{170} \text { units } \quad \ldots(\mathrm{i}) \tag{i}\\
\mathrm{d}(\mathrm{M}, \mathrm{~N}) & =\sqrt{[-6-(-5)]^{2}+[8-(-3)]^{2}} \\
& =\sqrt{(-6+5)^{2}+(8+3)^{2}} \\
& =\sqrt{(-1)^{2}+(11)^{2}} \\
\therefore \mathrm{~d}(\mathrm{M}, \mathrm{~N}) & =\sqrt{122} \text { units } \quad \ldots(\mathrm{ii}) \\
\mathrm{d}(\mathrm{~L}, \mathrm{~N}) & =\sqrt{[6-(-6)]^{2}+(4-8)^{2}} \\
& =\sqrt{(6+6)^{2}+(-4)^{2}} \\
& =\sqrt{12^{2}+16^{2}} \\
& =\sqrt{144+16} \\
\therefore \mathrm{~d}(\mathrm{~L}, \mathrm{~N}) & =\sqrt{160} \text { units } \quad \ldots(\mathrm{iii}) \tag{iii}\\
\therefore \mathrm{d}(\mathrm{~L}, \mathrm{M}) & \neq \mathrm{d}(\mathrm{~L}, \mathrm{~N})+\mathrm{d}(\mathrm{M}, \mathrm{~N})
\end{align*}
$$

$\therefore \quad$ Points L, M and N are non-collinear points.
\therefore We can construct a triangle using above points.
As none of the sides of triangle are equal, it is a scalene triangle.

(ii) $\quad \mathrm{P}(-2,-6), \mathrm{Q}(-4,-2), \mathrm{R}(-5,0)$

Solution :

Let $\mathrm{P}(-2,-6), \mathrm{Q}(-4,-2), \mathrm{R}(-5,0) \quad$ be the given points
Using distance formula,

$$
\begin{align*}
\mathrm{d}(\mathrm{P}, \mathrm{Q}) & =\sqrt{[-4-(-2)]^{2}+[-2-(-6)]^{2}} \\
& =\sqrt{(-4+2)^{2}+(-2+6)^{2}} \\
& =\sqrt{(-2)^{2}+(4)^{2}} \\
& =\sqrt{4+16} \\
& =\sqrt{20} \\
\therefore \quad \mathrm{~d}(\mathrm{P}, \mathrm{Q}) & =2 \sqrt{5} \text { units } \quad \ldots(\mathrm{i}) \tag{i}\\
\mathrm{d}(\mathrm{Q}, \mathrm{R}) & =\sqrt{[-5-(-4)]^{2}+[0-(-2)]^{2}} \\
& =\sqrt{(-5+4)^{2}+(0+2)^{2}} \\
& =\sqrt{(-1)^{2}+(2)^{2}} \\
& =\sqrt{1+4} \\
\therefore \quad \mathrm{~d}(\mathrm{Q}, \mathrm{R}) & =\sqrt{5} \text { units } \quad \ldots(\mathrm{ii}) \tag{ii}\\
\mathrm{d}(\mathrm{P}, \mathrm{R}) & =\sqrt{[-2-(-5)]^{2}+(-6-0)^{2}}
\end{align*}
$$

$$
\begin{align*}
& =\sqrt{(-2+5)^{2}+(-6)^{2}} \\
& =\sqrt{(3)^{2}+36} \\
& =\sqrt{9+36} \tag{iii}
\end{align*}
$$

$\mathrm{d}(\mathrm{P}, \mathrm{R})=\sqrt{45}$ units
$\therefore \mathrm{d}(\mathrm{P}, \mathrm{R}) \neq \mathrm{d}(\mathrm{P}, \mathrm{Q})+\mathrm{d}(\mathrm{Q}, \mathrm{R})$
$\therefore \quad$ Points P, Q and R are non-collinear points.
\therefore We can construct a triangle using above points.
As none of the sides of triangle are equal, triangle is a scalene triangle.
(iii) A $(\sqrt{2}, \sqrt{2}), B(-\sqrt{2},-\sqrt{2}), C(-\sqrt{6}, \sqrt{6})$

Solution :

Let $A(\sqrt{2}, \sqrt{2}), B(-\sqrt{2},-\sqrt{2}), C(-\sqrt{6}, \sqrt{6})$
be the given points
By distance formula,

$$
\begin{align*}
\mathrm{d}(\mathrm{~A}, \mathrm{~B}) & =\sqrt{[\sqrt{2}-(-\sqrt{2})]^{2}+[\sqrt{2}-(-\sqrt{2})]^{2}} \\
& =\sqrt{[\sqrt{2}+\sqrt{2}]^{2}+[\sqrt{2}+\sqrt{2}]^{2}} \\
& =\sqrt{(2 \sqrt{2})^{2}+(2 \sqrt{2})^{2}} \\
& =\sqrt{8+8} \\
& =\sqrt{16} \\
\therefore \mathrm{~d}(\mathrm{~A}, \mathrm{~B}) & =4 \text { units } \quad \ldots(\mathrm{i}) \tag{i}\\
\mathrm{d}(\mathrm{~B}, \mathrm{C}) & =\sqrt{[-\sqrt{2}-(-\sqrt{6})]^{2}+[-\sqrt{2}-\sqrt{6}]^{2}} \\
& =\sqrt{(-\sqrt{2}+\sqrt{6})^{2}+(-1)^{2}(\sqrt{2}+\sqrt{6})^{2}} \\
& =\sqrt{2-2 \sqrt{12}+6+2+2 \sqrt{12}+6} \\
& =\sqrt{16} \\
\therefore \mathrm{~d}(\mathrm{~B}, \mathrm{C}) & =4 \text { units } \quad \ldots(\mathrm{ii}) \tag{ii}\\
\mathrm{d}(\mathrm{~A}, \mathrm{C}) & =\sqrt{[\sqrt{2}-(-\sqrt{6})]^{2}+(\sqrt{2}-\sqrt{6})^{2}} \\
& =\sqrt{(\sqrt{2}+\sqrt{6})^{2}+(\sqrt{2}-\sqrt{6})^{2}} \\
& =\sqrt{2+2 \sqrt{12}+6+2-2 \sqrt{12}+6} \\
& =\sqrt{16}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{d}(\mathrm{~A}, \mathrm{C})=4 \text { units } \tag{iii}
\end{equation*}
$$

$\therefore \mathrm{d}(\mathrm{AB}) \neq \mathrm{d}(\mathrm{BC})+\mathrm{d}(\mathrm{AC})$
\therefore Points A, B and C are non-collinear points.
\therefore We can construct a triangle using above three points.
$A B=B C=A C \quad . . .[F r o m$ (i), (ii) and (iii)
$\therefore \quad \triangle \mathrm{ABC}$ is an equilateral triangle.

Problem Set - 5.1 (Textbook Pg No. 122)

(15) Show that $A(4,-1), B(6,0), C(7,-2)$ and $D(5,-3)$ are vertices of a square.
(4 marks)

Solution :

$A(4,-1), B(6,0), C(7,-2)$ and $D(5,-3)$ be the vertices of a quadrilateral
Using distance formula,

$$
\begin{align*}
& \mathrm{d}(\mathrm{~A}, \mathrm{~B})=\sqrt{(4-6)^{2}+(-1-0)^{2}} \\
& =\sqrt{(-2)^{2}+(-1)^{2}} \\
& =\sqrt{4+1} \\
& \therefore \mathrm{~d}(\mathrm{~A}, \mathrm{~B})=\sqrt{5} \text { units } \\
& d(B, C)=\sqrt{(6-7)^{2}+[0-(-2)]^{2}} \\
& =\sqrt{(-1)^{2}+(2)^{2}} \\
& =\sqrt{1+4} \\
& \therefore \mathrm{~d}(\mathrm{~B}, \mathrm{C})=\sqrt{5} \text { units } \\
& d(C, D)=\sqrt{(7-5)^{2}+[-2-(-3)]^{2}} \\
& =\sqrt{(2)^{2}+(-2+3)^{2}} \\
& =\sqrt{4+(1)^{2}} \\
& =\sqrt{4+1} \\
& \therefore \mathrm{~d}(\mathrm{C}, \mathrm{D})=\sqrt{5} \text { units } \tag{iii}\\
& d(A, D)=\sqrt{(4-5)^{2}+[-1-(-3)]^{2}} \\
& =\sqrt{(-1)^{2}+(-1+3)^{2}} \\
& =\sqrt{1+(2)^{2}} \\
& =\sqrt{1+4} \\
& \therefore \mathrm{~d}(\mathrm{~A}, \mathrm{D})=\sqrt{5} \text { units } \tag{iv}\\
& \text { In } \square \mathrm{ABCD} \text {, }
\end{align*}
$$

$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}$...[From (i), (ii), (iii) and (iv)]
$\therefore \quad \square \mathrm{ABCD}$ is a rhombus $\quad . .(\mathrm{v})$ [Definition]
Now, we shall find length of each diagonal.
Using distance formula,

$$
\begin{align*}
\mathrm{d}(\mathrm{~A}, \mathrm{C}) & =\sqrt{(4-7)^{2}+[-1-(-2)]^{2}} \\
& =\sqrt{(-3)^{2}+(-1+2)^{2}} \\
& =\sqrt{9+1} \\
& =\sqrt{10} \\
\therefore \quad \mathrm{~d}(\mathrm{~A}, \mathrm{C}) & =\sqrt{10} \text { units } \quad . .(\mathrm{vi}) \tag{vi}\\
\mathrm{d}(\mathrm{~B}, \mathrm{D}) & =\sqrt{(6-5)^{2}+[0-(-3)]^{2}}
\end{align*}
$$

$$
\begin{align*}
&=\sqrt{(1)^{2}+(0+3)^{2}} \\
&=\sqrt{1+9} \\
&=\sqrt{10} \\
& \therefore \quad \mathrm{~d}(\mathrm{~B}, \mathrm{D})=\sqrt{10} \text { units } \ldots(\text { vii) } \tag{vii}\\
& \text { In rhombus ABCD, } \\
& \text { diagonal } \mathrm{AC} \cong \text { diagonal BD } \\
& \ldots[\text { From (v), (vi) and (vii)] }
\end{align*}
$$

$\therefore \quad \square \mathrm{ABCD}$ is a square

...(A rhombus is a square if its diagonals are congruent)
(7) Find the coordinates of circumcentre of a triangle whose vertices are $(-3,1),(0,-2)$ and $(1,3)$

Solution :

Let $\mathrm{A}(-3,1), \mathrm{B}(0,-2)$ and $\mathrm{C}(1,3)$
and circum centre be $p(h, k)$ be the vertices of a triangle
$\therefore \quad \mathrm{PA}=\mathrm{PB}=\mathrm{PC}$
$\mathrm{PA}=\mathrm{PB}$
(Radii of same circle)
...[From (i)]

Using distance formula,

$$
\begin{aligned}
& \sqrt{[h-(-3)]^{2}+(k-1)^{2}}
\end{aligned}=\sqrt{(h-0)^{2}[k-(-2)]^{2}} .
$$

Squaring both the sides we get,

$$
\begin{array}{rlll}
& & (h+3)^{2}+(k-1)^{2} & =h^{2}+(k+2)^{2} \\
\therefore & h^{2}+6 h+9+k^{2}-2 k+1 & =h^{2}+k^{2}+4 k+4 \\
\therefore & & 6 h-2 k & =4-9-1 \\
\therefore & 6 h-6 k & =-6 \\
\therefore & h-k & =-1 \tag{ii}
\end{array}
$$

...(Dividing both sides by 6)

$$
\mathrm{PB}=\mathrm{PC}
$$

...[From (i)]
Using distance formula,

$$
\begin{aligned}
& \sqrt{(h-0)^{2}+[k-(-2)]^{2}} & =\sqrt{(h-1)^{2}+(k-3)^{2}} \\
\therefore \quad & \sqrt{h^{2}+(k+2)^{2}} & =\sqrt{(h-1)^{2}+(k-3)^{2}}
\end{aligned}
$$

Squaring both the sides we get,

$$
\begin{array}{lcl}
\therefore & h^{2}+(k+2)^{2} & =(h-1)^{2}+(k-3)^{2} \\
\therefore & h^{2}+k^{2}+4 k+4 & =h^{2}-2 h+1+k^{2}-6 k+9 \\
\therefore & h^{2}+k^{2}+4 k-h^{2}+2 h-k^{2}+6 k & =10-4 \\
\therefore & 2 h+10 k & =6
\end{array}
$$

$$
\begin{equation*}
\therefore \quad h+5 k=3 \tag{iiii}
\end{equation*}
$$

(Dividing both sides by 2)
Subtracting (ii) from (iii),
$h+5 k=3$
$h-k=-1$
(-)

$$
\begin{gathered}
(+) \quad(+) \\
\hline 6 k=4
\end{gathered}
$$

$$
\therefore \quad k=\frac{4}{6}
$$

$$
\therefore \quad k=\frac{2}{3}
$$

Substituting $k=\frac{2}{3}$ in equation (i)

$$
\begin{array}{ll}
& h-\frac{2}{3}=-1 \\
\therefore & h=-1+\frac{2}{3} \\
\therefore & h=\frac{-3+2}{3} \\
\therefore & h=\frac{-1}{3} \\
\therefore & \mathbf{P}\left(\frac{-\mathbf{1}}{\mathbf{3}}, \frac{\mathbf{2}}{\mathbf{3}}\right) \text { is the circumcentre of } \triangle \mathrm{ABC}
\end{array}
$$

(16) Find the co-ordinates of circumcentre and radius of a circumcircle of $\triangle A B C$, if $A(7,1), B(3,5)$ and $C(2,0)$ are given.
(4 marks)
Solution :

Let $\mathrm{P}(h, k)$ be the circumcentre of ABC .
$\mathrm{PA}=\mathrm{PB}=\mathrm{PC}$
...(i) (Radii of same circle)
$\therefore \quad \mathrm{PA}=\mathrm{PB}$
...[From (i)]
Using distance formula,

$$
\sqrt{(h-7)^{2}+(k-1)^{2}} \quad=\sqrt{(h-3)^{2}+(k-5)^{2}}
$$

Squaring both the sides we get,

$$
\begin{array}{cc}
\therefore & (h-7)^{2}+(k-1)^{2} \quad=(h-3)^{2}+(k-5)^{2} \\
\therefore & h^{2}-14 h+49+k^{2}-2 k+1 \\
& =h^{2}-6 h+9+k^{2}-10 k+25 \\
\therefore & h^{2}-14 h+k^{2}-2 k-h^{2}+6 h-k^{2}+10 k \\
& =25+9-49-1 \\
\therefore & -8 h+8 k=-16 \\
\therefore & h-k=2 \tag{ii}
\end{array}
$$

...(Dividing throughtout by -8)

$$
\begin{equation*}
\mathrm{PB}=\mathrm{PC} \tag{i}
\end{equation*}
$$

Using distance formula,

$$
\sqrt{(h-3)^{2}+(k-5)^{2}}=\sqrt{(h-2)^{2}+(k-0)^{2}}
$$

Squaring both the sides we get,

$$
\begin{array}{rlrl}
& & (h-3)^{2}+(\mathrm{k}-5)^{2} & =(h-2)^{2}+(k)^{2} \\
\therefore & h^{2}-6 h+9+k^{2}-10 k+25 & =h^{2}-4 h+4+k^{2} \\
\therefore & h^{2}-6 h+k^{2}-10 k-h^{2}+4 h-k^{2} \\
& =4-9-25 \\
\therefore & -2 h-10 k & =-30 \\
\therefore & h+5 k & =15 \tag{iii}
\end{array}
$$

(dividing both sides by -2)
Subtracting (iii) from (ii),

$$
\begin{aligned}
& h-k=2 \\
& h+5 k=15
\end{aligned}
$$

$(-) \quad(-) \quad(-)$ $-6 k=-13$
$\therefore \quad k=\frac{-13}{-6}$
$\therefore \quad k=\frac{13}{6}$
Substituting $k=\frac{13}{6}$ in (ii),

$$
\begin{array}{ll}
& h-k=2 \\
\therefore & h-\frac{13}{6}=2 \\
\therefore & h=2+\frac{13}{6} \\
\therefore & h=\frac{25}{6} \\
\therefore & \mathbf{P}\left(\frac{\mathbf{2 5}}{6}, \frac{13}{6}\right) \text { are the co-ordinates of circumcentre. }
\end{array}
$$

Using distance formula,

$$
\begin{aligned}
\text { Radius }=\mathrm{d}(\mathrm{P}, \mathrm{~A}) & =\sqrt{\left(7-\frac{25}{6}\right)^{2}+\left(1-\frac{13}{6}\right)^{2}} \\
& =\sqrt{\left(\frac{42-25}{6}\right)^{2}+\left(\frac{6-13}{6}\right)^{2}} \\
& =\sqrt{\left(\frac{17}{6}\right)^{2}+\left(\frac{-7}{6}\right)^{2}} \\
& =\sqrt{\frac{289}{36}+\frac{49}{36}} \\
& =\sqrt{\frac{338}{36}} \\
& =\sqrt{\frac{169 \times 2}{36}} \\
& =\frac{13}{6} \sqrt{2}
\end{aligned}
$$

$\therefore \quad$ Radius of circumcircle $=\frac{13}{6} \sqrt{2}$ units
(20) Find the co-ordinates of the centre of the circle passing through the point. $P(6,-6), Q(3,-7)$ and $R(3,3)$
(4 marks)
Solution :

Let $\mathrm{A}(h, k)$ be the centre of the circle.
$\mathrm{PA}=\mathrm{QA}=\mathrm{RA} \quad$...(i) (Radii of same circle)
i.e. $\mathrm{PA}=\mathrm{QA}$
...[From (i)]
Using distance formula,

$$
\begin{aligned}
& \sqrt{(h-6)^{2}+[k-(-6)]^{2}}
\end{aligned}=\sqrt{(h-3)^{2}+[k-(-7)]^{2}} .
$$

Squaring both the sides,

$$
\begin{array}{cc}
& h^{2}-12 h+36+k^{2}+12 k+36 \\
& =h^{2}-6 h+9+k^{2}+14 k+49 \\
\therefore & h^{2}-12 h+k^{2}+12 k-h^{2}+6 h-k^{2}-14 k \\
& =9+49-36-36 \\
\therefore & -6 h-2 k=-14 \\
\therefore & 3 h+k=7 \quad \ldots(\text { (ii) } \tag{ii}\\
& \ldots(\text { Dividing both sides by }-2)
\end{array}
$$

$\mathrm{QA}=\mathrm{RA}$
...[From (i)]
Using distance formula,

$$
\begin{array}{ll}
\therefore & \sqrt{(h-3)^{2}+[k-(-7)]^{2}}=\sqrt{(h-3)^{2}+(k-3)^{2}} \\
\therefore & \sqrt{(h-3)^{2}+(k+7)^{2}}=\sqrt{(h-3)^{2}+(k-3)^{2}}
\end{array}
$$

Squaring both the sides,

$$
\begin{array}{rlrl}
& & (h-3)^{2}+(\mathrm{k}+7)^{2} & =(h-3)^{2}+(k-3)^{2} \\
k^{2}+14 k+49 & =k^{2}-6 k+9 \\
\therefore & k^{2}+14 k-k^{2}+6 k & =9-49 \\
\therefore & 20 k & =-40
\end{array}
$$

$$
\therefore \quad k=\frac{-40}{20}
$$

$$
\therefore \quad k=-2
$$

Substituting $k=-2$ in equation

$$
\begin{align*}
& & 3 h-2 & =7 \tag{ii}\\
& \therefore & 3 h & =7+2 \\
& \therefore & h & =\frac{9}{3} \\
& \therefore & h & =3
\end{align*}
$$

$\therefore \quad \mathrm{A}(3,-2)$ is the centre of the circle

Points to Remember:

Section formula for division of a line segment : If $\mathrm{P}(x, y)$ divides segment joining $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$ in the ratio $m: n$, then

$x=\frac{m x_{2}+n x_{1}}{m+n} ; \quad y=\frac{m y_{2}+n y_{1}}{m+n}$

In the above figure, in $X Y$ plane point P on the $\operatorname{seg} A B$, divides seg $A B$ in the ratio $m: n$.
Let $\mathrm{A}\left(x_{1}, y_{1}\right) \quad \mathrm{B}\left(x_{2}, y_{2}\right)$ and $\mathrm{P}(x, y)$
seg $\mathrm{AC}, \operatorname{seg} \mathrm{PQ}$ and seg BD are prependicular to X - axis
$\therefore \quad$ Let $\mathrm{C}\left(x_{1}, 0\right), \mathrm{Q}(x, 0)$ and $\mathrm{D}\left(x_{2}, 0\right)$.
$\therefore \quad \mathrm{CQ}=x-x_{1}$
and $\left.\mathrm{QD}=x_{2}-x\right\}$
$\operatorname{seg} A C\|\operatorname{seg} P Q\| \operatorname{seg} B D$.
$\therefore \quad$ By the property of intercepts of three parallel lines, $\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{CQ}}{\mathrm{QD}}=\frac{m}{n}$
From the figure $\mathrm{CQ}=x-x_{1}$ and $\mathrm{QD}=x_{2}-x$
...[From (i)]
$\therefore \quad \frac{x-x_{1}}{x_{2}-x}=\frac{m}{n}$
$\therefore \quad n\left(x-x_{1}\right)=m\left(x_{2}-x\right)$
$\therefore \quad n x-n x_{1}=m x_{2}-m x$
$\therefore \quad m x+n x=m x_{2}+n x_{1}$
$\therefore \quad x(m+n)=m x_{2}+n x_{1}$
$\therefore \quad x=\frac{m x_{2}+n x_{1}}{m+n}$
Similarly drawing perpendiculars from points A ,
P and B to Y - axis, we get $y=\frac{m y_{2}+n y_{1}}{m+n}$
$\therefore \quad$ The co-ordinates of point, which divides the line
segment joining the points $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$
in the ratio $m: n$ are given by $\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$

Practice Set - 5.2 (Textbook Page No.)

(1) Find the co-ordinates of point P if P divides the line segment joining the points $A(-1,7)$ and $B(4,-3)$ in the ratio $2: 3$.
(2 marks)

Solution :

$\mathrm{P}(x, y)$ divides seg AB in the ratio $2: 3$.
$\mathrm{A}(-1,7)=\left(x_{1}, y_{1}\right)$
$\mathrm{B}(4,-3)=\left(x_{2}, y_{2}\right)$
$m: n=2: 3$
By Section formula,

$$
\begin{aligned}
x & =\frac{m x_{2}+n x_{1}}{m+n} ; & & \text { and } & y & =\frac{m y_{2}+n y_{1}}{m+n} \\
& =\frac{2 \times 4+3 \times(-1)}{2+3} & & \text { and } & & =\frac{2 \times(-3)+3 \times(7)}{2+3} \\
& =\frac{8-3}{5} & & \text { and } & & =\frac{-6+21}{5} \\
& =\frac{5}{5} & & \text { and } & & =\frac{15}{5} \\
x & =1 & & \text { and } & y & =3
\end{aligned}
$$

$\therefore \quad$ The coordinates of point P are $(1,3)$.
(2) In each of the following examples find the coordinates of point A which divides segment PQ in the ratio $a: b$.
(2 marks each)
(i) $\quad \mathrm{P}(-3,7), \mathrm{Q}(1,-4), a: b=2: 1$

Solution :
$\mathrm{A}(x, y)$ divides seg PQ in the ratio $2: 1$.
$\mathrm{P}(-3,7)=\left(x_{1}, y_{1}\right)$
$\mathrm{Q}(1,-4)=\left(x_{2}, y_{2}\right)$
$a: b=2: 1=m: n$
By Section formula,

$$
\begin{aligned}
& x=\frac{m x_{2}+n x_{1}}{m+n} ; \quad \text { and } \quad y=\frac{m y_{2}+n y_{1}}{m+n} \\
& =\frac{2 \times 1+1 \times(-3)}{2+1} \text { and }=\frac{2 \times(-4)+1 \times(7)}{2+1} \\
& =\frac{2-3}{3} \quad \text { and } \quad=\frac{-8+7}{3} \\
& x=\frac{-1}{3} \quad \text { and } \quad y=\frac{-1}{3}
\end{aligned}
$$

(ii) $\quad \mathrm{P}(-2,-5), \mathrm{Q}(4,3), a: b=3: 4$

Solution :
$\mathrm{A}(x, y)$ divides seg PQ in the ratio 3:4.
$\mathrm{P}(-2,-5)=\left(x_{1}, y_{1}\right)$
$\mathrm{Q}(4,3)=\left(x_{2}, y_{2}\right)$
$a: b=3: 4=m: n$
By Section formula,

$$
\begin{aligned}
& x=\frac{m x_{2}+n x_{1}}{m+n} ; \quad \text { and } \quad y=\frac{m y_{2}+n y_{1}}{m+n} \\
& =\frac{3 \times 4+4 \times(-2)}{3+4} \text { and }=\frac{3 \times 3+4 \times(-5)}{3+4} \\
& =\frac{12-8}{7} \quad \text { and } \quad=\frac{9-20}{7} \\
& x=\frac{4}{7} \quad \text { and } \quad y=\frac{-11}{7} \\
& \therefore \quad \mathrm{~A}\left(\frac{4}{7}, \frac{-11}{7}\right)
\end{aligned}
$$

(iii) $\mathrm{P}(2,6), \mathrm{Q}(-4,1), a: b=1: 2$

Solution :
$\mathrm{A}(x, y)$ divides seg PQ in the ratio $1: 2$.
$\mathrm{P}(2,6)=\left(x_{1}, y_{1}\right)$
$Q(-4,1)=\left(x_{2}, y_{2}\right)$
$a: b=1: 2=m: n$
By Section formula,
$x=\frac{m x_{2}+n x_{1}}{m+n} ; \quad$ and $\quad y=\frac{m y_{2}+n y_{1}}{m+n}$
$=\frac{1 \times(-4)+2 \times 2}{1+2}$ and $=\frac{1 \times 1+2 \times 6}{1+2}$
$=\frac{-4+4}{3} \quad$ and $\quad=\frac{1+12}{3}$
$x=\frac{0}{3} \quad$ and $\quad y=\frac{13}{3}$
$\therefore \quad \mathrm{x}=\left(0, \frac{13}{3}\right)$
(3) Find the ratio in which point $\mathrm{T}(-1,6)$ divides the line segment joining the points $\mathrm{P}(-3,10)$ and Q(6, -8).
(2 marks)

Solution :

Let point T divides seg PQ in the ratio $m: n$.
$\mathrm{T}(-1,6)=(x, y)$
$\mathrm{P}(-3,10)=\left(x_{1}, y_{1}\right)$
$\mathrm{Q}(6,-8)=\left(x_{2}, y_{2}\right)$
By Section formula,

$$
\begin{aligned}
& x=\frac{m x_{2}+n x_{1} ;}{m+n} \\
& -1=\frac{m \times 6+n(-3)}{m+n} \\
\therefore & -1(m+n)=6 m-3 n \\
\therefore & -m-n=6 m-3 n \\
\therefore & -m-6 m=-3 n+n \\
\therefore & -7 m=-2 n \\
\therefore & 7 m=2 n \\
\therefore & \frac{m}{n}=\frac{2}{7}
\end{aligned}
$$

i.e. $m: n=2: 7$
\therefore Point T divides seg PQ in the ratio 2:7.
(5) Find the ratio in which point $P(k, 7)$ divides the segment joining $A(8,9)$ and $B(1,2)$. Also find k.
(3 marks)

Solution :

$\mathrm{A}(8,9)=\left(x_{1}, y_{1}\right)$
$\mathrm{B}(1,2)=\left(x_{2}, y_{2}\right)$
$\mathrm{P}(k, 7)=(x, y)$
Let point P divide seg AB in the ratio $m: n$.
By Section formula,

$$
y=\frac{m y_{2}+n y_{1}}{m+n}
$$

$$
7=\frac{m \times 2+n \times 9}{m+n}
$$

$\therefore 7(m+n)=2 m+9 n$
$\therefore 7 m+7 n=2 m+9 n$
$\therefore 7 m-2 m=9 n-7 n$
$\therefore 5 m=2 n$
$\therefore \quad \frac{m}{n}=\frac{2}{5}$
$\therefore \quad m: n=2: 5$
$x=\frac{m x_{2}+n x_{1}}{m+n}$
$\therefore \quad k=\frac{2 \times 1+5 \times 8}{2+5}$
$\therefore \quad k=\frac{2+40}{7}$
$\therefore \quad k=\frac{42}{7}$
$\therefore k=6$

Problem Set - 5 (Textbook Pg No. 122)

(4) Find the ratio in which the line segment joining the points $A(3,8)$ and $B(-9,3)$ is divided by the Y-axis.
(2 marks)
Solution :

$$
\begin{aligned}
& \mathrm{A}(3,8)=\left(x_{1}, y_{1}\right) \\
& \mathrm{B}(-9,3)=\left(x_{2}, y_{2}\right)
\end{aligned}
$$

Let point $\mathrm{P}(0, a)$ be a point on Y-axis which divides seg AB in the ratio $m: n$. $\mathrm{P}(0, a)=(x, y)$
By Section formula,

$$
\begin{array}{lc}
& x=\frac{m x_{2}+n x_{1}}{m+n} \\
\therefore & 0=\frac{m \times(-9)+n(3)}{m+n} \\
\therefore & 0 \times(m+n)=-9 m+3 n \\
\therefore & 9 m=-9+3 n \\
\therefore & \frac{m}{n}=3 n \\
\therefore & \frac{m}{n}=\frac{3}{9} \\
\therefore & =\frac{1}{3}
\end{array}
$$

$$
\therefore \quad m: n=1: 3
$$

$\therefore \quad$ Y-axis divides segment joining points
A and B in the ratios 1:3
(17) Given $A(4,-3), B(8,5)$. Find the co-ordinates of the point that divides segment $A B$ in the ratio 3:1.
(2 marks)

Solution :

Let $\mathrm{P}(x, y)$ be the point which divides seg AB in the ratio $3: 1$.
$\mathrm{A}(4,-3)=\left(x_{1}, y_{1}\right)$
$\mathrm{B}(8,5)=\left(x_{2}, y_{2}\right)$
$\mathrm{P}(x, y)$
$m: n=3: 1$
By Section formula,

$$
\begin{array}{rlrlrl}
x & =\frac{m x_{2}+n x_{1}}{m+n} ; & & \text { and } & y & =\frac{m y_{2}+n y_{1}}{m+n} \\
& =\frac{3 \times 8+1 \times 4}{3+1} & & \text { and } & & =\frac{3 \times 5+1 \times(-3)}{3+1} \\
& =\frac{24+4}{4} & & \text { and } & =\frac{15-3}{4} \\
& =\frac{28}{4} & & \text { and } & =\frac{12}{4} \\
x & =7 & & \text { and } y & =3
\end{array}
$$

$\therefore \quad P(7,3)$ divides seg $A B$ in the ratio $3: 1$

Points to Remember:

(Mid-point formula)

If $\mathrm{M}(x, y)$ is the midpoint of segment joining $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$, then
$x=\frac{x_{1}+x_{2}}{2}$ and $y=\frac{y_{1}+y_{2}}{2}$
If point P is the midpoint of segment $A B$ and $\mathrm{P}(x, y), \mathrm{A}\left(x_{1}, y_{1}\right), \mathrm{B}\left(x_{2}, y_{2}\right)$ then $m=n$ and values of x and y can be written as

$$
\begin{array}{rlrl}
x & =\frac{m x_{2}+n x_{1}}{m+n} & y & =\frac{m y_{2}+n y_{1}}{m+n} \\
& =\frac{m x_{2}+m x_{1}}{m+m}(\because m=n) & =\frac{m y_{2}+m y_{1}}{m+m}(\because m=n) \\
& =\frac{m\left(x_{2}+x_{1}\right)}{2 m} & & =\frac{m\left(y_{1}+y_{2}\right)}{2 m} \\
& =\frac{x_{1}+x_{2}}{2} & & =\frac{y_{1}+y_{2}}{2}
\end{array}
$$

$\therefore \quad$ Co-ordinates of midpoint P are $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
This is called as midpoint formula.
In the previous standard we have shown that $\frac{a+b}{2}$ is the midpoint of two rational numbers a and b which are on the number line. That conclusion is the special case of the above midpoint formula.

Practice Set - 5.2 (Textbook Page No. 115)
(6) Find the coordinates of the midpoint of the segment joining the points $(22,20)$ and $(0,16)$
(2 marks)

Solution :

Let $\mathrm{A}(22,20)=\left(x_{1}, y_{1}\right)$ and

$$
\text { B }(0,16)=\left(x_{2}, y_{2}\right)
$$

Let $\mathrm{M}(x, y)$ be the midpoint of seg AB . By midpoint formula,

$$
\begin{array}{lll}
x=\frac{x_{1}+x_{2}}{2} & \text { and } & y=\frac{y_{1}+y_{2}}{2} \\
x=\frac{22+0}{2} & \text { and } & y=\frac{20+16}{2}
\end{array}
$$

$$
\begin{aligned}
& x=\frac{22}{2} & \text { and } & y=\frac{36}{2} \\
& x=11 & \text { and } & y=18 \\
\therefore & \mathbf{M}(11,18) & &
\end{aligned}
$$

(4) Point P is the centre of the circle and AB is a diameter. Find the co-ordinates of point B if coordinates of point A and P are $(2,-3)$ and $(-2,0)$ respectively.
(2 marks)
Solution :

$$
\begin{aligned}
\mathrm{P}(-2,0)= & (x, y) \\
\mathrm{A}(2,-3)= & \left(x_{1}, y_{1}\right) \\
& \mathrm{B}\left(x_{2}, y_{2}\right)
\end{aligned}
$$

P is the centre of the circle
...(Given)
Point P is the midpoint of diameter AB .
By midpoint formula,

$$
\begin{array}{llrl}
& x=\frac{x_{1}+x_{2}}{2} \quad \text { and } y=\frac{y_{1}+y_{2}}{2} \\
& -2=\frac{2+x_{2}}{2} \text { and } 0=\frac{-3+y_{2}}{2} \\
\therefore & -2 \times 2=2+x_{2} \text { and } 0 \times 2=-3+y_{2} \\
\therefore & -4-2=x_{2} \text { and } 0+3=y_{2} \\
\therefore & x_{2}=-6 \text { and } y_{2}=3 \\
\therefore & B(-6,3)
\end{array}
$$

Problem Set-5 (Textbook Pg No. 122)

(3) Find the coordinates of the midpoint of the line segment joining $\mathbf{P}(\mathbf{0}, \mathbf{6})$ and $\mathrm{Q}(12,20) \quad(2$ marks $)$ Solution :
$P(0,6) \quad=\left(x_{1}, y_{1}\right)$ and
$\mathrm{Q}(12,20)=\left(x_{2}, y_{2}\right)$
Let $\mathrm{M}(x, y)$ be the midpoint of seg PQ. By midpoint formula,

$x=\frac{x_{1}+x_{2}}{2}$	and	$y=\frac{y_{1}+y_{2}}{2}$
$x=\frac{0+12}{2}$	and	$y=\frac{6+20}{2}$
$x=\frac{12}{2}$	and	$y=\frac{26}{2}$
$x=6$	and	$y=13$

$\therefore \quad M(6,13)$ is the midpoint of segment joining $P(0,6)$ and $Q(12,20)$

Practice Set - 5.1 (Textbook Page No. 108)

(5) $\quad P(2,-2) Q(7,3), R(11,-1)$ and $S(6,-6)$ are the vertices of a parallelogram.
(4 marks)
Solution :

Let $\mathrm{M}\left(x_{1}, y_{1}\right)$ be the midpoint of diagonal PR. By midpoint formula,

$$
\begin{array}{lll}
x_{1}=\frac{2+11}{2} & ; & y_{1}=\frac{-2-1}{2} \\
x_{1}=\frac{13}{2} & ; & y_{1}=\frac{-3}{2}
\end{array}
$$

$M\left(\frac{13}{2}, \frac{-3}{2}\right)$ is the midpoint of diagonal PR
Let $\mathrm{N}\left(x_{2}, y_{2}\right)$ be the midpoint of diagonal QS. By midpoint formula,

$$
\begin{array}{lll}
x_{2}=\frac{7+6}{2} & ; & y_{2}=\frac{3+(-6)}{2} \\
x_{1}=\frac{13}{2} & ; & y_{1}=\frac{-3}{2} \tag{ii}
\end{array}
$$

$\mathrm{N}\left(\frac{13}{2}, \frac{-3}{2}\right)$ is the midpoint of diagonal QS
[From (i) and (ii)]
Midpoint of diagonal PR and diagonal QS is the same.
i.e. Diagonals PR and QS bisect each other.
$\therefore \quad \square \mathrm{PQRS}$ is a parallelogram ...(A quadrilateral is a parallelogram if its diagonals bisect each other.)

Practice Set - 5.2 (Textbook Page No. 116)
(10) Find the coordinates of points of trisection of the line segment $A B$ with $A(2,7)$ and $B(-4,-8)$
(4 marks)
Solution :

Let point P and Q be two points which divide seg $A B$ in three equal parts.

Point P divides seg AB in the ratio $1: 2$

By Section formula,
$\mathrm{P}\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$
$\mathrm{P}\left(\frac{1 \times(-4)+2 \times 2}{1+2}, \frac{1 \times(-8)+2 \times 7}{1+2}\right)$
$\therefore P\left(\frac{-4+4}{3}, \frac{-8+14}{3}\right)$
$\therefore P\left(\frac{0}{3}, \frac{6}{3}\right)$
$\therefore \mathrm{P}(0,2)$

$$
\text { Also, } \mathrm{PQ}=\mathrm{QB}
$$

$\therefore \quad$ Point Q is midpoint of seg PB .
By midpoint formula,
$\therefore \mathrm{Q}\left(\frac{0+(-4)}{2} ; \frac{2+(-8)}{2}\right)$
$\therefore Q\left(\frac{-4}{2}, \frac{-6}{2}\right)$
$\therefore \mathrm{Q}(-2,-3)$
$\therefore \quad \mathrm{P}(0,2)$ and $\mathrm{Q}(-2,-3)$ are points which trisects seg AB
(11) If $A(-14,-10), B(6,-2)$ is given, find the coordinates of the points which divide segment $A B$ into four equal parts.
(4 marks)
Solution :

Let point $\mathrm{P}\left(x_{1}, y_{1}\right), \mathrm{Q}\left(x_{2}, y_{2}\right)$ and $\mathrm{R}\left(x_{3}, y_{3}\right)$ be the three points which divides seg AB in four equal parts.

Point Q is the midpoint of seg $A B$.
By midpoint formula,

$$
\begin{array}{rlrl}
& x_{2}=\frac{-14+6}{2} & \text { and } \quad y_{2}=\frac{-10+(-2)}{2} \\
& x_{2}=\frac{-8}{2} & \text { and } & y_{2}=\frac{-12}{2} \\
& x_{2}=-4 & \text { and } & y_{2}=-6 \\
\therefore & \mathrm{Q}(-4,-6) & & \\
& \mathrm{AP}=\mathrm{PQ} & & \tag{i}
\end{array}
$$

$\therefore P$ is the midpoint of seg AQ.
By midpoint formula,

$$
x_{1}=\frac{-14+(-4)}{2} \quad \text { and } \quad y_{1}=\frac{-10+(-6)}{2}
$$

$$
\begin{array}{rlr}
& x_{1}=\frac{-18}{2} \quad \text { and } \quad y_{1}=\frac{-16}{2} \\
& x_{1}=-9 \\
\therefore & P(-9,-8) \\
\therefore & Q R=B R & \\
& & \\
y_{1}=-8 \\
& &
\end{array}
$$

...[From (i)]
R is the midpoint of seg BQ.
By midpoint formula,
$x_{3}=\frac{-4+6}{2} \quad$ and $\quad y_{3}=\frac{-6+(-2)}{2}$
$\therefore \quad x_{3}=\frac{2}{2} \quad$ and $\quad y_{3}=\frac{-8}{2}$
$x_{3}=1 \quad$ and $\quad y_{3}=-4$
$\therefore \mathrm{R}(1,-4)$
$\therefore \quad P(-9,-8), Q(-4,-6)$ and $R(1,-4)$ divides seg $A B$ in four equal parts.
(12) If $A(20,10), B(0,20)$ are given, find the coordinates of the points which is divide segment $A B$ into five congruent parts.
(4 marks)

Solution :

$(20,10)$

Let point $\mathrm{P}\left(x_{1}, y_{1}\right), \mathrm{Q}\left(x_{2}, y_{2}\right), \mathrm{R}\left(x_{3}, y_{3}\right)$ and $\mathrm{S}\left(x_{4}, y_{4}\right)$ be four points which divides seg AB into five congruent parts.
Point P divides seg AB in the ratio $1: 4$.
By section formula,

$$
\begin{align*}
& x_{1}=\frac{1 \times 0+4 \times 20}{1+4} \text { and } y_{1}=\frac{1 \times 20+4 \times 10}{1+4} \\
\therefore & x_{1}=\frac{80}{5} \quad \text { and } y_{1}=\frac{20+40}{5}=\frac{60}{5} \\
\therefore & x_{1}=16 \quad \text { and } y_{1}=12 \\
\therefore & \mathrm{P}(16,12) \\
& \mathrm{AP}=\mathrm{PQ} \tag{i}\\
\therefore & \mathrm{P} \text { is the midpoint of seg AQ. } \\
& B y \text { midpoint formula, } \\
& 16=\frac{20+x_{2}}{2} \quad \text { and } 12=\frac{10+y_{2}}{2} \\
\therefore & 16 \times 2=20+x_{2} \text { and } 12 \times 2=10+y_{2} \\
\therefore \quad & 32-20=x_{2} \text { and } 24-10=y_{2} \\
\therefore & x_{2}=12 \text { and } y_{2}=14 \\
\therefore & \mathrm{Q}(12,14) \\
& \mathrm{PQ}=\mathrm{QR} \quad \ldots[\text { From (i) }]
\end{align*}
$$

$\therefore \quad \mathrm{Q}$ is the midpoint of seg PR.
By midpoint formula,

$$
\begin{array}{lll}
& 12=\frac{16+x_{3}}{2} & \text { and } 14=\frac{12+y_{3}}{2} \\
\therefore & 24=16+x_{3} & \text { and } 28=12+y_{3} \\
\therefore & x_{3}=24-16 & \text { and } y_{3}=28-12 \\
\therefore & x_{3}=8 & \text { and } y_{3}=16 \\
\therefore & R(8,16) & \\
& R S=B S &
\end{array}
$$

...[From (i)]
$\therefore \mathrm{S}$ is the midpoint of seg RB.
By midpoint formula,

$$
\begin{aligned}
& x_{4}=\frac{0+8}{2} \quad \text { and } y_{4}=\frac{16+20}{2} \\
& x_{4}=\frac{8}{2} \quad \text { and } y_{4}=\frac{36}{2} \\
\therefore & x_{4}=4 \quad \text { and } \quad y_{4}=18 \\
\therefore & S(4,18) \\
\therefore \quad & \begin{array}{l}
\mathrm{P}(16,12), \mathrm{Q}(12,14), R(8,16) \text { and } \mathrm{S}(4,18) \\
\text { divides seg AB in five equal parts. }
\end{array}
\end{aligned}
$$

Problem Set-5 (Textbook Pg No. 123)

(13) Find the lengths of the medians of a triangle whose vertices are $A(-1,1), B(5,-3)$ and $C(3,5)$.
(5 marks)
Solution :

Let $A(-1,1), B(5,-3)$ and $C(3,5)$ be the vertices of triangle.
Let points P, Q and R be the midpoint of side $B C$, side $A C$ and side $A B$ respectively.
P is the midpoint of seg $B C$
\therefore By midpoint formula,

$$
\begin{aligned}
& x_{1}=\frac{5+3}{2} & \text { and } & y_{1}=\frac{-3+5}{2} \\
\therefore & x_{1}=\frac{8}{2} & \text { and } & y_{1}=\frac{2}{2} \\
\therefore & x_{1}=4 & \text { and } & y_{1}=1 \\
\therefore & P(4,1) & &
\end{aligned}
$$

Q is the midpoint of seg $A C$.
\therefore By midpoint formula,
$x_{2}=\frac{-1+3}{2} \quad$ and $\quad y_{2}=\frac{1+5}{2}$
$x_{2}=\frac{2}{2} \quad$ and $\quad y_{2}=\frac{6}{2}$
$x_{2}=1 \quad$ and $\quad y_{2}=3$
$\therefore \mathrm{Q}(1,3)$
R is the midpoint of seg AB.
\therefore By midpoint formula,
$x_{3}=\frac{-1+5}{2} \quad$ and $\quad y_{3}=\frac{1-3}{2}$
$x_{3}=\frac{4}{2} \quad$ and $\quad y_{3}=\frac{-2}{2}$
$x_{3}=2 \quad$ and $\quad y_{3}=-1$
$\therefore \mathrm{R}(2,-1)$
$\mathrm{A}(-1,1), \mathrm{P}(4,1)$
Using distance formula,

$$
\begin{aligned}
\mathrm{d}(\mathrm{~A}, \mathrm{P})= & \sqrt{(4-(-1))^{2}+(1-1)^{2}} \\
& =\sqrt{(4+1)^{2}+0^{2}} \\
& =\sqrt{5^{2}} \\
\therefore \quad \mathrm{~d}(\mathrm{~A}, \mathrm{P})= & 5 \text { units } \\
\therefore \quad \mathrm{d}(\mathrm{AP}) & =5 \text { units } \\
& B(5,-3),
\end{aligned}
$$

Using distance formula,

$$
\begin{aligned}
\mathrm{d}(\mathrm{~B}, \mathrm{Q}) & =\sqrt{(5-1)^{2}+(-3-3)^{2}} \\
& =\sqrt{4^{2}+(-6)^{2}} \\
& =\sqrt{16+36} \\
& =\sqrt{52} \\
& =\sqrt{13 \times 4} \\
\therefore \quad \mathrm{~d}(\mathrm{~B}, \mathrm{Q}) & =2 \sqrt{13} \text { units } \\
\mathrm{C}(3,5), & \mathrm{R}(2,-1)
\end{aligned}
$$

Using distance formula,

$$
\begin{aligned}
\therefore \quad \mathrm{d}(\mathrm{C}, \mathrm{R}) & =\sqrt{(3-2)^{2}+[5-(-1)]^{2}} \\
& =\sqrt{(1)^{2}+(6)^{2}} \\
& =\sqrt{1+36} \\
& =\sqrt{37}
\end{aligned}
$$

$\therefore \mathrm{d}(\mathrm{C}, \mathrm{R})=\sqrt{37}$ units
$\therefore \mathrm{d}(\mathrm{CR})=\sqrt{37}$ units

$\therefore \quad$	$\begin{array}{l}\text { Length of three medians are } 5 \text { units, } \\ 2 \sqrt{13} \text { units, } \sqrt{37} \text { units. }\end{array}$

*(19) The line segment $A B$ is divided into five congruent parts at P, Q, R and S such that $A-P-$ Q-R-S-B. If point $(12,14)$ and $S(4,18)$ are given find the co-ordiates of $\mathrm{A}, \mathrm{P}, \mathrm{R}$ and B . (5 marks)
Solution :

Points P, Q, R and S divides seg $A B$ into five equal parts.
$\therefore \quad \mathrm{AP}=\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{SB}$
Let $\mathrm{A}\left(x_{1}, y_{1}\right), \mathrm{P}\left(x_{2}, y_{2}\right), \mathrm{R}\left(x_{3}, y_{3}\right)$ and $\mathrm{B}\left(x_{4}, y_{4}\right)$

$$
\mathrm{QR}=\mathrm{RS}
$$

$\therefore \quad$ Point R is the midpoint of seg QS .
\therefore By midpoint formula,

$$
\begin{aligned}
& x_{3} & =\frac{12+4}{2} & \\
\therefore & & \text { and } & y_{3}=\frac{14+18}{2} \\
\therefore & x_{3} & =\frac{16}{2} & \\
\therefore & & \text { and } & y_{3}=\frac{32}{2} \\
& & \text { and } & y_{3}=16
\end{aligned}
$$

$\therefore \mathrm{R}(8,16)$

$$
\mathrm{RS}=\mathrm{SB}
$$

...[From (i)]
Point S is the midpoint of seg RB.
\therefore By midpoint formula,

$$
\begin{array}{llll}
& 4= & \frac{8+x_{4}}{2} \quad \text { and } 18=\frac{16+y_{4}}{2} \\
\therefore & 8=8+x_{4} & \text { and } 36 & =16+y_{4} \\
\therefore & x_{4}=8-8 & \text { and } 36-16 & =y_{4} \\
\therefore & x_{4} & =0 \quad \text { and } y_{4} & =20
\end{array}
$$

$\therefore \mathrm{B}(0,20)$

$$
\mathrm{PQ}=\mathrm{QR}
$$

...[From (i)]
$\therefore \quad \mathrm{Q}$ is the midpoint of seg PR
\therefore By midpoint formula,

$$
12=\frac{x_{2}+8}{2} \quad \text { and } \quad 14=\frac{y_{2}+16}{2}
$$

$\therefore \quad 12 \times 2=x_{2}+8$ and $14 \times 2=y_{2}+16$
$\therefore \quad 24-8=x_{2}$ and $28-16=y_{2}$
$\therefore \quad x_{2}=16$ and $y_{2}=12$
$\therefore \mathrm{P}(16,12)$
$\mathrm{AP}=\mathrm{PQ}$
.[From (i)]
$\therefore \quad \mathrm{P}$ is the midpoint of seg AQ
\therefore By midpoint formula,

$$
\begin{aligned}
& 16=\frac{x_{1}+12}{2} \quad \text { and } 12=\frac{y_{1}+14}{2} \\
\therefore & 32 \quad=x_{1}+12 \text { and } 24 \quad=y_{1}+14 \\
\therefore & 32-12=x_{1} \quad \text { and } 24-14=y_{1}
\end{aligned}
$$

$\therefore \quad x_{1}=20$ and $\quad y_{1}=10$
$\therefore \mathrm{A}(20,10)$
$\therefore \quad A(20,10), P(16,12), R(8,16)$ and $B(0,20)$
*(21) Find the possible pairs of co-ordinates of the fourth vertex D of the parallelogram, if three of its vertices are $A(5,6), B(1,-2)$ and $C(3,-2)$.
(4 marks)

Solution :

A $(5,6)$

Let $\mathrm{A}(5,6), \mathrm{B}(1,-2)$ and $\mathrm{C}(3,-2)$ be the three vertices of a parallelogram.
Fourth vertex can be point D or point E or point F as shown in the above figure.

For parallelogram ABCD , let $\mathrm{D}\left(x_{1}, y_{1}\right)$ be the fourth vertex. Diagonals of a parallelogram bisect each other.
\therefore Diagonal AC and diagonal BD have the same midpoint.
Using midpoint formula,
$\left(\frac{5+3}{2}, \frac{6+(-2)}{2}\right)=\left(\frac{1+x_{1}}{2}, \frac{-2+y_{1}}{2}\right)$
$\frac{8}{2}=\frac{1+\sigma_{1}}{2} \quad$ and $\quad \frac{6-2}{2}=\frac{-2+y_{1}}{2}$
$\therefore x_{1}=8-1$ and $4=-2+y_{1}$
$\therefore x_{1}=7 \quad$ and $y_{1}=6$
$\therefore \quad \mathrm{D}(7,6)$
For parallelogram ACBE , let $\mathrm{E}\left(x_{2}, y_{2}\right)$ be the fourth vertex Diagonals of a parallelogram bisect each other.
\therefore Diagonal AB and diagonal CE have the same midpoint.
By midpoint formula,

$$
\begin{aligned}
& \left(\frac{3+x_{2}}{2}, \frac{-2+y_{2}}{2}\right)=\left(\frac{5+1}{2}, \frac{6+(-2)}{2}\right) \\
\therefore & \frac{3+x_{2}}{2}=\frac{6}{2} \quad \text { and } \quad \frac{-2+y_{2}}{2}=\frac{6-2}{2} \\
\therefore & x_{2}=6-3 \quad \text { and } \quad y_{2}=4+2
\end{aligned}
$$

$\therefore \quad x_{2}=3$ and $y_{2}=6$
$\therefore \quad \mathrm{E}(3,6)$
For parallelogram ABFC, let $F\left(x_{3}, y_{3}\right)$ be the fourth vertex. Diagonals of a parallelogram bisect each other.
\therefore Diagonal AF and diagonal BC have the same midpoint
Using midpoint formula,
$\left(\frac{5+x_{3}}{2}, \frac{6+y_{3}}{2}\right)=\left(\frac{1+3}{2}, \frac{-2+(-2)}{2}\right)$
$\therefore \quad \frac{x_{3}+5}{2}=\frac{1+3}{2} \quad$ and $\quad \frac{y_{3}+6}{2}=\frac{-2-2}{2}$
$\therefore x_{3}=4-5$ and $y_{3}=-4-6$
$\therefore x_{3}=-1$ and $y_{3}=-10$
$\therefore \quad \mathrm{F}(-1,-10)$

Points to Remember:

- Centroid formula

Now we will see by using section formula how । the co-ordinates of centroid are found if the coordinates of vertices of a triangle are given

In $A B C$, point G is a centroid
$\mathrm{A}\left(x_{1}, y_{1}\right) \mathrm{B}\left(x_{2}, y_{2}\right)$ and $\mathrm{C}\left(x_{3}, y_{3}\right)$.
$x=\frac{x_{1}+x_{2}+x_{3}}{3}$ and $y=\frac{y_{1}+y_{2}+y_{3}}{3}$

If $\mathrm{A}\left(x_{1}, y_{1}\right), \mathrm{B}\left(x_{2}, y_{2}\right), \mathrm{C}\left(x_{3}, y_{3}\right)$ are vertices of ABC and seg AD is median of $\mathrm{ABC}, \mathrm{G}(x, y)$ is the centroid of this triangle.
D is the mid point of the line segment $B C$.
$\therefore \quad$ Co-ordinates of point D are
$x=\frac{x_{2}+x_{3}}{2}, y=\frac{y_{2}+y_{3}}{2} \ldots($ By midpoint theorem $)$
Point $G(x, y)$ is centroid of triangle $A B C$.
$\therefore \quad \mathrm{AG}: \mathrm{GD}=2: 1$
\therefore According to section formula,
$x=\frac{2\left(\frac{x_{2}+x_{3}}{2}\right)+1\left(x_{1}\right)}{2+1}=\frac{x_{2}+x_{3}+x_{1}}{3}=\frac{x_{1}+x_{2}+x_{3}}{3}$ co-ordinates of centroid of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are
$\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$
This is called as centroid formula.

Practice Set - 5.2 (Textbook Page No. 115)

(7) In each of the following vertices of a triangles are given. Find the coordinates of centroid of each triangle.
(2 marks each)
(i) $(-7,6),(2,-2),(8,5)$

Solution :
Let $\mathrm{A}(-7,6)=\left(x_{1}, y_{1}\right)$ be the vertices of ABC

$$
\begin{aligned}
& \mathrm{B}(2,-2)=\left(x_{2}, y_{2}\right) \\
& \mathrm{C}(8,5)=\left(x_{3}, y_{3}\right)
\end{aligned}
$$

Let $\mathrm{G}(x, y)$ be the centroid of ABC .
By centroid formula,

$$
\begin{array}{rlrlrl}
x & =\frac{x_{1}+x_{2}+x_{3}}{3} & & \text { and } & y & =\frac{y_{1}+y_{2}+y_{3}}{3} \\
& =\frac{-7+2+8}{3} & & \text { and } & =\frac{6-2+5}{3} \\
& =\frac{3}{3} & & \text { and } & =\frac{9}{3} \\
x & =1 & & \text { and } y & =3
\end{array}
$$

$$
\therefore \quad G(1,3)
$$

(ii) $(3,-5),(4,3),(11,-4)$

Solution :
Let $\mathrm{A}(3,-5)=\left(x_{1}, y_{1}\right)$
$\mathrm{B}(4,3)=\left(x_{2}, y_{2}\right)$
$\mathrm{C}(11,-4)=\left(x_{3}, y_{3}\right)$ be the vertices of ABC
Let $\mathrm{G}(x, y)$ be the centroid of ABC .
By centroid formula,

$$
\begin{aligned}
x & =\frac{x_{1}+x_{2}+x_{3}}{3} & & \text { and } & y & =\frac{y_{1}+y_{2}+y_{3}}{3} \\
& =\frac{3+4+11}{3} & & \text { and } & & =\frac{-5+3-4}{3} \\
& =\frac{18}{3} & & \text { and } & & =\frac{-6}{3}
\end{aligned}
$$

$x=6 \quad$ and $\quad y=-2$
$\therefore \quad \mathrm{G}(6,-2)$
(iii) $(4,7),(8,4),(7,11)$

Solution :
Let $\mathrm{A}(4,7)=\left(x_{1}, y_{1}\right)$

$$
\mathrm{B}(8,4)=\left(x_{2}, y_{2}\right)
$$

$\mathrm{C}(7,11)=\left(x_{3}, y_{3}\right)$ be the vertices of ABC
Let $\mathrm{G}(x, y)$ be the centroid of ABC .
By centroid formula,

$$
\begin{aligned}
& x=\frac{x_{1}+x_{2}+x_{3}}{3} \\
& \text { and } y=\frac{y_{1}+y_{2}+y_{3}}{3} \\
& =\frac{4+8+7}{3} \quad \text { and } \quad=\frac{7+4+11}{3} \\
& x=\frac{19}{3} \\
& \text { and } y=\frac{22}{3} \\
& \therefore G\left(\frac{19}{3}, \frac{22}{3}\right)
\end{aligned}
$$

(8) In $A B C, G(-4,-7)$ is the centroid. If $A(-14,-19)$ and $B(3,5)$ then find co-ordinates of C.
(2 marks)
Solution :

$$
\begin{array}{ll}
\mathrm{A}(-14,-19) & =\left(x_{1}, y_{1}\right) \\
\mathrm{B}(3,5) & =\left(x_{2}, y_{2}\right)
\end{array}
$$

Let $C\left(x_{3}, y_{3}\right)$

$$
\mathrm{G}(-4,-7) \quad=(x, y)
$$

Point G is the centroid of $A B C$.
By centroid formula,

$$
\begin{array}{ll}
& x=\frac{x_{1}+x_{2}+x_{3}}{3} \text { and } y=\frac{y_{1}+y_{2}+y_{3}}{3} \\
& -4=\frac{-14+3+x_{3}}{3} \text { and }-7=\frac{-19+5+y_{3}}{3} \\
\therefore & -4 \times 3=-11+x_{3} \text { and }-7 \times 3=-14+y_{3} \\
\therefore & -12+11=x_{3} \text { and }-21+14=y_{3} \\
\therefore & x_{3}=-1 \text { and } y_{3}=-7 \\
\therefore & C(-1,-7)
\end{array}
$$

(9) $\quad \mathrm{A}(h,-6), \mathrm{B}(2,3)$ and $\mathrm{C}(-6, k)$ are the co-ordinates of vertices of a triangle whose centroid is $G(1,5)$. find h and k.
(2 marks)

Solution :

Let $\mathrm{A}(h,-6)=\left(x_{1}, y_{1}\right)$
$\mathrm{B}(2,3)=\left(x_{2}, y_{2}\right)$
and $C(-6, k)=\left(x_{3}, y_{3}\right)$

$$
\mathrm{G}(1,5)=(x, y)
$$

Point G is the centroid of $A B C$.

By centroid formula,

$$
\begin{aligned}
& x=\frac{x_{1}+x_{2}+x_{3}}{3} \text { and } y=\frac{y_{1}+y_{2}+y_{3}}{3} \\
& 1=\frac{h+2-6}{3} \quad \text { and } \quad 5=\frac{-6+3+k}{3} \\
& \therefore \quad 1 \times 3=h-4 \text { and } 5 \times 3=-3+k \\
& \therefore \quad 3+4=h \text { and } 15+3=k \\
& \therefore \quad h=7 \text { and } k=18 \\
& \therefore \quad h=7 \text { and } k=18
\end{aligned}
$$

Problem Set - 5 (Textbook Pg No. 123)

*(14) Find the co-ordinates of centroid of the triangles if points $D(-7,6), E(8,5)$ and $F(2,-2)$ are the mid points of the sides of that triangle. (4 marks)

Solution :

In $A B C$, seg $A D$, seg $B E$ and seg $C E$ are the medians.

Point G is the centroid.
$\mathrm{D}(-7,6), \mathrm{E}(8,5), \mathrm{F}(2,-2)$
Let $\mathrm{G}(x, y), \mathrm{A}\left(x_{1}, y_{1}\right), \mathrm{B}\left(x_{2}, y_{2}\right)$ and $\mathrm{C}\left(x_{3}, y_{3}\right)$
D is the midpoint of seg BC.
By midpoint formula,

$$
\begin{array}{rlrl}
& -7=\frac{x_{2}+x_{3}}{2} \quad \text { and } \quad 6=\frac{y_{2}+y_{3}}{2} \\
\therefore & -14=x_{2}+x_{3} & \ldots(\text { i) and } & 12=y_{2}+y_{3} \tag{ii}
\end{array}
$$

E is the midpoint of seg AC.
By midpoint formula,

$$
\begin{align*}
& 8=\frac{x_{1}+x_{3}}{2} \quad \text { and } 5=\frac{y_{1}+y_{3}}{2} \\
\therefore & 8 \times 2=x_{1}+x_{3} \quad \text { and } 5 \times 2=y_{1}+y_{3} \\
\therefore & 16=x_{1}+x_{3} \quad \ldots \text { (iii) and } 10=y_{1}+y_{3} \quad \ldots \tag{iv}
\end{align*}
$$

F is the midpoint of side $A B$.
By midpoint formula,

$$
\begin{align*}
2 & =\frac{x_{1}+x_{2}}{2} \text { and }-2=\frac{y_{1}+y_{2}}{2} \\
\therefore \quad 4 & =x_{1}+x_{2} \quad \cdots(\mathrm{v}) \text { and }-4=y_{1}+y_{2} \tag{vi}
\end{align*}
$$

\therefore Adding (i), (iii) and (v) we get,

$$
\begin{array}{ll}
& 2 x_{1}+2 x_{2}+2 x_{3}=6 \\
\therefore & x_{1}+x_{2}+x_{3}=3 \ldots(\text { vii) } \tag{vii}\\
\therefore & \text { Adding (ii), (iv) and (vi) we get, } \\
& 2 y_{1}+2 y_{2}+2 y_{3}=18 \\
\therefore & y_{1}+y_{2}+y_{3}=9 \ldots(\text { viii) }
\end{array}
$$

G is the centroid of $A B C$.
By centroid formula,
$x=\frac{x_{1}+x_{2}+x_{3}}{3}$ and $y=\frac{y_{1}+y_{2}+y_{3}}{3}$
$\therefore x=: \frac{3}{3}$ and $y=\frac{9}{3} \quad \ldots[$ [From (vii) and (viii)]
$\therefore x=1$ and $y=3$
$\therefore \quad G(1,3)$ is the centroid of $\triangle A B C$.
[Note : $\mathrm{G}(1,3)$ is also the centroid of \triangle DEF]

Points to Remember:

Solpe of Line

(A) Using inclination:

Inclination of a line

Angle formed by a line with positive X -axis is called inclination of a line.

It is represented by ' θ '
Slope of a line $=\tan \theta$.
Solpe of Line - Using ratio in triganometry
In the adjoining figure, point $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ are two points on line l.
Line l intersects X axis in point T.
$\operatorname{seg} \mathrm{QS} \perp \mathrm{X}$ - axis, seg PR $\perp \operatorname{seg} \mathrm{QS}$
$\therefore \quad$ seg PR II seg TS ...(Correspondence angle test)
$\therefore \quad \mathrm{QR}=y_{2}-y_{1}$ and $\mathrm{PR}=x_{2}-x_{1}$
$\therefore \quad \frac{\mathrm{QR}}{\mathrm{PR}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Line TQ makes an angle θ with the X - axis and seg PR II line TS.
$\therefore \quad \frac{\mathrm{QR}}{\mathrm{PR}}=\tan \theta$
$\therefore \quad$ From (i) and (ii), $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\tan \theta$
$\therefore \mathrm{m}=\tan \theta$
$\therefore \quad \angle \mathrm{QPR}=\angle \mathrm{QTS} . . .($ Correspondence angle theorm)

From this we can define slope as this way. Then the ratio of the angle made by the line with the positive direction of X - axis is called as slope of that line.
When any two lines have same slope, these lines make equal angles with the positive direction of X - axis.
$\therefore \quad$ These two lines are parrallel.

Practice Set - 5.3 (Textbook Page No.)

(1) Angles made by the line with the positive direction of X -axis are given. Find the slope of these lines.
(2 marks)
(i) 45° (ii) 60° (iii) 90°

Solution :

(i) Inclination of the line $(\theta)=45^{\circ}$

$$
\begin{aligned}
\text { Slope } & =\tan \theta \\
& =\tan 45^{\circ}
\end{aligned}
$$

$$
\text { Slope = } 1
$$

(ii) Inclination of the line $(\theta)=60^{\circ}$

Slope $=\tan \theta$

$$
=\tan 60^{\circ}
$$

$$
\text { Slope }=\sqrt{3}
$$

(iii) Inclination of the line $(\theta)=90^{\circ}$

$$
\begin{aligned}
\text { Slope } & =\tan \theta \\
& =\tan 90^{\circ}
\end{aligned}
$$

Slope $=$ Not defined

Points to Remember:

(B) Slope of line;

If $\mathrm{A}\left(x_{1}, y_{1}\right) \mathrm{B}\left(x_{2}, y_{2}\right)$ are two points, then slope of line passing through points A and B can be given by,
Slope of line $\mathrm{AB}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ or
Slope of line $A B=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$

Activity:

As in the figure below, points $\mathrm{A}(-2,-5) \mathrm{B}(0,-2)$, $\mathrm{C}(2,1), \mathrm{D}(4,4)$ and $\mathrm{E}(6,7)$ lie on line l. Using these coordinates, complete the following table.

Sr. No.	First Point	Second Point	Coordinates of first point	Coordinates of second point	$\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
	C	E	$(2,1)$	$(6,7)$	$\frac{7-1}{6-2}=\frac{6}{4}=\frac{3}{2}$
	A	D	$(-2,-5)$	$(4,4)$	$\frac{4-(-5)}{4-(-2)}=\frac{9}{6}=\frac{3}{2}$

3	D	A	$(4,4)$	$(-2,-5)$	$\frac{-5-4}{-2-4}=\frac{-9}{-6}=\frac{3}{2}$
4	B	C	$(0,-2)$	$(2,1)$	$\frac{1-(-2)}{2-0}=\frac{3}{2}$
5	C	A	$(2,1)$	$(-2,-5)$	$\frac{-5-1}{-2-2}=\frac{-6}{-4}=\frac{3}{2}$
6	A	C	$(-2,-5)$	$(2,1)$	$\frac{1-(-5)}{2-(-2)}=\frac{6}{4}=\frac{3}{2}$

From the above table we can say that for any two points on line $l, \frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ remains the same. $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ is called the slope of line l and it is denoted by letter m

$$
\therefore m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Note: (1) Slope of X-axis is 0 .
(2) Slope of Y -axis cannot be determined.

Slope of Parallel lines

As given in the figure, line l and line t makes an angle θ with the positive x axis.

line $l \|$ line t
....(alternate angles test)
Point $\mathrm{A}(-3,0)$ and Point $\mathrm{B}(0,3)$ lie on line l
$\therefore \quad$ Slope of line $l=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
=\frac{\boxed{3}-0}{\boxed{0}--3}=\frac{3}{\square-3}=1
$$

Similarly, take any two points on line t and find the slope of line t.
Let the point be $\mathrm{C}(0,-2)$ and $\mathrm{D}(2,0)$.
\therefore Slope of $\mathrm{CD}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
=\frac{-2-0}{0-2}=\frac{-2}{-2}=1
$$

\therefore Slope of line $\mathrm{AB}=$ Slope of line CD
\therefore Slopes of parallel lines are equal hence proved.

Pracitce Set - 5.3 (Textbook Page No. 121)

(2) Find the slopes of lines passing through the given point.
(2 marks each)
(i) $\quad \mathrm{A}(2,3)$ and $\mathrm{B}(4,7)$

Solution:

$$
\begin{aligned}
\mathrm{A}(2,3) & =\left(x_{1}, y_{1}\right) \\
\mathrm{B}(4,7) & =\left(x_{2}, y_{2}\right) \\
\text { Slope } & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{7-3}{4-2} \\
& =\frac{4}{2}
\end{aligned}
$$

$\therefore \quad$ Slope of line $A B=2$

(ii) $\mathrm{P}(-3,1)$ and $\mathrm{Q}(5,-2)$

Solution:

$$
\begin{aligned}
\mathrm{P}(-3,1) & =\left(x_{1}, y_{1}\right) \\
\mathrm{Q}(5,-2) & =\left(x_{2}, y_{2}\right) \\
\text { Slope } & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-2-1}{5-(-3)} \\
& =\frac{-3}{5+3}=\frac{-3}{8}
\end{aligned}
$$

$\therefore \quad$ Slope of line $\mathrm{PQ}=\frac{-3}{8}$
(iii) $C(5,-2)$ and $D(7,3)$

Solution :

$$
\begin{aligned}
& \mathrm{C}(5,-2)=\left(x_{1}, y_{1}\right) \\
& \mathrm{D}(7,3)=\left(x_{2}, y_{2}\right)
\end{aligned}
$$

Slope of line $C D=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& =\frac{3-(-2)}{7-5} \\
& =\frac{3+2}{2}=\frac{5}{2}
\end{aligned}
$$

$$
\therefore \quad \text { Slope of line } \mathrm{CD}=\frac{5}{2}
$$

(iv) $L(-2,-3)$ and $M(-6,-8)$

Solution :

$$
\begin{aligned}
& \mathrm{L}(-2,-3)=\left(x_{1}, y_{1}\right) \\
& \mathrm{M}(-6,-8)=\left(x_{2}, y_{2}\right)
\end{aligned}
$$

$$
\text { Slope of line LM }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
\begin{aligned}
& =\frac{-8-(-3)}{-6-(-2)} \\
& =\frac{-8+3}{-6+2} \\
& =\frac{-5}{-4}=\frac{5}{4}
\end{aligned}
$$

$\therefore \quad$ Slope of line $\mathrm{LM}=\frac{\mathbf{5}}{\mathbf{4}}$
(v) $E(-4,-2)$ and $F(6,3)$

Solution :

$$
\begin{array}{ll}
\mathrm{E}(-4,-2) & =\left(x_{1}, y_{1}\right) \\
\mathrm{F}(6,3) & =\left(x_{2}, y_{2}\right)
\end{array}
$$

Slope of line EF $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& =\frac{3-(-2)}{6-(-4)} \\
& =\frac{3+2}{6+4} \\
& =\frac{5}{10}
\end{aligned}
$$

$\therefore \quad$ Slope of line $E F=\frac{1}{2}$
(vi) $T(0,-3)$ and $S(0,4)$

Solution :

$$
\begin{array}{ll}
\mathrm{T}(0,-3) & =\left(x_{1}, y_{1}\right) \\
\mathrm{S}(0,4) & =\left(x_{2}, y_{2}\right)
\end{array}
$$

$$
\begin{aligned}
\text { Slope of line TS } & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{4-(-3)}{0-0} \\
& =\frac{4+3}{0}=\frac{7}{0}
\end{aligned}
$$

$\therefore \quad$ Slope of line TS $=$ Not defined
Practice Set - 5.1 (Textbook Page No. 107)
(2) Determine whether the points are collinear.
(2 marks each)
(i) $\quad \mathrm{A}(1,-3), \mathrm{B}(2,-5)$ and $\mathrm{C}(-4,7)$

Solution :

$$
\begin{aligned}
& \mathrm{A}(1,-3)=\left(x_{1}, y_{1}\right) \\
& \mathrm{B}(2,-5)=\left(x_{2}, y_{2}\right) \\
& \mathrm{C}(-4,7)=\left(x_{3}, y_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { Slope of line } \mathrm{AB} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-5-(-3)}{2-1} \\
& =\frac{-5+3}{1} \\
& =-2
\end{aligned}
$$

$$
\begin{equation*}
\therefore \text { Slope of line } \mathrm{AB}=-2 \tag{i}
\end{equation*}
$$

$$
\text { Slope of line BC }=\frac{y_{3}-y_{2}}{x_{3}-x_{2}}
$$

$$
=\frac{7-(-5)}{-4-2}
$$

$$
\begin{equation*}
=\frac{7+5}{-6} \tag{ii}
\end{equation*}
$$

\therefore Slope of line $B C=\frac{12}{-6}=-2$
\therefore Slope of line $\mathrm{AB}=$ Slope of line BC
...[From (i) and (ii)]
Line $A B$ and line $B C$ have equal slopes and have a common point B.
$\therefore \quad$ Points A, B and C are collinear.
(ii) $\mathrm{L}(-2,3), \mathrm{M}(1,-3), \mathrm{N}(5,4)$

Solution :

$$
\begin{aligned}
& \mathrm{L}(-2,3)=\left(x_{1}, y_{1}\right) \\
& \mathrm{M}(1,-3)=\left(x_{2}, y_{2}\right) \\
& \mathrm{N}(5,4)=\left(x_{3}, y_{3}\right)
\end{aligned}
$$

Slope of line LM $\quad=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{align*}
& =\frac{-3-3}{1-(-2)} \\
& =\frac{-6}{1+2} \\
& =\frac{-6}{3} \tag{i}
\end{align*}
$$

\therefore Slope of line LM $=-2$
Slope of line MN $=\frac{y_{3}-y_{2}}{x_{3}-x_{2}}$

$$
=\frac{4-(-3)}{5-1}
$$

$$
\begin{equation*}
=\frac{4+3}{4} \tag{ii}
\end{equation*}
$$

\therefore Slope of line MN $=\frac{7}{4}$
\therefore Slope of line LM Slope of line MN

$$
\ldots[\text { From (i) and (ii)] }
$$

$\therefore \quad$ Points L, M and N are not collinear.
(iii) $\quad R(0,3), D(2,1)$ and $S(3,-1)$

Solution :

$$
\begin{aligned}
& \mathrm{R}(0,3)=\left(x_{1}, y_{1}\right) \\
& \mathrm{D}(2,1)=\left(x_{2}, y_{2}\right) \\
& \mathrm{S}(3,-1)=\left(x_{3}, y_{3}\right)
\end{aligned}
$$

$$
\text { Slope of line RD }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
=\frac{1-3}{2-0}
$$

$$
=\frac{-2}{2}
$$

$$
\begin{equation*}
\therefore \text { Slope of line RD }=-1 \tag{i}
\end{equation*}
$$

$$
\text { Slope of line DS }=\frac{y_{3}-y_{2}}{x_{3}-x_{2}}
$$

\therefore Slope of line DS $=-2$

$$
=\frac{-1-1}{3-2}
$$

$$
=\frac{-2}{1}
$$

\therefore Slope of line RD slope of line DS
...[From (i) and (ii)]
$\therefore \quad$ Points R, D and S are not collinear
(iv) $P(-2,3), Q(1,2), R(4,1)$

Solution :
$\mathrm{P}(-2,3)=\left(x_{1}, y_{1}\right)$
$\mathrm{Q}(1,2)=\left(x_{2}, y_{2}\right)$
$R(4,1)=\left(x_{3}, y_{3}\right)$
Slope of line $\mathrm{PQ}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{align*}
& =\frac{2-3}{1-(-2)} \\
& =\frac{-1}{1+2} \\
\therefore \quad \text { Slope of line PQ } & =\frac{-1}{3} \tag{i}\\
\text { Slope of line QR } & =\frac{y_{3}-y_{2}}{x_{3}-x_{2}} \\
& =\frac{1-2}{4-1} \\
\therefore \text { Slope of line QR } & =\frac{-1}{3} \tag{ii}
\end{align*}
$$

$\therefore \quad$ Slope of line $\mathrm{PQ}=$ slope of line QR
...[From (i) and (ii)]
Line $P Q$ and line $Q R$ have equal slopes and have a common point Q.
$\therefore \quad$ Points P, Q and R are collinear
Practice Set - 5.3 (Textbook Page No. 121)
(3) Determine whether following points are collinear.
(3 marks)
(i) $\mathrm{A}(-1,-1), \mathrm{B}(0,1), \mathrm{C}(1,3)$

Solution :

$$
\begin{array}{ll}
\mathrm{A}(-1,-1) & =\left(x_{1}, y_{1}\right) \\
\mathrm{B}(0,1) & =\left(x_{2}, y_{2}\right) \\
\mathrm{C}(1,3) & =\left(x_{3}, y_{3}\right)
\end{array}
$$

$$
\text { Slope of line } A B=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
=\frac{1-(-1)}{0-(-1)}
$$

$$
=\frac{1+1}{0+1}
$$

$$
\begin{equation*}
\therefore \text { Slope of line } \mathrm{AB}=\frac{2}{1} \tag{i}
\end{equation*}
$$

$$
\text { Slope of line } B C=\frac{y_{3}-y_{2}}{x_{3}-x_{2}}
$$

$$
\begin{equation*}
=\frac{3-1}{1-0} \tag{ii}
\end{equation*}
$$

\therefore Slope of line $B C=\frac{2}{1}$
\therefore Slope of line $A B=$ Slope of line $B C$
...[From (i) and (ii)]
Also, both lines have a common point B.
$\therefore \quad$ Points A, B and C are collinear points.
(ii) $\quad \mathrm{D}(-2,-3), \mathrm{E}(1,0), \mathrm{F}(2,1)$

$$
\begin{aligned}
& \mathrm{D}(-2,-3) \\
& =\left(x_{1}, y_{1}\right) \\
& \mathrm{E}(1,0) \\
& \mathrm{F}(2,1) \\
& \mathrm{F}\left(x_{2}, y_{2}\right) \\
& \left(x_{3}, y_{3}\right)
\end{aligned}
$$

Solution :

$$
\begin{aligned}
\text { Slope of line DE } & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{0-(-3)}{1-(-2)} \\
& =\frac{0+3}{1+2} \\
& =\frac{3}{3}=1
\end{aligned}
$$

\therefore Slope of line DE $=1$

$$
\begin{align*}
\text { Slope of line EF } & =\frac{y_{3}-y_{2}}{x_{3}-x_{2}} \tag{i}\\
& =\frac{1-0}{2-1} \\
& =\frac{1}{1} \tag{ii}
\end{align*}
$$

\therefore Slope of line EF $=1$
\therefore Slope of line DE $=$ Slope of line EF
..[From (i) and (ii)]
Also, both lines have a common point E.
$\therefore \quad$ Points D, E and F are collinear points.
(iii) $\mathrm{L}(2,5), \mathrm{M}(3,3), \mathrm{N}(5,1)$

Solution :

$$
\begin{aligned}
\mathrm{L}(2,5) & =\left(x_{1}, y_{1}\right) \\
\mathrm{M}(3,3) & =\left(x_{2}, y_{2}\right) \\
\mathrm{N}(5,1) & =\left(x_{3}, y_{3}\right)
\end{aligned}
$$

Slope of line LM $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
=\frac{3-5}{3-2}
$$

$$
=\frac{-2}{1}
$$

\therefore Slope of line LM $=-2$

$$
\begin{align*}
\text { Slope of line MN } & =\frac{y_{3}-y_{2}}{x_{3}-x_{2}} \tag{i}\\
& =\frac{1-3}{5-3} \\
& =\frac{-2}{2} \tag{ii}
\end{align*}
$$

\therefore Slope of line MN $=-1$
\therefore Slope of line $\mathrm{LM} \neq$ Slope of line MN
...[From (i) and (ii)]
$\therefore \quad$ Points L, M and N are non-collinear points.

(iv) $\mathrm{P}(2,-5), \mathrm{Q}(1,-3), \mathrm{R}(-2,3)$

Solution :

$$
\begin{aligned}
& \mathrm{P}(2,-5)=\left(x_{1}, y_{1}\right) \\
& \mathrm{Q}(1,-3)=\left(x_{2}, y_{2}\right) \\
& \mathrm{R}(-2,3)=\left(x_{3}, y_{3}\right)
\end{aligned}
$$

$$
\text { Slope of line PQ }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
=\frac{-3-(-5)}{1-2}
$$

$$
=\frac{-3+5}{-1}
$$

$$
=\frac{2}{-1}
$$

$$
\begin{equation*}
\therefore \text { Slope of line PQ }=-2 \tag{i}
\end{equation*}
$$

$$
\text { Slope of line } \mathrm{QR}=\frac{y_{3}-y_{2}}{x_{3}-x_{2}}
$$

$$
=\frac{3-(-3)}{-2-1}
$$

$$
=\frac{3+3}{-3}
$$

$$
=\frac{6}{-3}
$$

$$
\begin{equation*}
\therefore \text { Slope of line } \mathrm{QR}=-2 \tag{ii}
\end{equation*}
$$

$$
\therefore \text { Slope of line } \mathrm{PQ}=\text { Slope of line } \mathrm{QR}
$$

...[From (i) and (ii)]
Also, both lines have a common point Q.
$\therefore \quad$ Points P, Q and R are collinear points.
(v) $\quad R(1,-4), S(-2,2), T(-3,4)$

Solution :
\therefore Slope of line RS $=-2$

$$
\begin{align*}
\text { Slope of line ST } & =\frac{y_{3}-y_{2}}{x_{3}-x_{2}} \tag{i}\\
& =\frac{4-2}{-3-(-2)}
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{R}(1,-4)=\left(x_{1}, y_{1}\right) \\
& \mathrm{S}(-2,2)=\left(x_{2}, y_{2}\right) \\
& \mathrm{T}(-3,4)=\left(x_{3}, y_{3}\right) \\
& \text { Slope of line RS }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{2-(-4)}{-2-1} \\
& =\frac{2+4}{-3} \\
& =\frac{6}{-3}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{2}{-3+2} \\
& =\frac{2}{-1} \tag{ii}
\end{align*}
$$

\therefore Slope of line $\mathrm{ST}=-2$
\therefore Slope of line RS $=$ Slope of line ST
...[From (i) and (ii)]
Also, they have a common point S.
$\therefore \quad$ Points R, S and T are collinear points.
(vi) $\quad \mathrm{A}(-4,4), \mathrm{K}\left(-2, \frac{5}{2}\right), \mathrm{N}(4,-2)$

Solution :

$$
\begin{align*}
& \mathrm{A}(-4,4)=\left(x_{1}, y_{1}\right) \\
& \begin{aligned}
\mathrm{K}\left(-2, \frac{5}{2}\right) & =\left(x_{2}, y_{2}\right) \\
\mathrm{N}(4,-2) & =\left(x_{3}, y_{3}\right) \\
\text { Slope of line } \mathrm{AK} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{\frac{5}{2}-4}{-2-(-4)} \\
& =\left(\frac{5-8}{2}\right) \div(-2+4) \\
& =\frac{-3}{2} \div 2 \\
& =\frac{-3}{2} \times \frac{1}{2}
\end{aligned}
\end{align*}
$$

\therefore Slope of line AK $=\frac{-3}{4}$
Slope of line $\mathrm{AN}=\frac{y_{3}-y_{1}}{x_{3}-x_{1}}$
$=\frac{-2-4}{4-(-4)}$
$=\frac{-6}{4+4}$
$=\frac{-6}{8}$
$\therefore \quad$ Slope of line $\mathrm{AN}=\frac{-3}{4}$
\therefore Slope of line AK $=$ Slope of line AN
...[From (i) and (ii)]
Also, they have a common point A.
$\therefore \quad$ Points A, K and N are collinear points.

Problem Set - 5 (Textbook Pg No. 122)

(2) Determine whether the given points are collinear.
(2 marks each)
(i) $\mathrm{A}(0,2), \mathrm{B}(1,-0.5), \mathrm{C}(2,-3)$

Solution :

$$
\begin{aligned}
\text { Slope of line } A B & =\frac{-0.5-2}{1-0} \\
& =\frac{-2.5}{1}
\end{aligned}
$$

\therefore Slope of line $\mathrm{AB}=-2.5$

$$
\begin{align*}
\text { Slope of line AC } & =\frac{-3-2}{2-0} \tag{i}\\
& =\frac{-5}{2} \tag{ii}
\end{align*}
$$

\therefore Slope of line AC $=-2.5$
\therefore Slope of line $A B=$ Slope of line $A C$
...[From (i) and (ii)]
Also, they have a common point A.
\therefore Points A,B and C are collinear points.
(ii) $\mathrm{P}(1,2), \mathrm{Q}\left(2, \frac{8}{5}\right), \mathrm{R}\left(3, \frac{6}{5}\right)$

Solution :
$\begin{aligned} \text { Slope of line PQ } & =\frac{\frac{8}{5}-2}{2-1} \\ & =\frac{\frac{8-10}{5}}{1}\end{aligned}$
\therefore Slope of line $\mathrm{PQ}=\frac{-2}{5}$
Slope of line QR $=\frac{\frac{6}{5}-\frac{8}{5}}{3-2}$
$=\frac{\frac{6-8}{5}}{1}$
\therefore Slope of line QR $=\frac{-2}{5}$
\therefore Slope of line $\mathrm{PQ}=$ Slope of line QR
...[From (i) and (ii)]
Also, they have a common point Q.
$\therefore \quad$ Points P, Q and R are collinear points.
(iii) $\mathrm{L}(1,2), \mathrm{M}(5,3), \mathrm{N}(8,6)$

Solution :
Slope of line $L M=\frac{3-2}{5-1}$
\therefore Slope of line $\mathrm{LM}=\frac{1}{4}$

$$
\begin{equation*}
\text { Slope of line } \mathrm{MN}=\frac{6-3}{8-5} \tag{i}
\end{equation*}
$$

$$
=\frac{3}{3}
$$

\therefore Slope of line $\mathrm{MN}=1$
\therefore Slope of line $\mathrm{LM} \neq$ Slope of line MN
...[From (i) and (ii)]
$\therefore \quad$ Points L, M and N are not collinear points

Pracitce Set - 5.3 (Textbook Page No. 121)

(4) If $A(1,-1), B(0,4), C(-5,3)$ are vertices of a triangle, then find the slope of each side. (3 marks)
Solution :
$A(1,-1), \quad B(0,4), \quad C(-5,3)$
By using slope formula,

$$
\begin{aligned}
\text { Slope of } A B & =\frac{4-(-1)}{0-1} \\
& =\frac{4+1}{-1} \\
& =\frac{5}{-1}
\end{aligned}
$$

Slope of $A B=-5$
Slope of $B C=\frac{3-4}{-5-0}$

$$
=\frac{-1}{-5}
$$

Slope of BC $=\frac{1}{5}$
Slope of $A C=\frac{3-(-1)}{-5-1}$

$$
\begin{aligned}
& =\frac{3+1}{-6} \\
& =\frac{4}{-6}
\end{aligned}
$$

Slope of $A C=\frac{-2}{3}$
(5) Show that $A(-4,-7), B(-1,2), C(8,5)$ and $D(5,-4)$ are the vertices of a parallelogram. (4 marks)
Solution :

$$
\begin{aligned}
\text { Slope of AB } & =\frac{2-(-7)}{-1-(-4)} \\
& =\frac{2+7}{-1+4}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{9}{3} \\
\text { Slope of AB } & =3 \tag{i}\\
\text { Slope of BC } & =\frac{5-2}{8-(-1)} \\
& =\frac{3}{8+1} \\
& =\frac{3}{9} \\
& =\frac{1}{3} \tag{ii}\\
\text { Slope of BC } & =\frac{-4-(-7)}{5-(-4)} \\
\text { Slope of AD } & =\frac{-4+7}{5+4} \\
& =\frac{3}{9} \\
& =\frac{1}{3} \tag{iii}\\
\text { Slope of AD } & =\frac{-4-5}{5-8} \\
\text { Slope of CD } & =\frac{-9}{-3} \\
& =3 \tag{iv}
\end{align*}
$$

$$
\text { Slope of line } A B=\text { Slope of line } C D
$$

...[From (i) and (iv)]
\therefore Line $A B|\mid$ Line $C D$
\therefore Slope of line $\mathrm{BC}=$ Slope of line AD
...[From (ii) and (iii)]
\therefore Line $\mathrm{BC} \|$ Line AD
In
$\square A B C D, A B \| C D$...[From (v)] ...[From (vi)]
$\therefore \square \mathrm{ABCD}$ is a parallelogram. ...(Definition)
(6) Find k, if $R(1,-1), S(-2, k)$ and slope of line RS is -2 .
(2 marks)

Solution :

$$
\begin{aligned}
& \mathrm{R}(1,-1)=\left(x_{1}, y_{1}\right) \\
& S(-2, k)=\left(x_{2}, y_{2}\right) \\
& \text { Slope of line RS }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& -2=\frac{k-(-1)}{-2-1} \\
& \therefore \quad-2=\frac{k+1}{-3} \\
& \therefore \quad(-2) \times(-3)=k+1 \\
& \therefore \quad 6 \quad=k+1
\end{aligned}
$$

$$
\begin{array}{lcc}
\therefore & k & =6-1 \\
\therefore & k=5 &
\end{array}
$$

(7) Find k, if $B(k,-5), C(1,2)$ and slope of the line is 7.
(2 marks)
Solution :

$$
\begin{aligned}
& \mathrm{B}(k,-5)=\left(x_{1}, y_{1}\right) \\
& \mathrm{C}(1,2)=\left(x_{2}, y_{2}\right)
\end{aligned}
$$

Slope of line BC $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\therefore \quad 7=\frac{2-(-5)}{1-k}$
$\therefore \quad 7(1-k)=2+5$
$\therefore \quad 7(1-k)=7$
$\therefore \quad 1-k=\frac{7}{7}$
$\therefore 1-k=1$
$\therefore 1-1=k$
$\therefore \quad k=0$
(8) Find k, if $\mathrm{PQ} \| \mathrm{RS}$ and $\mathrm{P}(2,4), \mathrm{Q}(3,6), \mathrm{R}(3,1)$ and S(5,k).
(2 marks)

Solution :

Line PQ \| Line RS
...(Given)
\therefore Slope of line $\mathrm{PQ}=$ Slope of line RS

$$
\begin{aligned}
& \frac{6-4}{3-2}=\frac{k-1}{5-3} \\
\therefore & \quad \frac{2}{1}=\frac{k-1}{2} \\
\therefore & 2 \times 2=k-1 \\
\therefore & 4+1=k \\
\therefore & k=5
\end{aligned}
$$

Problem Set - 5 (Textbook Pg No. 123)

9) Find k if the line passing through points $P(-12,-3)$ and $Q(4, k)$ has slope $\frac{1}{2}$.
(2 marks)

Solution :

$\mathrm{P}(-12,-3), \mathrm{Q}(4, k)$
...(Given)
Slope of $\mathrm{PQ}=\frac{1}{2}$
...(Given)
Slope of $\mathrm{PQ}=\frac{k-(-3)}{4-(-12)}$
...(Given)
$\therefore \quad \frac{1}{2} \quad=\frac{k+3}{4+12}$

$$
\begin{array}{lc}
\therefore & \frac{16}{2}=k+3 \\
\therefore & k+3=8 \\
\therefore & k=8-3 \\
\therefore & k=5
\end{array}
$$

(10) Show that the line joining the points $A(4,8)$ and $B(5,5)$ is parallel to the line joining the points $C(2,4)$ and $D(1,7)$
(2 marks)
Solution :
$\mathrm{A}(4,8)$
B $(5,5)$
Slope of line $A B=\frac{8-5}{4-5}$

$$
\begin{equation*}
=\frac{3}{-1} \tag{i}
\end{equation*}
$$

\therefore Slope of line $\mathrm{AB}=-3$
C $(2,4)$
D $(1,7)$

$$
\begin{align*}
\text { Slope of line CD } & =\frac{7-4}{1-2} \\
& =\frac{3}{-1} \\
\therefore \text { Slope of line CD } & =-3 \tag{ii}
\end{align*}
$$

\therefore Slope of line $A B=$ Slope of line $C D$
...[From (i) and (ii)]
$\therefore \quad$ Line AB || Line CD
(11) Show that points $P(1,-2), Q(5,2), R(3,-1)$, $S(-1,-5)$ are the vertices of a parallelogram.
(4 marks)
Solution :

$P(1,-2), Q(5,2), R(3,-1), S(-1,-5)$
Slope of line $\mathrm{PQ}=\frac{2-(-2)}{5-1}=\frac{2+2}{4}=\frac{4}{4}=1$
Slope of line $\mathrm{QR}=\frac{2-(-1)}{5-3}=\frac{2+1}{2}=\frac{3}{2}$
Slope of line RS $=\frac{-1-(-5)}{3-(-1)}=\frac{-1+5}{3+1}=\frac{4}{4}=1$
Slope of line PS $=\frac{-2-(-5)}{1-(-1)}=\frac{-2+5}{1+1}=\frac{3}{2}$
Slope of line $\mathrm{PQ}=$ Slope of line RS
...[From (i) and (iii)]
\therefore Line PQ\| Line RS
Slope of line QR = Slope of line PS
...[From (ii) and (iv)]
$\therefore \quad$ Line QR \| Line PS
...[From (vi)]
In $\square \mathrm{PQRS}, \mathrm{PQ} \| \mathrm{RS}$
...[From (v)]
...[From (vi)]
$\therefore \quad \square \mathrm{PQRS}$ is a parallelogram $\quad .$. (Definition)
(12) Show that the \square PQRS formed by $P(2,1)$, $Q(-1,3), R(-5,-3), S(-2,-5)$ is a rectangle. (4 marks) Solution :

$P(2,1), Q(-1,3), R(-5,-3), S(-2,-5)$
Slope of line $\mathrm{PQ}=\frac{3-1}{-1-2}=\frac{2}{-3}=\frac{-2}{3}$
Slope of line $\mathrm{QR}=\frac{3-(-3)}{-1-(-5)}=\frac{3+3}{-1+5}=\frac{6}{4}=\frac{3}{2}$
Slope of line RS $=\frac{-5-(-3)}{-2-(-5)}=\frac{-5+3}{-2+5}=\frac{-2}{3}$
Slope of line PS $=\frac{1-(-5)}{2-(-2)}=\frac{1+5}{2+2}=\frac{6}{4}=\frac{3}{2}$
Slope of line $\mathrm{PQ}=$ Slope of line RS
...[From (i) and (iii)]
$\therefore \quad$ Line $\mathrm{PQ} \|$ Line RS
\therefore Slope of line QR $=$ Slope of line PS
...[From (ii) and (iv)]
$\therefore \quad$ Line QR\|Line PS
In $\square \mathrm{PQRS}$, side $\mathrm{PQ} \|$ side RS
...[From (v)]
$\therefore \quad$ side RS\|side PR ...[From (vi)]
\square PQRS is a parallelogram ...(vii)(Definition)
Using distance formula,

$$
\begin{aligned}
\mathrm{d}(\mathrm{P}, \mathrm{R}) & =\sqrt{[2-(-5)]^{2}+[1-(-3)]^{2}} \\
& =\sqrt{(2+5)^{2}+(1+3)^{2}} \\
& =\sqrt{7^{2}+4^{2}} \\
& =\sqrt{49+16} \\
\therefore \mathrm{~d}(\mathrm{P}, \mathrm{R}) & =\sqrt{65} \text { units } \\
\mathrm{d}(\mathrm{Q}, \mathrm{~S}) & =\sqrt{[-1-(-2)]^{2}+[3-(-5)]^{2}} \\
& =\sqrt{(-1+2)^{2}+(3+5)^{2}} \\
& =\sqrt{1^{2}+8^{2}}
\end{aligned}
$$

$$
\begin{align*}
& =\sqrt{1+64} \\
\therefore \mathrm{~d}(\mathrm{Q}, \mathrm{~S}) & =\sqrt{65} \text { units } \tag{ix}
\end{align*}
$$

In parallelogram PQRS,
diagonal $P R \cong$ diagonal QS ...[From (viii) and
$\therefore \square \mathrm{PQRS}$ is a rectangle ...(A parallelogram is a rectangle if its diagonals are congruent)
*(18) Find the type of the quadrilateral if points $A(-4,-2), B(-3,-7) C(3,-2)$ and $D(2,3)$ are joined serially.
(4 marks)

$\mathrm{A}(-4,-2), \mathrm{B}(-3,-7) \mathrm{C}(3,-2), \mathrm{D}(2,3)$
Slope of line $A B=\frac{-7-(-2)}{-3-(-4)}$

$$
=\frac{-7+2}{-3+4}
$$

$$
\begin{equation*}
=\frac{-5}{1} \tag{i}
\end{equation*}
$$

\therefore Slope of line $\mathrm{AB}=-5$
\therefore Slope of line BC $=\frac{5}{6}$
Slope of line CD $=\frac{-2-3}{3-2}$
Slope of line CD $\quad=\quad \frac{-5}{1}=-5$
Slope of line AD $=\frac{-2-3}{-4-2}$
$=\frac{-5}{-6}$
Slope of line AD $=\frac{5}{6}$
Slope of line $A B=$ Slope of line $C D$
...[From (i) and (iii)]
\therefore Line $\mathrm{AB} \|$ Line CD

Slope of line $B C=$ Slope of line $A D$
...[From (ii) and (iv)]
\therefore Line $\mathrm{BC} \|$ Line AD
In $\square \mathrm{ABCD}, \mathrm{AB} \| \mathrm{CD}$
$B C \| A D$
...[From (v)]
...[From (vi)]
$\therefore \quad \square \mathrm{ABCD}$ is a parallelogram.
(22) Find the slope of the diagonals of a quadrilateral with vertices $A(1,7), B(6,3) C(0,-3)$ and D $(-3,3)$.
(3 marks)
Solution :

$A(1,7), B(6,3) C(0,-3)$ and $D(-3,3)$
$\square \mathrm{ABCD}$ has two diagonals seg AC and seg BD.

$$
\begin{aligned}
\text { Slope of AC } & =\frac{7-(-3)}{1-0} \\
& =\frac{7+3}{1} \\
& =\frac{10}{1}
\end{aligned}
$$

\therefore Slope of AC = 10
Slope of BD $=\frac{3-3}{6-(-3)}$

$$
=\frac{0}{6+3}
$$

Slope of BD $=0$
$\therefore \quad$ Slope of BD $=0$

Problem Set - 5 (Textbook Pg No. 122)

MCQ's

(1) Fill in the blanks using correct alternatives
(1 mark each)
(1) Seg AB is parallel to Y -axis and co-ordinates of point A are $(1,3)$ then co-ordinates of point B can be \qquad
(A) $(3,1)$
(B) $(5,3)$
(C) $(3,0)$
(D) $(1,-3)$
(2) Out of the following, point \qquad . lies to the right of the origin on X -axis.
(a) $(-2,0)$
(b) $(0,2)$
(c) $(2,3)$
(d) $(2,0)$
(3) Distance of point $(-3,4)$ from the origin is \qquad
(A) 7
(B) 1
(C) 5
(D) -5
(4) A line makes an angle of 30° with the positive direction of X -axis. So the slope of the line is
\qquad
(A) $\frac{1}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) $\frac{1}{\sqrt{3}}$
(D) $\sqrt{3}$

Additional MCQ's

(5) What is the slope of line with indination 60 ?
(A) $\sqrt{3}$
(B) $\frac{1}{\sqrt{3}}$
(C) 1
(D) 0
(6) Find the inclination of a line with slope 1.
(A) 60°
(B) 45°
(C) 90°
(D) Can't say
(7) Line l is parallel to line m. It slopes of line l is $\frac{1}{2}$ then slope of line m is \qquad
(A) -2
(B) 0
(C) $\frac{1}{2}$
(D) Can't say
(8) What is slope of line passing through points $(4,6)$ and $(1,-2)$.
(A) $\frac{4}{3}$
(B) $\frac{3}{4}$
(C) $\frac{8}{5}$
(D) $\frac{8}{3}$
(9) Slope of X - axis is \qquad
(A) 0
(B) 1
(C) -1
(D) Not defined
(10) Slope of Y - axis is \qquad .
(A) 0
(B) 1
(C) -1
(D) Not defined
(11) Distance of point $\mathrm{A}(7,24)$ from the origin is \qquad
(A) 17
(B) -17
(C) 25
(D) Can not be found
(12) Find the co-ordinates of the point P which bisects seg having co-ordinates $(3,2)$ and $(5,-2)$ \qquad . .
(A) $(-3,5)$
(B) $(0,4)$
(C) $(4,0)$
(D) $(5,-3)$
(13) Find the co-ordinates of the point which divides line seg QR in the ratio $1: 2$ where $\mathrm{Q}(1,1)$ and $R(1,-2)$.
(A) $(-5,3)$
(B) $(1,0)$
(C) $(-3,2)$
(D) $(4,0)$
(14) In what ratio does the point $(1,6)$ divide the line segment joining the points $(3,6)$ and $(-5,6)$.
(A) $1: 3$
(B) $2: 3$
(C) $3: 1$
(D) $3: 2$

ANSWERS

(1)
(D) $(1,-3)$
(2) $(\mathrm{D})(2,0)$
(3) (C) 5
(4) (C) $\frac{1}{\sqrt{3}}$
(5) $(\mathrm{A}) \sqrt{3}$
(6) (B) 45°
(7) \quad (C) $\frac{1}{2}$
(8) (D) $\frac{8}{3}$
(9) $(\mathrm{A}) 0$
(10)
(D) Not defined
(11)
(C) 25
(12) $(\mathrm{C})(4,0)$
(13) (B) $(1,0)$
(14) (A) $1: 3$

PROBLEMS FOR PRACTICE

Based on Practice Set 5.1

(1) Find the distance between the given points.
(i) $\mathrm{A}(3,-4), \mathrm{B}(-5,6)$
(1 mark each)
(ii) $\mathrm{P}(10,-8), \mathrm{Q}(-3,-2)$
(iii) $\mathrm{K}(0,-5), \mathrm{L}(-5,0)$
(iv) $\mathrm{I}(3.5,6.8), \mathrm{J}(1.5,2.8)$
(2) Show that the point $(5,11)$ is equidistant from the points $(-5,13)$ and $(3,1)$.
(2 marks)
(3) Check whether points $(3,3),(-4,-1)$ and $(3,-5)$ are the vertices of an isosceles triangle. (2 marks)
(4) Find the relation between x and y, where point (x, y) is equidistant from $(2,-4)$ and $(-2,6)$.
(3 marks)
(5) Show that the point $(0,9)$ is equidistant from the point $(-4,1)$ and $(4,1)$
(2 marks)
(6) Find the coordinates of the point on Y-axis which is equidistant from the points $\mathrm{M}(6,5)$ and point $\mathrm{N}(-4,3)$.
(3 marks)
(7) Using distance formula, check whether following points are collinear or not.
(2 marks each)
(i) $\mathrm{L}(4,-1) \mathrm{M}(1,-3), \mathrm{N}(-2,-5)$
(ii) $\mathrm{A}(-5,4), \mathrm{B}(-2,-2), \mathrm{C}(3,-12)$
(8) Find the distance of point $Z(-2.4,-1)$, from the origin.
(2 marks)
(9) Show that the points $\mathrm{A}(4,7) \mathrm{B}(8,4)$ and $\mathrm{C}(7,11)$ are the vertices of a right angled triangle.
(3 marks)
(10) Show that $A(4,-1), B(6,0), C(7,-2)$ and $D(5,-3)$ are the vertices of a square.
(4 marks)
(11) Find the coordinates of the circumcentre of PQR if $\mathrm{P}(2,7), \mathrm{Q}(-5,8)$ and $\mathrm{R}(-6,1)$.
(12) Show that the points $(2,4),(2,6)$ and $(2+\sqrt{3}, 5)$ are the vertices of an equilateral triangle.
(3 marks)
(13) Find the coordinates of the circumcentre of $A B C$, if $A(2,3), B(4,-1)$ and $C(5,2)$. Also, find circumradius.
(3 marks)

Based on Practice Set 5.2

(14) Show that points $\mathrm{A}(1,-5), \mathrm{B}(-4,-8), \mathrm{C}(-1,-13)$ and $D(4,-10)$ are the vertices of a rhombus.
(4 marks)
(15) Find the coordinates of the point P which divides line segment QR in the ratio $\mathrm{m}: \mathrm{n}$ in the following examples.
(2 marks each)
(i) $\mathrm{Q}(-5,8), \quad \mathrm{R}(4,-4) \quad m: n=2: 1$
(ii) $\mathrm{Q}(-2,7), \quad \mathrm{R}(-2,-5) \quad m: n=1: 3$
(iii) $\mathrm{Q}(1,7), \quad \mathrm{R}(-3,1) \quad m: n=1: 2$
(iv) $\mathrm{Q}(6,-5), \quad \mathrm{R}(-10,2) \quad m: n=3: 4$
(v) $\mathrm{Q}(5,8), \quad \mathrm{R}(-7,-8) \quad m: n=4: 1$
(16) Find the coordinates of the midpoint of segment QR , if $\mathrm{Q}(2.5,-4.3)$ and $\mathrm{R}(-1.5,2.7)$
(2 marks)
(17) Find the coordinates of the midpoint P of seg $A B$, if $A(3.5,9.5)$ and $B(-1.5,0.5)$
(2 marks)
(18) In what ratio does the point $(1,3)$ divide line segment joining the points $(3,6)$ and $(-5,-6)$?
(3 marks)
(19) Find the lengths of the median of $A B C$ whose vertices are $A(7,-3), B(5,3), C(3,-1)$. (4 marks)
(20) Show that the line segment joining the points $(5,7),(3,9)$ and $(8,6),(0,10)$ bisect each other.
(4 marks)
(21) Segments $A B$ and $C D$ bisects each other at point M. If $A(4,3), B(-2,5), C(-3,5)$, then find coordinates of D.
(4 marks)
(22) Find the ratio in which the line segment joining the points $(6,4)$ and $(1,-7)$ is divided by X -axis.
(3 marks)
(23) Find the coordinates of the points which divide the line segment joining the points $(-2,2)$ and $(6,-6)$ in four equal parts.
(3 marks)
(24) Find the coordinates of the points which divide segment $A B$ into four equal parts, if $A(5,7)$ and $B(-3,-1)$
(4 marks)
(25) If $A-P-Q-B$, point P and Q trisects seg $A B$ and $A(3,1), Q(-1,3)$, then find coordinates of points B and P.
(4 marks)
(26) Find the coordinates of centroid G of ABC , if
(i) $\mathrm{A}(8,9), \mathrm{B}(4,5), \mathrm{C}(6,2) \quad$ (3 marks each)
(ii) $\mathrm{A}(11,8), \mathrm{B}(-6,5), \mathrm{C}(1,-28)$
(27) The origin 'O' is the centroid of ABC in which $A(-4,3) B(3, k)$ and $C(h, 5)$. Find h and k. (4 marks)
(28) Find the coordinates of the points dividing the segment joining $A(-5,7)$ and $B(11,-1)$ into four equal parts.
(4 marks)

Based on Practice Set 5.3

(29) Find the slope of a line which makes an angle with the positive X -axis.
(1 mark each)
(i) 0°
(ii) 30°
(iii) 45° (iv) 60°
(v) 90°
(30) Find the slope of the line passing through the points.
(2 marks each)
(i) $(-1,4)(3,-7)$
(ii) $(5,5),(1,6)$
(iii) $(1,7)(4,8)$
(iv) $(4,8),(5,5)$
(v) $(4,1)(2,-3)$
(vi) $(4,4),(3,5)$
(31) Using slope concept, check whether the following points are collinear.
(2 marks each)
(i) $(-2,-1)(4,0)(3,3)$
(ii) $(-2,-3),\left(\frac{33}{8}, 4\right)(5,5)$
(iii) $(4,4)(3,5)(-1,-1)$
(iv) $(2,10),(0,4)(3,13)$
(v) $(5,0)(10,-3)(-5,6)$
(vi) $(2,5),(5,7)(8,9)$
(32) Find the value of k, if $(5, k),(-3,1)$ and $(-7,-2)$ are collinear.
(3 marks)
(33) Find the value of k, if $(2,1)(4,3)$ and $(0, k)$ are collinear 1.
(3 marks)
(34) Find the value of k, if the slope of the line passing through $(2,5)$ and $(k, 3)$ is 2 .
(2 marks)
(35) $\mathrm{P}(3,4), \mathrm{Q}(7,2)$ and $\mathrm{R}(-2,-1)$ are the vertices of PQR. Write down the slope of each side of the triangle.
(4 marks)
(36) Show that line joining $(4,-1)$ and $(6,0)$ is parallel to line joining $(7,-2)$ and $(5,-3)$. (4 marks)
(37) Show that $\square \mathrm{ABCD}$ is a parallelogram, if $\mathrm{A}(-1,2)$, $B(-5,-6) C(3,-2)$ and $D(7,6)$
(38) Show that $\mathrm{P}(3,4), \mathrm{Q}(7,-2), \mathrm{R}(1,1)$ and $\mathrm{S}(-3,7)$ are the vertices of a parallelogram.

ANSWERS

(1) (i) $2 \sqrt{41}$ (ii) $\sqrt{205}$ (iii) $5 \sqrt{2}$ (iv) $2 \sqrt{5}$
(4) $5 y=x+5$
(6) $(0,9)$
(7) (i) collinear
(ii) non-collinear
(8) 2.6 units
(11) $(-2,4)$
(13) $(3,1)$ circumradius $=\sqrt{5}$ units
(15)
$\begin{array}{ll}\text { (i) }(1,0) & \text { (ii) }(-2,4) \text { (iii) }\left(-\frac{1}{3}, 5\right)\end{array}$
(iv) $\left(-\frac{6}{7},-2\right)$
(v) $\left(\frac{23}{5},-\frac{24}{5}\right)$
(16) $(0.5,-0.8)$
(17) $(1,5)$
(18) $1: 3$
(19) $5,5, \sqrt{10}$
$(21)(5,3)$
(22) $4: 7$
(23)
$(0,0)(2,-2)(4,-4)(24)(3,5)(1,3)(-1,1)$
$(25) \quad(-3,4)(1,2)$
(26) (i) $(6,5.33)$ (ii) $(2,-5)$
(27) $h=1, k=-8$
$(28)(-1,5)(3,3)(7,1)$
(29)
(i) $0 \quad$ (ii) $\frac{1}{\sqrt{3}}$
(iii) $1 \quad$ (iv) $\sqrt{3}$
(v) not defined
(30)
(i) $-1 \frac{1}{4}$
(ii) $-\frac{1}{4}$
(iii) $\frac{1}{3}$
(iv) $-3 \quad$ (v) 2
(vi) -1
(31)
(ii), (iv), (v), (vi) are collinear.
(32) 7
(33) -1
(34) 1
(35) $-\frac{1}{2}, \frac{1}{3}, 1$

ASSIGNMENT - 5

Time : 1 Hr .
Q.1. A. Choose the proper alternative answer for the questions given below:
(1) Distance of point $(-3,4)$ from the origin is \qquad
(A) 7
(B) 1
(C) 5
(D) -5
(2) Line l is parallel to line m. If slope of line l is $\frac{1}{2}$ then slope of line m is
(A) -2
(B) 0
(C) $\frac{1}{2}$
(D) Can't say
Q.1. B. Solve the following questions:
(1) Slope of a line is $\sqrt{3}$. Find its inclination.
(2) Find the distance between $(2,3)$ and $(4,1)$.
Q.2. Perform any one of the following activities:
(1) Seg AB is a dimeter of a circle with centre $\mathrm{P}(1,2)$. If $\mathrm{A}(-4,2)$, then find the co-ordinates of point B .
(2) If $\mathrm{P}-\mathrm{T}-\mathrm{Q}$ and $\mathrm{P}(-3,10), \mathrm{Q}(6,-8)$ and $\mathrm{T}(-1,6)$, then find the ratio in which point T divides seg PQ (Complete the following activity)
Let point T divides seg PQ in the ratio $m: n$
$\mathrm{P}(-3,10)=\left(x_{1}, y_{1}\right) \quad \mathrm{Q}(6,-8)=\left(x_{2}, y_{2}\right) \mathrm{T}(-3,10)=(x, y)$
By section formula,

$\therefore \quad-3(\square+\square)=\square \times \square+\square \times \square$

$\therefore \quad-3 \square-\square \times \square=\square \times 3 \square$
$\therefore \quad \square m=\square n$
$\therefore m: n=\square: \square$
(3) $A(-7,6), B(2-2)$ and $B(8,5)$ are co-ordinates of vertices of $\triangle A B C$. Find the co-ordinates of centroid of $\triangle \mathrm{ABC}$.
Q.3. Solve any two of the folllowing questions:
(1) Decide $(2,10),(0,4)$ and $(3,13)$ are collinear or not.
(2) Line PQ II Line RS. P $(2,4), \mathrm{Q}(3,6) \mathrm{R}(3,1)$ and $\mathrm{S}(5, \mathrm{~K})$.
(3) Prove that $(\sqrt{2}, \sqrt{2}),(-\sqrt{2},-\sqrt{2})$ and $(-\sqrt{6}, \sqrt{6})$ are the vertices of an equilateral triangle. Q.4. Attempt the following:
(1) Find the co-ordinates of circumcentre of $\triangle \mathrm{ABC}$ if $\mathrm{A}(7,1), \mathrm{B}(3,5)$ and $\mathrm{C}(2,0)$
(2) Find the possible co-ordinates of the fourth vertex of the parallelogram, if three of its vertices are $(5,6),(1,-2)$ and $(-3,2)$.
(3) Find the o-ordinates of the points which divide the line segment joining the points $(-2,2)$ and $(6,-6)$ into four equal parts.
... INDEX ...

Pr. S 6.1-1	Pg 115	Pr. S 6.1-6 (iii) Pg 118	Pr. S 6.1-6 (x) Pg 119	Pr. S 6.2-5	Pg 124	PS 6	- 5 (ii) Pg 120	PS 6	- 5 (ix)	Pg 121
Pr.S 6.1-2	Pg 115	Pr. S 6.1-6 (iv) Pg 118	Pr. S 6.1-6 (xi) Pg 119	Pr. S 6.2-6	Pg 125	PS 6	- 5 (iii) Pg 120	PS 6	-5 (x)	Pg 121
Pr. S 6.1-3	Pg 116	Pr. S 6.1-6 (v) Pg 118	Pr. S 6.1-6 (xii) Pg 120	PS 6-1	Pg 126	PS 6	- 5 (iv) Pg 120	PS 6	-6	Pg 122
Pr.S 6.1-4	Pg 117	Pr. S 6.1-6 (vi) Pg 118	Pr.S 6.2-1 Pg 122	PS 6 -2	Pg 115	PS 6	- 5 (v) Pg 120	PS 6	- 7	Pg 123
Pr.S 6.1-5	Pg 117	Pr. S 6.1-6 (vii) Pg 119	Pr.S 6.2-2 Pg 122	PS $6-3$	Pg 116	PS 6	- 5 (vi) Pg 120	PS 6	-8	Pg 123
Pr. S 6.1-6 (i)	Pg 118	Pr. S 6.1-6 (viii) Pg 119	Pr.S 6.2-3 Pg 123	PS 6 -4	Pg 116	PS 6	- 5 (vii) Pg 121	PS 6	- 9	Pg 125
Pr. S 6.1-6 (ii)	Pg 118	Pr. S 6.1-6 (ix) Pg 119	Pr. S 6.2-4 Pg 124	PS 6 - 5 (i)	Pg 120	PS 6	- 5 (viii) Pg 121	PS 6	- 10	Pg 125

Points to Remember:

- Introduction:

The word 'trigonometry' is derived from Greek words Tri meaning three, gona meaning sides and metron meaning measure.
Thus, trigonometry deals with measurements of sides and angles of a right angled triangle.
In $\triangle \mathrm{ABC}$,
$\mathrm{m} \angle \mathrm{ABC}=90$

(1) seg AC is the hypotenuse.
(2) For $\angle A C B$, seg $A B$ is the opposite side.
(3) For $\angle A C B$, seg $B C$ is the adjacent side.

- Trigonometric ratios of an acute angle in a right angled triangle:
For any acute angle in a right angled triangle, the three above mentioned sides, can be arranged two at a time, in six different ratios. These ratios are called Trigonometric ratios.
In $\triangle A B C, m \angle A B C=90, m \angle A C B=\theta$

Sine ratio of $\theta=\sin \theta=\frac{\text { Opposite side }}{\text { Hypotenuse }}=\frac{\mathrm{AB}}{\mathrm{AC}}$
Cosine ratio of $\theta=\cos \theta=\frac{\text { Adjacent side }}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}}$
Tangent ratio of $\theta=\tan \theta=\frac{\text { Opposite side }}{\text { Adjacent side }}=\frac{\mathrm{AB}}{\mathrm{BC}}$
Cosecantratio of $\theta=\operatorname{cosec} \theta=\frac{\text { Hypotenuse }}{\text { Opposite side }}=\frac{\mathrm{AC}}{\mathrm{AB}}$
Secant ratio of $\theta=\sec \theta=\frac{\text { Hypotenuse }}{\text { Adjacent side }}=\frac{\mathrm{AC}}{\mathrm{BC}}$
Cotangent ratio $\theta=\cot \theta=\frac{\text { Adjacent side }}{\text { Opposite side }}=\frac{\mathrm{BC}}{\mathrm{AB}}$

- Relations between Trigonometric Ratios:
(1) $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$
(2) $\sec \theta=\frac{1}{\cos \theta}$
(3) $\cot \theta=\frac{1}{\tan \theta}$
(4) $\tan \theta=\frac{\sin \theta}{\cos \theta}$
(5) $\cot \theta=\frac{\cos \theta}{\sin \theta}$
- Trigonometric Identities:
(1) $\sin ^{2} \theta+\cos ^{2} \theta=1$
(2) $1+\tan ^{2} \theta=\sec ^{2} \theta$
(3) $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$

Table of Trigonometric Ratios for Angles 0,30 , 45,60 and 90

Trigonometric Ratios	Ange θ				
	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\boldsymbol{\operatorname { t a n } \theta}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not defined
$\boldsymbol{\operatorname { c o s e c } \theta = \frac { 1 } { \operatorname { s i n } } \theta}$	Not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\boldsymbol{\operatorname { s e c } \theta = \frac { \mathbf { 1 } } { \boldsymbol { \operatorname { c o s } } \theta }}$	1 $\boldsymbol{\operatorname { c o t }} \theta=\frac{\mathbf{1}}{\boldsymbol{\operatorname { t a n }} \theta}$	Not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$
2	Not defined				

MASTER KEY QUESTION SET - 6

Practice Set - 6.1 (Textbook Page No. 131)

(1) If $\sin \theta=\frac{7}{25}$ then find $\cos \theta$ and $\tan \theta$. (2 marks) Solution :

$$
\begin{array}{ll}
& \sin \theta=\frac{7}{25} \\
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
\therefore & \left(\frac{7}{25}\right)^{2}+\cos ^{2} \theta=1 \\
\therefore & \cos ^{2} \theta=1-\frac{49}{625} \\
\therefore & \cos ^{2} \theta=\frac{625-49}{625} \\
\therefore & \cos ^{2} \theta=\frac{576}{625} \\
\therefore & \cos \theta=\frac{24}{25} \\
\therefore & \tan \theta=\frac{7}{25} \div \frac{24}{25} \\
\therefore & \tan \theta=\frac{7}{25} \times \frac{25}{24} \\
\therefore & \tan \theta=\frac{7}{24}
\end{array}
$$

Problem Set - 6 (Textbook Page No. 138)
(2) If $\sin \theta=\frac{11}{61}$ find the values of cosq using trigonometric identity.
(2 marks)

Solution :

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \therefore \quad\left(\frac{11}{61}\right)^{2}+\cos ^{2} \theta=1 \\
& \therefore \quad \cos ^{2} \theta=1-\frac{121}{3721} \\
& \quad \cos ^{2} \theta=\frac{3721-121}{3721} \\
& \therefore \quad \cos ^{2} \theta=\frac{3600}{3721} \\
& \therefore \quad \cos \theta=\frac{\mathbf{6 0}}{\mathbf{6 1}}
\end{aligned}
$$

...(Taking square roots)

Practice Set - 6.1 (Textbook Page No. 131)

(2) If $\tan \theta=\frac{3}{4}$ then find the value of $\sec \theta$ and $\boldsymbol{\operatorname { c o s }} \theta$.
(2 marks)

Solution :

$$
\begin{array}{ll}
& \tan \theta=\frac{3}{4} \\
& 1+\tan ^{2} \theta=\sec ^{2} \theta \\
\therefore & 1+\left(\frac{3}{4}\right)^{2}=\sec ^{2} \theta \\
\therefore & 1+\frac{9}{16}=\sec ^{2} \theta \\
\therefore & \frac{16+9}{16}=\sec ^{2} \theta \\
\therefore & \sec ^{2} \theta=\frac{25}{16} \\
\therefore & \sec \theta=\frac{5}{4} \\
\therefore & \cos \theta=1 \div \frac{5}{4} \\
\therefore & \cos \theta=\frac{1}{\sec \theta} \\
\therefore & \cos \theta=\frac{4}{5} \\
\hline & \quad \cos \\
\therefore &
\end{array}
$$

...(Taking square roots)

Problem Set - 6 (Textbook Page No. 138)

(3) If $\tan \theta=2$ then find values of other trigonometric ratios.
(3 marks)

Solution :

$$
\begin{aligned}
& \tan \theta=2 \\
& 1+\tan ^{2} \theta=\sec ^{2} \theta \\
& \therefore 1+2^{2}=\sec ^{2} \theta \\
& \therefore \sec ^{2} \theta=1+4 \\
& \therefore \sec ^{2} \theta=5 \\
& \therefore \sec \theta=\sqrt{5} \\
& \cos \theta=\frac{1}{\sec \theta} \\
& \therefore \quad \cos \theta=\frac{1}{\sqrt{5}} \\
& \tan \theta=\frac{\sin \theta}{\cos \theta} \\
& \therefore \sin \theta=\tan \theta \times \cos \theta \\
& \therefore \quad \sin \theta=2 \times \frac{1}{\sqrt{5}} \\
& \therefore \sin \theta=\frac{2}{\sqrt{5}} \\
& \operatorname{cosec} \theta=\frac{1}{\sin \theta} \\
& \therefore \operatorname{cosec} \theta=\frac{\sqrt{5}}{2} \\
& \cot \theta=\frac{1}{\tan \theta} \\
& \therefore \quad \cot \theta=\frac{\mathbf{1}}{\mathbf{2}}
\end{aligned}
$$

Practice Set - 6.1 (Textbook Page No. 131)

(3) If $\cot \theta=\frac{40}{9}$, find the value of $\operatorname{cosec} \theta$ and
$\sin \theta$. (2 marks)

Solution :

$$
\begin{aligned}
& \cot \theta=\frac{40}{9} \\
& \begin{aligned}
\operatorname{cosec}^{2} \theta & =1+\cot ^{2} \theta \\
& =1+\left(\frac{40}{9}\right)^{2} \\
& =1+\frac{1600}{81}
\end{aligned}
\end{aligned}
$$

$$
=\frac{81+1600}{81}
$$

$\therefore \quad \operatorname{cosec}^{2} \theta=\frac{1681}{81}$
$\therefore \quad \operatorname{cosec} \theta=\frac{41}{9}$
...(Taking square roots)

$$
\sin \theta=\frac{1}{\operatorname{cosec} \theta}
$$

$\therefore \sin \theta=1 \frac{41}{9}$
$\therefore \sin \theta=1 \times \frac{9}{41}$
$\therefore \quad \sin \theta=\frac{9}{41}$

Problem Set - 6 (Textbook Page No. 138)

(4) If $\sec \theta=\frac{\mathbf{1 3}}{\mathbf{1 2}}$, find values of other trigonometric ratios.

(3 marks)

Solution :

$$
\begin{aligned}
& \sec \theta=\frac{13}{12} \\
& \cos \theta=\frac{1}{\sec \theta} \\
& \therefore \quad \cos \theta=\frac{\mathbf{1 2}}{\mathbf{1 3}}
\end{aligned}
$$

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

$$
\therefore \quad \sin ^{2} \theta+\left(\frac{12}{13}\right)^{2}=1
$$

$$
\therefore \quad \sin ^{2} \theta=1-\frac{144}{169}
$$

$$
\therefore \quad \sin ^{2} \theta=\frac{169-144}{169}
$$

$$
\therefore \quad \sin ^{2} \theta=\frac{25}{169}
$$

$$
\therefore \quad \sin \theta=\frac{5}{13}
$$

...(Taking square roots)

$$
\operatorname{cosec} \theta=\frac{1}{\sin \theta}
$$

$$
\therefore \quad \operatorname{cosec} \theta=\frac{13}{5}
$$

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

$$
=\frac{5}{13} \quad \frac{12}{13}
$$

$$
\begin{aligned}
& =\frac{5}{13} \times \frac{13}{12} \\
\therefore \quad \tan \theta & =\frac{5}{12} \\
\cot \theta & =\frac{1}{\tan \theta} \\
\therefore \cot \theta & =\frac{\mathbf{1 2}}{\mathbf{5}}
\end{aligned}
$$

Practice Set - 6.1 (Textbook Page No. 131)

(4) If $5 \sec \theta-12 \operatorname{cosec} \theta=0$, find the values of $\sec \theta$, $\boldsymbol{\operatorname { c o s }} \theta$ and $\boldsymbol{\operatorname { s i n }} \theta$.
(3 marks)

Solution :

$$
\begin{aligned}
& 5 \sec \theta-12 \operatorname{cosec} \theta=0 \\
& \therefore 5 \sec \theta=12 \operatorname{cosec} \theta \\
& \therefore \quad \frac{5}{\cos \theta}=\frac{12}{\sin \theta} \\
& \therefore \quad \frac{\sin \theta}{\cos \theta}=\frac{12}{5} \\
& \therefore \quad \tan \theta=\frac{12}{5} \\
& \sec ^{2} \theta=1+\tan ^{2} \theta \\
& =1+\left(\frac{12}{5}\right)^{2} \\
& =1+\frac{144}{25} \\
& =\frac{25+144}{25} \\
& \sec ^{2} \theta=\frac{169}{25} \\
& \therefore \quad \sec \theta=\frac{13}{5} \\
& \cos \theta=\frac{1}{\sec \theta} \\
& \therefore \cos \theta=1 \frac{13}{5} \\
& \therefore \cos \theta=1 \times \frac{5}{13} \\
& \therefore \quad \cos \theta=\frac{5}{13}
\end{aligned}
$$

$$
\begin{aligned}
\tan \theta & =\frac{\sin \theta}{\cos \theta} \\
\therefore \sin \theta & =\tan \theta \times \cos \theta \\
\therefore \sin \theta & =\frac{12}{5} \times \frac{5}{13} \\
\therefore \quad \sin \theta & =\frac{\mathbf{1 2}}{\mathbf{1 3}}
\end{aligned}
$$

$$
\begin{equation*}
\text { If } \tan \theta=\mathbf{1} \text { then find the value of } \frac{\sin \theta+\cos \theta}{\sec \theta+\operatorname{cosec} \theta} \tag{5}
\end{equation*}
$$

Solution :

$$
\begin{aligned}
& \tan \theta=1 \\
& \sec ^{2} \theta=1+\tan ^{2} \theta \\
& =1+(1)^{2} \\
& =1+1 \\
& \therefore \sec ^{2} \theta=2 \\
& \therefore \sec \theta=\sqrt{2} \\
& \text {...(Taking square roots) } \\
& \cos \theta=\frac{1}{\sec \theta} \\
& \therefore \cos \theta=\frac{1}{\sqrt{2}} \\
& \tan \theta=1 \\
& \therefore \frac{\sin \theta}{\cos \theta}=1 \\
& \therefore \sin \theta=\cos \theta \\
& \therefore \sin \theta=\frac{1}{\sqrt{2}} \\
& \operatorname{cosec} \theta=\frac{1}{\sin \theta} \\
& \therefore \operatorname{cosec} \theta=\sqrt{2} \\
& \frac{\sin \theta+\cos \theta}{\sec \theta+\operatorname{cosec} \theta}=\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right) \div(\sqrt{2}+\sqrt{2}) \\
& =\frac{2}{\sqrt{2}} \quad 2 \sqrt{2} \\
& \therefore \frac{\sin \theta+\cos \theta}{\sec \theta+\operatorname{cosec} \theta}=\frac{2}{\sqrt{2}} \times \frac{1}{2 \sqrt{2}} \\
& \therefore \frac{\sin \theta+\cos \theta}{\sec \theta+\operatorname{cosec} \theta}=\frac{\mathbf{1}}{2}
\end{aligned}
$$

(6) Prove that:
(2 marks)
(i) $\frac{\sin ^{2} \theta}{\cos \theta}+\cos \theta=\boldsymbol{\operatorname { s e c }} \theta$

Solution :
(ii) $\cos ^{2} \theta\left(1+\tan ^{2} \theta\right)=1$
(2 marks)

Solution :

$$
\begin{aligned}
\text { Proof: LHS } & =\cos ^{2} \theta\left(1+\tan ^{2} \theta\right) \\
& =\cos ^{2} \theta \times \sec ^{2} \theta \quad \ldots\left(\because 1+\tan ^{2} \theta=\sec ^{2} \theta\right) \\
& =\cos ^{2} \theta \times \frac{1}{\cos ^{2} \theta} \\
& =1 \\
& =\text { R.H.S. }
\end{aligned}
$$

$$
\therefore \quad \cos ^{2} \theta\left(1+\tan ^{2} \theta\right)=1
$$

(iii) $\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\boldsymbol{\operatorname { s e c } \theta - \boldsymbol { \operatorname { t a n } } \theta}$
(3 marks)

Solution :

$$
\text { Proof: } \begin{aligned}
\text { LHS } & =\sqrt{\frac{1-\sin \theta}{1+\sin \theta}} \\
& =\sqrt{\frac{(1-\sin \theta)(1-\sin \theta)}{(1+\sin \theta)(1-\sin \theta)}} \\
& =\sqrt{\frac{(1-\sin \theta)^{2}}{1-\sin ^{2} \theta}}\left[\because(a+b)(a-b)=a^{2}-b^{2}\right] \\
& =\sqrt{\frac{(1-\sin \theta)^{2}}{1-\sin ^{2} \theta}} \\
& =\sqrt{\frac{(1-\sin \theta)^{2}}{\cos { }^{2} \theta}} \quad \quad\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right. \\
& \therefore \frac{\left.\therefore 1-\sin ^{2} \theta=\cos ^{2} \theta\right)}{\cos \theta}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Proof: LHS }=\frac{\sin ^{2} \theta}{\cos \theta}+\cos \theta \\
& =\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta} \\
& =\frac{1}{\cos \theta} \quad\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right) \\
& =\sec \theta \\
& =\text { R.H.S. } \\
& \therefore \quad \frac{\sin ^{2} \theta}{\boldsymbol{\operatorname { c o s }} \theta}+\boldsymbol{\operatorname { c o s }} \theta=\boldsymbol{\operatorname { s e c }} \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta} \\
& =\sec \theta-\tan \theta \\
& =\text { R.H.S. } \\
\therefore & \sqrt{\frac{\mathbf{1 - \operatorname { s i n }} \theta}{1+\sin \theta}}=\mathbf{\operatorname { s e c }} \theta-\boldsymbol{\operatorname { t a n }} \theta
\end{aligned}
$$

(iv) $(\sec \theta-\cos \theta)(\cot \theta+\tan \theta)=\boldsymbol{\operatorname { t a n }} \theta \cdot \sec \theta \quad$ (3 marks)

Solution :

Proof: LHS $=(\sec \theta-\cos \theta)(\cot \theta+\tan \theta)$

$$
\begin{aligned}
& =\left(\frac{1}{\cos \theta}-\cos \theta\right)\left(\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}\right) \\
& =\left(\frac{1-\cos ^{2} \theta}{\cos \theta}\right)\left(\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos \theta \cdot \sin \theta}\right) \\
& =\frac{\sin ^{2} \theta}{\cos \theta} \times \frac{1}{\cos \theta \cdot \sin \theta}\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right. \\
& =\frac{\sin \theta}{\cos \theta} \times \frac{1}{\cos \theta} \\
& \left.=\tan \theta \times \cos \theta=\sin ^{2} \theta\right) \\
& =\text { R.H.S. }
\end{aligned}
$$

$$
\therefore \quad(\sec \theta-\cos \theta)(\cot \theta+\tan \theta)=\tan \theta \cdot \sec \theta
$$

(v) $\boldsymbol{\operatorname { c o t }} \theta+\boldsymbol{\operatorname { t a n }} \theta=\boldsymbol{\operatorname { c o s e c }} \theta \cdot \sec \theta$
(2 marks)
Solution :

$$
\begin{aligned}
\text { LHS } & =\cot \theta+\tan \theta \\
& =\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta} \\
& =\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta \cdot \cos \theta} \\
& =\frac{1}{\sin \theta \cdot \cos \theta} \quad\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right) \\
& =\operatorname{cosec} \theta \cdot \sec \theta \\
& =\text { R.H.S. }
\end{aligned}
$$

$$
\therefore \quad \cot \theta+\tan \theta=\operatorname{cosec} \theta \cdot \sec \theta
$$

(vi) $\frac{1}{\boldsymbol{\operatorname { s e c }} \theta-\boldsymbol{\operatorname { t a n }} \theta}=\boldsymbol{\operatorname { s e c }} \theta+\boldsymbol{\operatorname { t a n }} \theta$
(2 marks)
Solution :

$$
\begin{aligned}
\text { LHS } & =\frac{1}{\sec \theta-\tan \theta} \\
& =\frac{1 \times(\sec \theta+\tan \theta)}{(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)} \\
& =\frac{\sec \theta+\tan \theta}{\sec ^{2} \theta-\tan ^{2} \theta} \\
& =\frac{\sec \theta+\tan \theta}{1} \quad\binom{\sec ^{2} \theta=1+\tan ^{2} \theta}{\therefore \sec ^{2} \theta-\tan ^{2} \theta=1}
\end{aligned}
$$

$$
\begin{aligned}
& =\text { R.H.S. } \\
\therefore \quad & \frac{1}{\sec \theta-\tan \theta}=\sec \theta+\tan \theta
\end{aligned}
$$

(vii) $\sin ^{4} \theta-\cos ^{4} \theta=1-2 \cos ^{2} \theta$
(3 marks)

Solution :

Proof: LHS $=\sin ^{4} \theta-\cos ^{4} \theta$

$$
\begin{aligned}
& =\left(\sin ^{2} \theta\right)^{2}-\left(\cos ^{2} \theta\right)^{2} \\
& =\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\left(\sin ^{2} \theta-\cos ^{2} \theta\right) \\
& =1 \quad\left(\sin ^{2} \theta-\cos ^{2} \theta\right)\binom{\sin ^{2} \theta+\cos ^{2} \theta=1}{\therefore \sin ^{2} \theta=1-\cos ^{2} \theta} \\
& =1-\cos ^{2} \theta-\cos ^{2} \theta \\
& =1-2 \cos ^{2} \theta \\
& =\text { R.H.S. } \\
\therefore \quad & \sin ^{4} \theta-\cos ^{4} \theta=1-2 \cos ^{2} \theta
\end{aligned}
$$

(viii) $\boldsymbol{\operatorname { s e c }} \theta+\boldsymbol{\operatorname { t a n }} \theta=\frac{\boldsymbol{\operatorname { c o s }} \theta}{\mathbf{1 - \boldsymbol { \operatorname { s i n } }} \theta}$
(3 marks)

Solution :

Proof: LHS $=\sec \theta+\tan \theta$

$$
\begin{aligned}
& =\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta} \\
& =\frac{1+\sin \theta}{\cos \theta} \\
& =\frac{(1+\sin \theta)(1-\sin \theta)}{\cos \theta(1-\sin \theta)} \\
& =\frac{1-\sin ^{2} \theta}{\cos \theta(1-\sin \theta)} \\
& =\frac{\cos ^{2} \theta}{\cos \theta(1-\sin \theta)} \quad\binom{\sin ^{2} \theta+\cos ^{2} \theta=1}{\therefore \cos ^{2} \theta=1-\sin ^{2} \theta} \\
& =\frac{\cos \theta}{1-\sin \theta} \\
& =\text { R.H.S. }
\end{aligned}
$$

$$
\therefore \quad \sec \theta+\tan \theta=\frac{\cos \theta}{1-\sin \theta}
$$

(ix) If $\tan \theta+\frac{1}{\tan \theta}=2$ then show that prove

$$
\tan ^{2} \theta+\frac{1}{\tan ^{2} \theta}=2
$$

(2 marks)

Solution :

Proof: $\quad \tan \theta+\frac{\mathbf{1}}{\boldsymbol{\operatorname { t a n }} \theta}=2$
squaring both sides,
$\left(\tan \theta+\frac{1}{\tan \theta}\right)^{2}=4$
$\therefore \quad \tan ^{2} \theta+2 \tan \theta \frac{1}{\tan \theta}+\frac{1}{\tan ^{2} \theta}=4$

$$
\begin{aligned}
& \therefore \quad \tan ^{2} \theta+2+\frac{1}{\tan ^{2} \theta}=4 \\
& \therefore \quad \tan ^{2} \theta+\frac{1}{\tan ^{2} \theta}=4-2 \\
& \therefore \quad \tan ^{2} \theta+\frac{1}{\tan ^{2} \theta}=2
\end{aligned}
$$

(x) $\frac{\tan \mathrm{A}}{\left(1+\tan ^{2} \mathrm{~A}\right)^{2}}+\frac{\cot \mathrm{A}}{\left(1+\cot ^{2} \mathrm{~A}\right)^{2}}=\sin \mathrm{A} \cos \mathrm{A}$. $(3$ marks)

Solution :

$$
\begin{aligned}
& \text { Proof: LHS }=\frac{\tan \mathrm{A}}{\left(1+\tan ^{2} \mathrm{~A}\right)^{2}}+\frac{\cot \mathrm{A}}{\left(1+\cot ^{2} \mathrm{~A}\right)^{2}} \\
& =\frac{\tan \mathrm{A}}{\left(\sec ^{2} \mathrm{~A}\right)^{2}}+\frac{\cot \mathrm{A}}{\left(\operatorname{cosec}^{2} \mathrm{~A}\right)^{2}}\binom{\because 1+\tan ^{2} \mathrm{~A}=\sec ^{2} \mathrm{~A}}{\text { and } 1+\cot ^{2} \mathrm{~A}=\operatorname{cosec}^{2} \mathrm{~A}} \\
& =\frac{\tan \mathrm{A}}{\sec ^{4} \mathrm{~A}}+\frac{\cot \mathrm{A}}{\operatorname{cosec}^{4} \mathrm{~A}} \\
& =\tan \mathrm{A} \cdot \cos ^{4} \mathrm{~A}+\cot \mathrm{A} \cdot \sin ^{4} \mathrm{~A} \\
& =\frac{\sin A}{\cos A} \cos ^{4} A+\frac{\cos A}{\sin A} \cdot \sin ^{4} A \\
& =\sin A \cdot \cos ^{3} A+\cos A \cdot \sin ^{3} A \\
& =\sin \mathrm{A} \cdot \cos \mathrm{~A}\left(\cos ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~A}\right) \\
& =\sin A \cdot \cos A 1 \quad\left[\because \sin ^{2} A+\cos ^{2} A=1\right] \\
& =\sin \mathrm{A} \cdot \cos \mathrm{~A} \\
& =\text { R.H.S. } \\
& \therefore \frac{\tan A}{\left(1+\tan ^{2} A\right)^{2}}+\frac{\cot A}{\left(1+\cot ^{2} A\right)^{2}}=\sin A \cos A
\end{aligned}
$$

(xi) $\sec ^{4} A\left(1-\sin ^{4} A\right)-2 \tan ^{2} A=1$.
(3 marks)

Solution :

Proof: LHS $=\sec ^{4} \mathrm{~A}\left(1-\sin ^{4} \mathrm{~A}\right)-2 \tan ^{2} \mathrm{~A}$

$$
\begin{aligned}
&=\sec ^{4} \mathrm{~A}\left(1+\sin ^{2} \mathrm{~A}\right)\left(1-\sin ^{2} \mathrm{~A}\right)-2 \tan ^{2} \mathrm{~A} \\
&=\sec ^{4} \mathrm{~A}\left(1+\sin ^{2} \mathrm{~A}\right) \quad \cos ^{2} \mathrm{~A}-2 \tan ^{2} \mathrm{~A} \\
&\binom{\sin ^{2} \theta+\cos ^{2} \theta=1}{\therefore 1-\sin ^{2} \theta=\cos ^{2} \theta} \\
&=\frac{1}{\cos ^{4} \mathrm{~A}}\left(1+\sin ^{2} \mathrm{~A}\right) \cos ^{2} \mathrm{~A}-\frac{2 \sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}} \\
&=\frac{1+\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}}-\frac{2 \sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}} \\
&=\frac{1+\sin ^{2} \mathrm{~A}-2 \sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}} \\
&=\frac{1-\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}} \quad\binom{\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1}{\therefore 1-\sin ^{2} \mathrm{~A}=\cos ^{2} \mathrm{~A}} \\
&=\frac{\cos ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}} \\
&=1 \\
&=\text { R.H.S. } \\
& \therefore \quad \sec
\end{aligned}
$$

(xii) $\frac{\boldsymbol{\operatorname { t a n }} \theta}{\boldsymbol{\operatorname { s e c }} \theta-\mathbf{1}}=\frac{\boldsymbol{\operatorname { t a n }} \theta+\boldsymbol{\operatorname { s e c }} \theta+\mathbf{1}}{\boldsymbol{\operatorname { t a n }} \theta+\boldsymbol{\operatorname { s e c }} \theta-1}$
(3 marks)
Solution :
Proof: $\quad 1+\tan ^{2} \theta=\sec ^{2} \theta$
$\therefore \tan ^{2} \theta=\sec ^{2} \theta-1$
$\therefore \tan \theta \tan \theta=(\sec \theta+1)(\sec \theta-1)$
$\therefore \frac{\tan \theta}{\sec \theta-1}=\frac{\sec \theta+1}{\tan \theta}$
$\therefore \frac{\tan \theta}{\sec \theta-1}=\frac{\tan \theta+\sec \theta+1}{\sec \theta-1+\tan \theta} \quad \cdots . . . \begin{array}{r}\text { equal ratios) }\end{array}$
$\therefore \frac{\boldsymbol{\operatorname { t a n }} \theta}{\boldsymbol{\operatorname { s e c }} \theta-\mathbf{1}}=\frac{\boldsymbol{\operatorname { t a n }} \theta+\boldsymbol{\operatorname { s e c }} \theta+\mathbf{1}}{\boldsymbol{\operatorname { t a n }} \theta+\mathbf{\operatorname { s e c }} \theta-\mathbf{1}}$

Problem Set - 6 (Textbook Page No. 138)

(5) Prove the following:
(i) $\sec \theta(1-\sin \theta)(\sec \theta+\tan \theta)=1$
(2 marks)

Solution :

Proof: LHS $=\sec \theta(1-\sin \theta)(\sin \theta+\tan \theta)$

$$
\begin{aligned}
& =\frac{1}{\cos \theta} \quad(1-\sin \theta) \times\left(\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta}\right) \\
& =\frac{(1-\sin \theta)}{\cos \theta} \\
& =\frac{(1+\sin \theta)}{\cos \theta} \\
& =\frac{1-\sin ^{2} \theta}{\cos ^{2} \theta} \\
& =\frac{\cos ^{2} \theta}{\cos ^{2} \theta} \\
& =1 \\
& =\text { R.H.S. }
\end{aligned}
$$

$$
\therefore \quad \sec \theta(1-\sin \theta)(\sec \theta+\tan \theta)=1
$$

(ii) $\quad(\sec \theta+\tan \theta)(1-\sin \theta)=\cos \theta \quad$ (2 marks)

Solution :

$$
\left.\begin{array}{rl}
\text { Proof: } \begin{array}{rl}
\text { LHS } & =(\sec \theta+\tan \theta)(1-\sin \theta) \\
& =\left(\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta}\right)(1-\sin \theta) \\
& =\frac{(1+\sin \theta)}{\cos \theta}(1-\sin \theta) \\
& =\frac{1-\sin ^{2} \theta}{\cos \theta} \quad \ldots\left[\because(a+b)(a-b)=a^{2}-b^{2}\right] \\
& =\frac{\cos ^{2} \theta}{\cos \theta} \quad \\
& =\cos \theta \\
& =\text { R.H.S. }
\end{array} \quad\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right. \\
\left.\therefore 1-\sin ^{2} \theta=\cos ^{2} \theta\right)
\end{array}\right)
$$

$$
\therefore \quad(\sec \theta+\tan \theta)(1-\sin \theta)=\cos \theta
$$

(iii) $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta=\sec ^{2} \theta \times \operatorname{cosec}^{2} \theta$
(2 marks)

Solution :

Proof: LHS $=\sec ^{2} \theta+\operatorname{cosec}^{2} \theta$

$$
\begin{aligned}
& =\frac{1}{\cos ^{2} \theta}+\frac{1}{\sin ^{2} \theta} \\
& =\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta \times \sin ^{2} \theta} \\
& =\frac{1}{\cos ^{2} \theta \times \sin ^{2} \theta} \quad \ldots\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right] \\
& =\sec ^{2} \theta \cdot \operatorname{cosec}^{2} \theta \\
& =\text { R.H.S. }
\end{aligned}
$$

$$
\therefore \quad \sec ^{2} \theta+\operatorname{cosec}^{2} \theta=\sec ^{2} \theta \times \operatorname{cosec}^{2} \theta
$$

(iv) $\cot ^{2} \theta-\tan ^{2} \theta=\operatorname{cosec}^{2} \theta-\sec ^{2} \theta$
(2 marks)
Solution :

$$
\left.\begin{array}{rl}
\text { Proof: } \begin{array}{rl}
\text { LHS }= & \cot ^{2} \theta-\tan ^{2} \theta \quad \\
& \left(\because 1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta\right. \\
= & \left.\therefore \cot ^{2} \theta=\operatorname{cosec}^{2} \theta-1\right)
\end{array} \\
& \quad \cdots\left(\because \operatorname{cosec}^{2} \theta-1\right)-\left(\sec ^{2} \theta-1\right) \\
& \left.\quad \therefore \operatorname{sen}^{2} \theta=1+\tan ^{2} \theta\right) \\
= & \left.\operatorname{cosec}^{2} \theta-1\right)
\end{array}\right)
$$

$$
\therefore \quad \cot ^{2} \theta-\tan ^{2} \theta=\operatorname{cosec}^{2} \theta-\sec ^{2} \theta
$$

(v) $\boldsymbol{\operatorname { t a n }}^{4} \theta+\boldsymbol{\operatorname { t a n }}^{2} \theta=\sec ^{4} \theta-\sec ^{2} \theta$
(2 marks)

Solution :

Proof: LHS $=\tan ^{4} \theta+\tan ^{2} \theta$

$$
\begin{aligned}
& =\tan ^{2} \theta\left(\tan ^{2} \theta+1\right)\binom{\because 1+\tan ^{2} \theta=\sec ^{2} \theta}{\therefore \tan ^{2} \theta=\sec ^{2} \theta-1} \\
& =\left(\sec ^{2} \theta-1\right)\left(\sec ^{2} \theta\right) \\
& =\sec ^{4} \theta-\sec ^{2} \theta \\
& =\text { R.H.S. }
\end{aligned}
$$

$$
\therefore \quad \boldsymbol{\operatorname { t a n }}^{4} \theta+\boldsymbol{\operatorname { t a n }}^{2} \theta=\sec ^{4} \theta-\sec ^{2} \theta
$$

(vi) $\frac{1}{1-\sin \theta}+\frac{1}{1+\sin \theta}=2 \sec ^{2} \theta$
(3 marks)

Solution :

$$
\text { Proof: } \begin{aligned}
\text { LHS } & =\frac{1}{1-\sin \theta}+\frac{1}{1+\sin \theta} \\
& =\frac{1+\sin \theta+1-\sin \theta}{(1-\sin \theta)(1+\sin \theta)} \\
& =\frac{2}{1-\sin ^{2} \theta} \\
& =\frac{2}{\cos ^{2} \theta} \quad\binom{\because \sin ^{2} \theta+\cos ^{2} \theta=1}{\therefore \cos ^{2} \theta=1-\sin ^{2} \theta}
\end{aligned}
$$

$$
\begin{aligned}
& =2 \sec ^{2} \theta \\
& =\text { R.H.S. } \\
\therefore \quad & \frac{1}{1-\sin \theta}+\frac{1}{1+\sin \theta}=2 \sec ^{2} \theta
\end{aligned}
$$

(vii) $\sec ^{6} x-\tan ^{6} x=1+3 \sec ^{2} x \times \tan ^{2} x$
(3 marks)

Solution :

Proof: LHS $=\sec ^{6} x-\tan ^{6} x$

$$
\begin{aligned}
& =\left(\sec ^{2} x\right)^{3}-\left(\tan ^{2} x\right)^{3} \\
& =\left(\sec ^{2} x-\tan ^{2} x\right)^{3}+3 \sec ^{2} x \tan ^{2} x \cdot\left(\sec ^{2} x-\tan ^{2} x\right) \\
& \quad \ldots\left[\because a^{3}-b^{3}=(a-b)^{3}+3 a b(a-b)\right]
\end{aligned}
$$

$=(1)^{3}+3 \sec ^{2} x \cdot \tan ^{2} x(1)$

$$
\binom{1+\tan ^{2} x=\sec ^{2} x}{\therefore \sec ^{2} x-\tan ^{2} x=1}
$$

$$
\begin{aligned}
& =1+3 \sec ^{2} x \cdot \tan ^{2} x \\
& =\text { R.H.S. }
\end{aligned}
$$

$$
\therefore \quad \sec ^{6} x-\tan ^{6} x=1+3 \sec ^{2} x \times \tan ^{2} x
$$

(viii) $\frac{\tan \theta}{\sec \theta+1}=\frac{\sec \theta-1}{\tan \theta}$
(4marks)

Solution :

$$
\begin{aligned}
\text { Proof: } \begin{aligned}
& \text { LHS }=\frac{\tan \theta}{\sec \theta+1} \\
&=\frac{\tan \theta}{\sec \theta+1} \frac{\sec \theta-1}{\sec \theta-1} \\
&=\frac{\tan \theta(\sec \theta-1)}{\sec ^{2} \theta-1} \quad\left[\because(a+b)(a-b)=a^{2}-b^{2}\right] \\
&=\frac{\tan \theta(\sec \theta-1)}{\tan ^{2} \theta} \quad \begin{array}{r}
{\left[\because 1+\tan ^{2} \theta=\sec ^{2} \theta\right.} \\
\\
\\
\end{array} \\
& \therefore \frac{\sec \theta-1}{\tan \theta} \\
&=\text { R.H.S. } \\
& \therefore \quad \frac{\tan \theta}{\sec \theta+1}=\frac{\sec \theta-1}{\tan \theta}
\end{aligned}
\end{aligned}
$$

$$
\text { (ix) } \frac{\tan ^{3} \theta-1}{\tan \theta-1}=\sec ^{2} \theta+\tan \theta
$$

(3 marks)

Solution :

$$
\begin{aligned}
& \text { Proof: LHS }=\frac{\tan ^{3} \theta-1}{\tan \theta-1} \\
& =\frac{\tan ^{3} \theta-1^{3}}{\tan \theta-1} \\
& =\frac{(\tan \theta-1)\left(\tan ^{2} \theta+\tan \theta+1\right)}{(\tan \theta-1)} \\
& =\tan ^{2} \theta+1+\tan \theta \quad\left(\because \tan ^{2} \theta+1=\sec ^{2} \theta\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sec ^{2} \theta+\tan \theta \\
& =\text { R.H.S. } \\
\therefore \quad & \frac{\boldsymbol{\operatorname { t a n }}^{3} \theta-\mathbf{1}}{\boldsymbol{\operatorname { t a n }} \theta-\mathbf{1}}=\sec ^{2} \theta+\boldsymbol{\operatorname { t a n }} \theta
\end{aligned}
$$

(x) $\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{1}{\sec \theta-\tan \theta}$
(4 marks)

Solution :

$$
\text { Proof: R.H.S. }=\frac{1}{\sec \theta-\tan \theta}
$$

$$
\begin{align*}
& =1\left[\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta}\right] \\
& =1\left[\frac{1-\sin \theta}{\cos \theta}\right] \\
& =\frac{\cos \theta}{1-\sin \theta} \tag{i}
\end{align*}
$$

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

$$
\therefore \cos \theta \cos \theta=(1-\sin \theta)(1+\sin \theta)
$$

$$
\therefore \frac{\cos \theta}{1-\sin \theta}=\frac{1+\sin \theta-\cos \theta}{\cos \theta-(1-\sin \theta)} \quad \text { theorem on }
$$ equal ratios)

$$
\begin{equation*}
\therefore \frac{\cos \theta}{1-\sin \theta}=\frac{1+\sin \theta-\cos \theta}{\cos \theta-1+\sin \theta} \tag{ii}
\end{equation*}
$$

$$
\therefore \cos ^{2} \theta=1-\sin ^{2} \theta
$$

$$
\therefore \frac{\cos \theta}{1-\sin \theta}=\frac{1+\sin \theta}{\cos \theta}
$$

From (i) and (ii)

$$
\therefore \quad \frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{1}{\sec \theta-\tan \theta}
$$

Points to Remember:

- Application of trignomety:

Height and Distances:

Many times, we require to find the height of a tower, building, tree or distance of a ship from ; the lighthouse or width of the river etc. We cannot measure them actually, we can find the heights ! and distances with the help of trigonometric ratios.
(i) Line of vision: The line connecting the eye of the observer and the objects is called the Line of vision.
(ii) Angle of Elevation: If A, B are two points such that B is at higher level than A and AM is horizontal line through A , then
 $\angle M A B$ is the angle of elevation of B with respect to A .
(iii) Angle of Depression: If A, B are two points such that B is at lower level than A and $A M$ is the horizontal line through A, then $\angle \mathrm{MAB}$ is the angle of depression of B with
 respect to A .

Practice Set - 6.2 (Textbook Page No. 137)

(1) A person is standing at a distance of 80 m from a church looking at its top. The angle of elevation is of 45°. Find the height of the church. (3 marks)

Solution :

CH represents the height of the church and C represents its top. P is the position of the person at a distance of 80 m from the church.

$\therefore \mathrm{PH}=80 \mathrm{~m}$
$\angle C P H$ is the angle of the elevation
$\therefore \angle C P H=45^{\circ}$
In $\triangle \mathrm{PHC}, \angle \mathrm{CHP}=90$

$$
\begin{aligned}
& \therefore \tan \angle \mathrm{CPH}=\frac{\mathrm{CH}}{\mathrm{PH}} \\
& \therefore \tan 45=\frac{\mathrm{CH}}{80} \\
& \therefore 1 \\
& \therefore \mathrm{CH} \\
& \therefore=\frac{\mathrm{CH}}{80} \\
&
\end{aligned}
$$

...(By definition)
$\therefore \quad$ Height of the church is 80 m
Problem Set - 6 (Textbook Page No. 139)
(6) A boy standing at a distance of 48 meters from a building observes the top of the building and makes an angle of elevation of 30°. Find the height of the building.
(3 marks)

Solution :

$A B$ represents the height of the building. C represents the position of the boy at a distance of 48 m from the building.
$\angle A C B$ is the angle of elevation
$\therefore \angle A C B=30^{\circ}$,
In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90$
$\therefore \tan \angle \mathrm{ACB}=\frac{\mathrm{AB}}{\mathrm{BC}}$

$\therefore \tan 30=\frac{\mathrm{AB}}{48}$
$\therefore \frac{1}{\sqrt{3}}=\frac{\mathrm{AB}}{48}$
$\therefore \mathrm{AB}=\frac{48}{\sqrt{3}}$
$\therefore A B \quad=\frac{48 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}$
$\therefore \mathrm{AB}=\frac{48 \sqrt{3}}{3}$
$\therefore \mathrm{AB} \quad=16 \sqrt{3}$
$\therefore \mathrm{AB}=161.73$
$\therefore \mathrm{AB} \quad=27.68 \mathrm{~m}$
...(By definition)
$\therefore \quad$ The height of the building is 27.68 m .

Practice Set - 6.2 (Textbook Page No. 137)

(2) From the top of a lighthouse, an observer looking at a ship makes angle of depression of 60°. If the height of the lighthouse is 90 metre, then find how far the ship is from the lighthouse.
$(\sqrt{3}=1.73)$
(3 marks)
Solution :
AB represents the
height of the lighthouse.
$\mathrm{AB}=90 \mathrm{~m}$
C represents the position of ship.
$\angle D A C$ is the angle of depression

$\therefore \angle D A C=60^{\circ}$,
$\therefore \quad \angle \mathrm{DAC}=\angle \mathrm{ACB}=60^{\circ}$
...(Alternate angle theorem)

$$
\begin{aligned}
& \text { In } \triangle \mathrm{ABC}, \angle \mathrm{ABC}=90 \\
& \begin{array}{l}
\therefore \tan 60=\frac{\mathrm{AB}}{\mathrm{gG}} \\
\therefore \sqrt{3}=\frac{\mathrm{BC}}{90}
\end{array} \\
& \therefore \mathrm{BC} \quad=\frac{90}{\sqrt{3}} \\
& \therefore \quad B C \quad=\frac{90 \sqrt{3}}{\sqrt{3} \times \sqrt{3}} \\
& \therefore B C=\frac{90 \sqrt{3}}{3} \\
& \therefore B C \quad=30 \sqrt{3} \\
& \therefore \quad=30(1.73) \\
& \therefore B C \quad=51.9 \mathrm{~m}
\end{aligned}
$$

...(By definition)

The distance of the ship from the

Problem Set - 6 (Textbook Page No. 139)
(7) From the top of a lighthouse, an observer looks at a ship and finds the angle of depression to be 30°. If the height of the lighthouse is 100 m , then find how far is that ship from the lighthouse.
(3 marks)

Solution :

$A B$ represents the height of the lighthouse.
$\therefore \quad \mathrm{AB}=100 \mathrm{~m}$
C represents the position of ship.

$\angle D A C$ is the angle of depression.
$\therefore \angle \mathrm{DAC}=\angle \mathrm{ACB}=30^{\circ} \quad \ldots$ (BA alternate angle theorem
In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90$
$\therefore \tan \angle \mathrm{ACB}=\frac{\mathrm{AB}}{\mathrm{BC}}$
...(By definition)
$\therefore \tan 30=\frac{100}{B C}$
$\therefore \frac{1}{\sqrt{3}} \quad=\frac{100}{B C}$
$\therefore B C \quad=100 \sqrt{3}$
$\therefore B C=1001.73$
$\therefore B C \quad=173 \mathrm{~m}$
$\therefore \quad$ The distance of the ship from the lighthouse is 173 m .

Practice Set - 6.2 (Textbook Page No. 137)

(3) Two buildings are facing each other on either side of a road of width 12 m . From the top of the first building, which is 10 m . high, the angle of elevation of the top of the second is 60°. What is the height of the second building? (4 marks)

Solution:

$A B$ and $C D$ represents the height of the two buildings, on either side of a road.
$\mathrm{AB}=10 \mathrm{~m}, \mathrm{BD}=12 \mathrm{~m}$
$\angle C A E$ is the angle of the elevation.
$\therefore \angle \mathrm{CAE}=60^{\circ}$,
ABDE is a rectangle

$\mathrm{AB}=\mathrm{DE}=10 \mathrm{~m} \quad$ (Opposite sides of a rectangle)
$\mathrm{AE}=\mathrm{BD}=12 \mathrm{~m}$
In $\triangle \mathrm{AEC}, \angle \mathrm{AEC}=90$
$\therefore \tan \angle \mathrm{CAE}=\frac{\mathrm{CE}}{\mathrm{AE}}$
...(By definition)
$\therefore \tan 60=\frac{\mathrm{CE}}{12}$
$\therefore \sqrt{3} \quad=\frac{\mathrm{CE}}{12}$
$\therefore \mathrm{CE} \quad=12 \sqrt{3}$
$\therefore \mathrm{CE} \quad=121.73$
$\therefore C E \quad=20.76 \mathrm{~m}$
$C D=C E+D E$
...(C - E - D)
$\mathrm{CD} \quad=30.76 \mathrm{~m}$
$\therefore \quad$ Height of the second building is 30.76 m .

Problem Set - 6 (Textbook Page No. 139)

(8) Two buildings are in front of each other on a road of width 15 meters. From the top of the first building, having a height of $\mathbf{1 2}$ meter, the angle of elevation of the top of the second building is 30°. What is the height of the second building?
(4 marks)

Solution :

$A B$ and $C D$ represents the height of two buildings at distance of 15 m , i.e. $\mathrm{BC}=15 \mathrm{~m}$,
$\mathrm{AB}=12 \mathrm{~m}$
$\angle D A E$ is the angle of elevation.
$\therefore \quad \angle \mathrm{DAE}=30^{\circ}$
$\square \mathrm{ABCE}$ is a rectangle.
...(By definition)
$\therefore \quad \mathrm{AB}=\mathrm{EC}=12 \mathrm{~m}$

$$
\mathrm{BC}=\mathrm{AE}=15 \mathrm{~m}
$$

...(Opposite sides of rectangle)

In $\triangle \mathrm{AED}, \angle \mathrm{AED}=90$
$\therefore \tan \angle \mathrm{DAE}=\frac{\mathrm{DE}}{\mathrm{AE}}$
...(By definition)
$\therefore \tan 30=\frac{\mathrm{DE}}{15}$
$\therefore \frac{1}{\sqrt{3}}=\frac{\mathrm{DE}}{15}$
$\therefore \mathrm{DE} \quad=\frac{15}{\sqrt{3}}$

$$
=\frac{15 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}
$$

$$
=\frac{15 \sqrt{3}}{3}
$$

$$
=5 \sqrt{3}
$$

$$
=51.73
$$

$\therefore \quad \mathrm{DE}=8.65 \mathrm{~m}$
$C D=C E+D E$
$\ldots(C-E-D)$
$=12+8.65$
$C D=20.65 \mathrm{~m}$
$\therefore \quad$ Height of the second building is 20.65 m .
Practice Set - 6.2 (Textbook Page No. 137)
(4) Two poles of heights 18 metre and 7 metre are erected on a ground. The length of the wire fastened at their tops in 22 metre. Find the angle made by the wire with the horizontal. (4 marks)

Solution :

AB and CD represents the height of the two poles.
$A C$ is the length of the wire of length 22 m joining top A and top C of two poles.

AC $=22 \mathrm{~m}$
$\angle A C E$ is the angle made by the wire with the horizontal.
\square EBDC is a rectangle
...(By definition)
$\mathrm{BE}=\mathrm{CD}=7 \mathrm{~m}$
...(Opposite sides of rectangle)

$$
\begin{aligned}
& \quad \mathrm{AB}=\mathrm{AE}+\mathrm{BE} \\
& \therefore \quad 18=\mathrm{AE}+7 \\
& \therefore \quad 18-7=A E \\
& \therefore \quad \mathrm{AE}=11 \mathrm{~m} \\
& \text { In } \triangle \mathrm{AEC}, \angle \mathrm{AEC}=90
\end{aligned}
$$

$$
\therefore \sin \angle \mathrm{ACE}=\frac{\mathrm{AE}}{\mathrm{AC}}
$$

$\therefore \sin \angle \mathrm{ACE}=\frac{11}{22}$
$\therefore \quad \sin \angle \mathrm{ACE}=\frac{1}{2}$
But, $\sin 30=\frac{1}{2}$
$\therefore \sin \angle A C E=\sin 30$
$\therefore \angle \mathrm{ACE}=30$
$\therefore \quad$ The angle made by the wire with the
horizontal is 30°.
(5) A storm broke a tree and the treetop rested 20 m from the base of the tree, making an angle of 60° with the horizontal. Find the height of the tree.
(4 marks)
Solution :
$A B$ represents the height of the tree. Tree breaks at D.
AD represents the broken part of the tree which takes the position DC .
$\therefore \mathrm{AD}=\mathrm{DC}$

$$
\angle D C B=60^{\circ}
$$

$$
\mathrm{BC}=20 \mathrm{~m}
$$

In $\triangle \mathrm{DBC}, \angle \mathrm{DBC}=90$
$\therefore \tan 60 \quad=\frac{\mathrm{DB}}{\mathrm{BC}} \quad \ldots($ By definition $)$
$\therefore \sqrt{3} \quad=\frac{\mathrm{DB}}{20}$
$\therefore \mathrm{DB} \quad=20 \sqrt{3}$
$=20(1.73)$
$\therefore \mathrm{DB} \quad=34.60 \mathrm{~m}$

$$
\begin{array}{ll}
& \cos 60 \quad=\frac{\mathrm{BC}}{\mathrm{DC}} \\
\therefore & \frac{1}{2} \quad \ldots(\text { By definition }) \\
\therefore & \mathrm{DC} \\
\therefore & \mathrm{AD}=\mathrm{DC}=40 \\
\therefore & \mathrm{AB}=\mathrm{AD}+\mathrm{DB} \\
\therefore & \mathrm{AB}=40+34.60 \\
\therefore & \mathrm{AB}=74.60 \mathrm{~m} \\
\therefore & \text { The height of the tree is } 74.60 \mathrm{~m} .
\end{array}
$$

(6) A kite is flying at a height of 60 m above the ground. The string attached to the kite is tied at the ground. It makes an angle of 60° with the ground. Assuming that the string is straight, find the length of the string. $(\sqrt{3}=1.73) \quad$ (3 marks)

Solution :

'K'isthepositionof kite in the sky, 60 m above the ground level,
KG represents the length of the string.
$\angle K G M$ is the angle between string and the ground $\angle K G M=60^{\circ}$

$$
\begin{aligned}
& \text { In } \triangle \mathrm{KMG}, \\
& \therefore \mathrm{KMG}=90 \\
& \therefore \sin \angle \mathrm{KGM}
\end{aligned}=\frac{\mathrm{KM}}{\mathrm{GK}} \quad \ldots \text { (By definition) }
$$

$\therefore \quad$ Length of the string is 69.20 m .

Problem Set - 6 (Textbook Page No. 139)

(9) A ladder on the platform of a fire brigade van can be elevated at an angle of 70° to the maximum. The length of the ladder can be extended upto 20 m . If the platform is 2 m above the ground, find the maximum height from the ground upto which the ladder can reach. $\left(\sin =70^{\circ}=0.94\right)$
(5 marks)

Solution :

GD is ground
level. BC is base of the ladder of the fire brigads van at a height of 2 m from ground level.

' T ' is top of
ladder of the fire brigads van at the maximum height
$\angle \mathrm{TBC}=70^{\circ}$
...(Angle of elevation)
BT is the length of the ladder
$\mathrm{BT}=20 \mathrm{~m}, \mathrm{BG}=2 \mathrm{~m}$
$\square \mathrm{BGDC}$ is a rectangle

$$
\mathrm{BG}=\mathrm{CD}=2 \mathrm{~m}
$$

...(Opposite sides of a rectangle)
In $\triangle B C T, \angle B C T=90$
$\therefore \sin \angle \mathrm{TBC}=\frac{\mathrm{TC}}{\mathrm{TB}}$
...(By definition)
$\therefore \sin 70=\frac{\mathrm{TC}}{20}$
$\therefore 0.94=\frac{\mathrm{TC}}{20}$
\therefore TC $\quad=0.9420$
\therefore TC $\quad=18.80 \mathrm{~m}$

$$
\begin{equation*}
\mathrm{TD}=\mathrm{TC}+\mathrm{CD} \tag{T-C-D}
\end{equation*}
$$

$\therefore \mathrm{TD}=18.80+2$
$\therefore \quad \mathrm{TD}=20.80 \mathrm{~m}$
$\therefore \quad \begin{aligned} & \text { Other end of the ladder can reach } \\ & 20.80 \mathrm{~m} \text { above the ground ladder. }\end{aligned}$

* (10) While landing at an airport, a pilot made an angle of depression of 20°. Average speed of the plane was $200 \mathrm{~km} / \mathrm{hr}$. The plane reached the ground after 54 seconds. Find the height at which the plane was when it started landing.
$\left(\sin 20^{\circ}=0.342\right)$
(5 marks)

Solution :

A represents the position of the plane above the ground.
' C ' is the landing point of the plane on the ground AB represents the height of the plane from the ground.
$\angle D A C \quad$ is the angle of

depression

$$
\begin{aligned}
\angle \mathrm{DAC}=\angle \mathrm{ACB} & =20 \\
\text { Distance }(\mathrm{AC}) & =\text { speed } \times \text { time } \\
& =200 \mathrm{~km} / \mathrm{hr} \times 54 \mathrm{sec} \\
& =200 \mathrm{~km} / \mathrm{hr} \times \frac{54}{3600} \mathrm{hr} \\
& (\because 1 \mathrm{hr}=3600 \mathrm{sec}) \\
& =200 \times \frac{54}{3600} \\
& =3 \mathrm{~km} \\
\therefore \quad \mathrm{AC} \quad & =3000 \mathrm{~m} \\
\text { In } \triangle \mathrm{ABC}, \angle \mathrm{ABC} & =90
\end{aligned}
$$

$$
\therefore \sin \angle \mathrm{ACB}=\frac{\mathrm{AB}}{\mathrm{AC}}
$$

...(By definition)
$\therefore \sin 20=\frac{A B}{3000}$
$\therefore 0.342=\frac{\mathrm{AB}}{3000}$
$\therefore \mathrm{AB}=0.3423000$
$\therefore \mathrm{AB} \quad=1026 \mathrm{~km}$.
$\therefore \quad \begin{aligned} & \text { Plane was at a height of } 1026 \mathrm{~km}, \\ & \text { when it started landing. }\end{aligned}$

Problem Set - 6 (Textbook Page No. 138)

MCQ's

Choose the correct alternative answer for the following questions.
(1) $\sin \theta \cdot \operatorname{cosec} \theta=$ \qquad
(A) 1
(B) 0
(C) $\frac{1}{2}$
(D) $\sqrt{2}$
(2) $\operatorname{cosec} 45^{\circ}=$?
(A) $\frac{1}{\sqrt{2}}$
(B) $\sqrt{2}$
(C) $\frac{\sqrt{3}}{2}$
(D) $\frac{2}{\sqrt{3}}$
(3) $\mathbf{1}+\tan ^{2} \theta=$?
(A) $\cot ^{2} \theta$
(B) $\operatorname{cosec}^{2} \theta$
(C) $\sec ^{2} \theta$
(D) $\tan ^{2} \theta$
(4) When we see at a higher level from the horizontal line, angle formed is \qquad .
(A) Angle of Elevation
(B) Angle of Depression
(C) 0
(D) Straight angle

Additional MCQ's

(5) If $\sin \theta=\frac{4}{5}$ and $\cos \theta=\frac{3}{5}$, then $\tan \theta=$
(A) $\frac{4}{3}$
(B) $\frac{3}{4}$
(C) $\frac{12}{25}$
(D) can not be calculated
(6) If $\operatorname{cosec} \theta=\frac{61}{60}, \sec \theta=\frac{61}{11}$, then $\cot \theta=$ \qquad
(A) $\frac{61^{2}}{660}$
(B) $\frac{60}{11}$
(C) $\frac{11}{60}$
(D)can not be calculated
(7) If $\sin \theta=\frac{24}{25}$, then $\cos \theta=$ \qquad
(A) $\frac{\sqrt{24}}{5}$
(B) $\frac{25}{24}$
(C) $\frac{25}{7}$
(D) $\frac{7}{25}$
(8) If $\tan \theta=1$, then $\sec \theta=$ \qquad
(A) 1
(B) $\sqrt{2}$
(C) 2
(D) 0
(9) If $\cot \theta=\frac{3}{4}$, then $\tan \theta=$
(A) $\frac{4}{3}$
(B) $\frac{9}{16}$
(C) $\frac{16}{9}$
(D) $\frac{5}{4}$
(10) If $\operatorname{cosec} \theta=\frac{2}{\sqrt{3}}$, then $\theta=$ \qquad
(A) 0
(B) 45
(C) 30
(D) 60
(11) In the adjoining figure,
if $\angle B=90^{\circ}, \angle C=30^{\circ}$, $A C=12 \mathrm{~m}$. then $A B=$
\qquad

(A) $12 \sqrt{3} \mathrm{~m}$
(B) $6 \sqrt{3} \mathrm{~m}$
(C) 12 m
(D) 6 m
(12) If $(\sec \theta-1)(\sec \theta+1)=\frac{1}{3}$, then $\cos \theta=$ \qquad
(A) $\frac{1}{2}$
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{\sqrt{3}}{2}$
(D) $\frac{\sqrt{2}}{3}$
(13) If $\sin \theta+\cos \theta=\mathbf{a}$, and $\sin \theta-\cos \theta=\mathbf{b}$, then $=$
\qquad
(A) $a^{2}+b^{2}=1$
(B) $a^{2}-b^{2}=1$
(C) $a^{2}+b^{2}=2$
(D) $a^{2}-b^{2}=2$
(14) If $\sin \theta=\mathbf{1}$, then find $\cot \theta=$
(A) 0
(B) 1
(C) $\sqrt{3}$
(D) $\frac{1}{\sqrt{3}}$

ANSWERS

(1) $(\mathrm{A}) 1$
(2) $(B) \sqrt{2}$
(3) (C) $\sec ^{2} \theta$
(4)
(A) Angle of Elevation
(5) (A) $\frac{4}{3}$
(6) (C) $\frac{11}{60}$
(7)
(D) $\frac{7}{25}$
(8) (B) $\sqrt{2}$
(9) (A) $\frac{4}{3}$
(10) (D) 60
(11) (D) 6 cm
(12)
(C) $\frac{\sqrt{3}}{2}$
(13) (C) $a^{2}+b^{2}=2$
(14) (A) 0

PROBLEMS FOR PRACTICE

Based on Practice Set 6.1

(1) If $\tan \theta=2$, find the values of other trigonometric ratios using the identities.
(3 marks)
(2) If $\cot \theta=\frac{7}{24}$, find the values of other trigonometric ratios using the identity.
(3 marks)
(3) $3 \sin \theta-4 \cos \theta=0$, then find the values of all trigonometric ratios.
(3 marks)
(4) If $\sqrt{3} \tan \theta=3 \sin \theta$, find the value of $\sin ^{2} \theta-\cos ^{2} \theta$.
(3 marks)
(5) Simplify : $\sin \theta(\operatorname{cosec} \theta-\sin \theta)$.
(2 marks)
(6) Prove:
(3 marks each)
(i) $\cos ^{2} \theta+\frac{1}{1+\cot ^{2} \theta}=1$
(ii) $\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}=2 \sec ^{2} \theta$
(iii) $\left(1+\tan ^{2} \theta\right)(1+\sin \theta)(1-\sin \theta)=1$
(iv) $\left(1+\cot ^{2} \theta\right)(1+\cos \theta)(1-\cos \theta)=1$
(v) $\cot ^{2} \theta-\frac{1}{\sin ^{2} \theta}=-1$
(vi) $\sin ^{4} \theta-\cos ^{4} \theta=1-2 \cos ^{2} \theta$
(vii) $\sec \theta+\tan \theta=\frac{1}{\sec \theta-\tan \theta}$
(viii) $\frac{\cos \theta}{1+\sin \theta}=\sec \theta-\tan \theta$
(ix) $\frac{\tan ^{3} \mathrm{~A}-1}{\tan \mathrm{~A}-1}=\sec ^{2} \mathrm{~A}+\tan \mathrm{A}$
(x) $\frac{\sin \theta+\tan \theta}{\cos \theta}=\tan \theta(1+\sec \theta)$
(xi) $\operatorname{cosec}^{2} \mathrm{~A}-\cos ^{2} \mathrm{~A}=\frac{\sec ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}}{\tan ^{2} \mathrm{~A}}$
(xii) $\left(\frac{1}{\cos \theta}+\frac{1}{\cot \theta}\right)=(\sec \theta-\tan \theta)=1$
(xiii) $\frac{\cos ^{2} \mathrm{~A}+\tan ^{2} \mathrm{~A}-1}{\sin ^{2} \mathrm{~A}}=\tan ^{2} \mathrm{~A}$
(xiv) $\frac{\tan \mathrm{A}+\sec \mathrm{A}-1}{\tan \mathrm{~A}-\sec \mathrm{A}+1}=\frac{1+\sin \mathrm{A}}{\cos \mathrm{A}}$
(xv) $\frac{\cos ^{2} \theta}{1-\tan \theta}+\frac{\sin ^{3} \theta}{\sin \theta-\cos \theta}==1+\sin \theta$

Based on Practice Set 6.2

(7) For a person standing at a distance of 80 m from a temple, the angle of elevation of its top is 45 . Find the height of the church.
(3 marks)
(8) From the top of a lighthouse, an observer looks at a ship and finds the angle of depression to be 60. If the lighthouse is 90 m , then find how far is that ship from the lighthouse? $(\sqrt{3}=1.73)$
(4 marks)
(9) A building is $200 \sqrt{3}$ metres high. Find the angle of elevation if its top is 200 m away from its foot.
(2 marks)
(10) A straight road leads to the foot of a tower of height 50 m . From the top of the tower, the angle of depression of two cars standing on the road are 30 and 60 . What is the distance between the two cars?
(4 marks)
(11) A ship of height 24 m is sighted from a lighthouse. From the top of the lighthouse, the angle of depression to the top of the mast and base of the ship is 30 and 45 respectively. How far is the ship from the lighthouse? $(\sqrt{3}=1.73) \quad$ (4 marks)
(12) From a point on the roof of a house, 11 m high, it is observed that the angles of depression of the top and foot of a lamp post are 30 and 60 respectively. What is the height of the lamp post?
(4 marks)

ANSWERS

$\boldsymbol{\operatorname { s i n }} \theta \quad \boldsymbol{\operatorname { c o s }} \theta \quad \boldsymbol{\operatorname { t a n }} \theta \quad \boldsymbol{\operatorname { c o t }} \theta \quad \boldsymbol{\operatorname { s e c }} \theta \quad \boldsymbol{\operatorname { c o s e c }} \theta$

$\frac{2}{\sqrt{5}}$	$\frac{1}{\sqrt{5}}$	2	$\frac{1}{2}$	$\sqrt{5}$	$\frac{\sqrt{5}}{2}$

(2)

$\frac{24}{25}$	$\frac{7}{25}$	$\frac{24}{7}$	$\frac{7}{24}$	$\frac{25}{7}$	$\frac{25}{25}$

(3)

$\frac{4}{5}$	$\frac{3}{5}$	$\frac{4}{3}$	$\frac{3}{4}$	$\frac{5}{3}$	$\frac{5}{4}$

$$
\begin{equation*}
\sin ^{2} \theta-\cos ^{2} \theta=\frac{1}{2} \tag{4}
\end{equation*}
$$

(5) $\cos ^{2} \theta$
(7) 80 m
(8) 51.9 m
(9) 60
(10) $\frac{100}{\sqrt{3}}$
(11) 56.76 m
(12) 7.33 m

ASSIGNMENT - 6

Time : 1 Hr .
Q.1. (A) Choose the correct alternative answer for the following:
(1) $\sin \theta \cdot \operatorname{cosec} \theta=$
\qquad
(A) 1
(B) 0
(C) $\frac{1}{2}$
(D) $\sqrt{2}$
(2) If $\sin \theta=\frac{4}{5}$ and $\cos \theta=\frac{3}{5}$, then $\tan \theta=$ \qquad
(A) $\frac{4}{3}$
(B) $\frac{3}{4}$
(C) $\frac{12}{25}$
(D) can not be calculated
Q.1. (B) Solve the following:
(1) If $\sin \theta=\frac{\sqrt{3}}{2}$, then find θ.
(2) Find the value of $\tan 40^{\circ} \times \tan 50^{\circ}$.

Q.2. Perform any one of the following activities

(1) If $\tan \theta=1$, then complete the following activity to find $\cos \theta$.

Sol.

$$
\begin{array}{ll}
& 1+\tan ^{2} \theta=\square \tag{Identity}\\
\therefore & 1+(1)^{2}=\square \\
\therefore & 2=\square
\end{array}
$$

Taking square roots
$\therefore \quad \square=\sqrt{2}$
$\therefore \quad \cos \theta=\frac{1}{\square}$
$\therefore \quad \cos \theta=\frac{1}{\sqrt{2}}$
(2) A boy is at a distance of 60 m from a tree, makes an angle of elevation of 60 with the top of the tree.

What is the height of the tree?
(3) Prove that $\frac{\sin ^{2} A}{\cos A}+\cos A=\sec A$.

Q.3. Solve the following:

(1) If $x=r \cos \theta$ and $y=r \sin \theta$, then proof $x^{2}+y^{2}=r^{2}$
(2) Using Pythagoras theorem, prove that $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$,
(3) Two poles of height 18 m and 7 m are erected on the gound. A wire of length 22 m tied to the top of the poles. Find the angle made by the wire with the horizontal.
Q.4. Solve any two of the following questions:
(1) Prove that $\left(1+\frac{1}{\tan ^{2} \mathrm{~A}}\right)\left(1+\frac{1}{\cot ^{2} \mathrm{~A}}\right)=\frac{1}{\sin ^{2} \mathrm{~A}-\sin ^{4} \mathrm{~A}}$
(2) In a right angled $\triangle \mathrm{ABC}, \angle \mathrm{A}=90$ and $\frac{5 \sin ^{2} \mathrm{~B}+7 \cos ^{2} \mathrm{C}+4}{3+8 \tan ^{2} 60^{\circ}}=\frac{7}{27}$. If $\mathrm{AC}=3$, find the perimeters of $\triangle \mathrm{ABC}$.
(3) Prove : $\frac{\cos ^{2} \theta}{1-\tan \theta}+\frac{\sin ^{2} \theta}{\sin \theta-\cos \theta}$

... INDEX

Pr. S. 7.1-1	Pg 131	Pr. S. 7.1-11 Pg 134	Pr. S. 7.3-4 Pg 139	Pr. S. 7.3-10(ii) Pg 140	Pr. S. 7.4-4	Pg 143	PS. $7-9$ Pg 141
Pr. S. 7.1-2	Pg 134	Pr. S. 7.1-12 Pg 135	Pr. S. 7.3-5 Pg 139	Pr. S. 7.3-10(iii)Pg 140	Pr. S. 7.4-5	Pg 144	PS. $7-10$ Pg 144
Pr. S. 7.1-3	Pg 130	Pr. S. 7.2-1 Pg 136	Pr. S. 7.3-6 (i) Pg 139	Pr. S. 7.3-11 Pg 140	PS. 7 - 1	Pg 145	PS. 7 - 11 Pg 142
Pr. S. 7.1-4	Pg 134	Pr. S. 7.2-2(i) Pg 137	Pr. S. 7.3-6 (ii) Pg 139	Pr. S. 7.3-12 Pg 140	PS. 7 - 2	Pg 137	PS. $7-12$ Pg 145
Pr. S. 7.1-5	Pg 131	Pr. S. 7.2-2(ii) Pg 137	Pr. S. 7.3-6 (iii) Pg 139	Pr. S. 7.3-13(i) Pg 141	PS. $7-3$	Pg 130	
Pr. S. 7.1-6	Pg 131	Pr. S. 7.2-2(iii) Pg 137	Pr. S. 7.3-7 Pg 139	Pr. S. 7.3-13(ii)Pg 141	PS. $7-4$	Pg 131	
Pr. S. 7.1-7	Pg 131	Pr. S. 7.2-3 Pg 137	Pr. S. 7.3-8 (i) Pg 139	Pr. S. 7.3-13(iii) Pg 141	PS. $7-5$	Pg 131	
Pr. S. 7.1-8	Pg 134	Pr. S. 7.3-1 Pg 138	Pr. S. 7.3-8 (ii) Pg 140	Pr. S. 7.4-1 Pg 143	PS. $7-6$	Pg 135	
Pr. S. 7.1-9	Pg 130	Pr. S. 7.3-2 Pg 138	Pr. S. 7.3-9 Pg 140	Pr. S. 7.4-2 Pg 143	PS. $7-7$	Pg 131	
Pr. S. 7.1-10	Pg 134	Pr. S. 7.3-3 Pg 139	Pr. S. 7.3-10 (i) Pg 140	Pr. S. 7.4-3 Pg 143	PS. $7-8$	Pg 136	

Points to Remember:

' - Introduction:
Mensuration is a special branch of mathematics that deals with the measurement of geometric figures.
In previous classes we have studied certain concepts related to areas of plane figures (shapes) such as triangles, quadrilaterals, polygons and circles.

- Cuboid [Rectangular Parallelopiped]

A cuboid is a solid figure bounded by six rectangular faces, where the opposite faces are equal.
A cuboid has a length,
breadth and height denoted as ' l ', ' b '
 and ' h '
respectively as shown in the figure,
In our day to day life we come across cuboids such as rectangular room, rectangular box, brick, rectangular fish tank, etc.

FORMULAE

(1) Total surface area of a cuboid $=2(l b+b h+l h)$
(2) Lateral surface area of a cuboid $=2(l+b) \times h$
(3) Volume of a cuboid
$=l \times b \times h$
(4) Diagonal of the cuboid $=\sqrt{l^{2}+b^{2}+h^{2}}$

Cube

A cube is a cuboid bounded by six equal squares faces.

Hence its length,
breadth and height are equal.
\therefore The edge of the cube $=$ length = breadth $=$ height

The edge of the cube is denoted as ' l '.
A dice is an example of cube.

FORMULAE

(1) Total surface area of a cube $=6 l^{2}$
(2) Lateral surface area of a cube $=4 l^{2}$
(3) Volume of cube $=l^{3}$
(4) Diagonal of the cube $=\sqrt{3} l$

Solve the following example
(1) Thelength,breadthandheightof an oil can are $20 \mathrm{~cm}, 20 \mathrm{~cm}$ and 30 cm respectively as shown in the adjacent figure. How much oil
 will it contain? $\left(1\right.$ litre $\left.=1000 \mathrm{~cm}^{3}\right)$
Solution :
For oil can, length $(l)=20 \mathrm{~cm}$, breadth $(b)=20 \mathrm{~cm}$, height $(h)=30 \mathrm{~cm}$.
$\begin{array}{ll}\left.\begin{array}{l}\text { Volume of } \\ \text { oil can }\end{array}\right\} & =1 \times \mathrm{b} \times \mathrm{h} \\ & =20 \times 20 \times 30\end{array}$

Capacity of oil it contains $=$ Volume of oil can

$$
\begin{aligned}
& =\frac{12000}{1000}\left[\because 1 \mathrm{ltr}=1000 \mathrm{~cm}^{3}\right] \\
& =12 \text { litres }
\end{aligned}
$$

$\therefore \quad$ The oil can will contain 12 litres of oil

Right Circular Cylinder

A right circular cylinder (Cylinder) is a solid figure bounded by two flat circular surfaces and a curved surface.
The perpendicular distance between the two base faces is called height of the cylinder and
 is denoted by ' h '. The radius of the base of the cylinder is denoted by ' r '.
The cylinders which we see regularly are drum, pipe, road roller, coins, test tube, refill of a ball pen, syringe etc.

FORMULAE

(1) Curved surface area of a right circular cylinder $=2 \pi r h$
(2) Total surface area of a right circular cylinder $=$ $2 \pi r(r+h)$
(3) Volume of a right circular cylinder $=\pi r^{2} h$

Practice Set - 7.1 (Textbook Page No. 145)

(3) Find the total surface area of a cylinder if the radius of its base is 5 cm and height is 40 cm .
(1 mark)

Solution :

For a cylinder,
$r=5 \mathrm{~cm}$...(Given)
$h=40 \mathrm{~cm}$
Total surface area $=2 \pi r(r+h)$

$$
\begin{aligned}
& =2 \times 3.14 \times 5 \times(5+40) \\
& =31.4 \times 45
\end{aligned}
$$

\therefore Total surface area $=1,413 \mathrm{~cm}^{2}$
(9) Intheadjoining

tablets is shown. The radius of a tablet is 7 mm and its thickness is 5 mm . How many such tablets are wrapped in the wrapper? (3marks)

Solution :

For cylindrical wrapper,
Diameter $=14 \mathrm{~mm}$
Radius (R) $\frac{14}{2} \mathrm{~mm}=7 \mathrm{~mm}$
Height $(\mathrm{H})=10 \mathrm{~cm}$
i.e. $\mathrm{H}=100 \mathrm{~mm}$

For cylindrical tablet,
Radius $(r)=7 \mathrm{~mm}$, Height $(h)=5 \mathrm{~mm}$
Let ' N ' number of tablets can be wrapped in the given wrapper.
$\therefore \mathrm{N} \times$ Volume of tablet $=$ Volume of wrapper.
$\therefore \mathrm{N} \times \pi r^{2} h \quad=\pi \mathrm{R}^{2} \mathrm{H}$
$\therefore \mathrm{N} \times \pi \times 7 \times 7 \times 5=\pi \times 7 \times 7 \times 100$
$\therefore \mathrm{N}=\frac{\pi \times 7 \times 7 \times 100}{\pi \times 7 \times 7 \times 5}$
$\therefore \mathrm{N}=20$
$\therefore 20$ tablets can be packed in the
given wrapper.

Problem Set - 7 (Textbook Pg No. 161)

*(3) Some plastic balls of radius 1 cm were melted and cast into a tube. The thickness, length and outer radius of the tube were $2 \mathrm{~cm}, 90 \mathrm{~cm}$ and 30 cm respectively. How many balls were melted to make the tube?
(4 marks)

Solution :

For spherical solid ball, $r=1 \mathrm{~cm}$,
For cylindrical pipe, Outer radius $\left(r_{1}\right)=30 \mathrm{~cm}$

$$
\begin{aligned}
\text { Thickness }(t) & =2 \mathrm{~cm} \\
\text { Height }(h) & =90 \mathrm{~cm} \\
\text { Inner radius }\left(r_{2}\right) & =r_{1}-t \\
& =30-2 \\
r_{2} & =28 \mathrm{~cm}
\end{aligned}
$$

Volume of cylindrical pipe $=$ Number of spherical balls required $(\mathrm{N}) \times$ Volume of spherical ball

$$
\begin{aligned}
& \therefore \quad \pi \times h\left(r_{1}^{2}-r_{2}^{2}\right)=\mathrm{N} \times \frac{4}{3} \pi r^{3} \\
& \therefore \quad \pi \times 90\left(30^{2}-28^{2}\right)=\mathrm{N} \times \frac{4}{3} \pi \times(1)^{3} \\
& \therefore \quad \frac{\pi \times 90 \times(30+28)(30-28) \times 3}{4 \times \pi}=\mathrm{N} \\
& \therefore \quad \frac{90 \times 58 \times 2 \times 3}{4}=\mathrm{N} \\
& \therefore \quad \mathrm{~N}=7,830
\end{aligned}
$$

$\therefore \quad$ Number of spherical balls required is 7,830
(4) A metal parallelopiped of measures $16 \mathrm{~cm} \times$ $11 \mathrm{~cm} \times 10 \mathrm{~cm}$ was melted to make coins. How many coins were made if the thickness and diameter of each coin was 2 mm and 2 cm respectively?
(2 marks)

Solution :

For the metallic cuboid,
$l=16 \mathrm{~cm}, b=11 \mathrm{~cm}, h=10 \mathrm{~cm}$
For the cylindrical coin,
Diameter $=2 \mathrm{~cm}$, Thickness $\left(h_{1}\right)=2 \mathrm{~mm}=0.2 \mathrm{~cm}$
i.e. Radius $\left(r_{1}\right)=1 \mathrm{~cm}$

Let number of coins made be N .
$\therefore \mathrm{N} \times$ Volume of coin $=$ Volume of cuboid
$\therefore \mathrm{N} \times \pi r_{1}^{2} h_{1} \quad=l \times b \times h$
$\therefore \mathrm{N} \times \frac{22}{7} \times 1 \times 1 \times \frac{2}{10}=16 \times 11 \times 10$
$\therefore \mathrm{N}=\frac{16 \times 11 \times 10 \times 10 \times 7}{22 \times 2}$
$\therefore \mathrm{N}=2800$
$\therefore \quad$ Number of coins made are 2800
(5) The diameter and length of a roller is 120 cm and 84 cm respectively. To level the ground, 200 rotations of the roller are required. Find the expenditure to level the ground at the rate of ₹ 10 per sq. m.
(3 marks)

Solution :

For circular roller,
Diameter $=120 \mathrm{~cm}, \therefore$ radius $(r)=\frac{120}{2}=60 \mathrm{~cm}$ length $(h)=84 \mathrm{~cm}$
Number of rotations required to level
the ground $(\mathrm{N}) \quad=200$
Rate of levelling $(\mathrm{R})=₹ 10$ per sq. metre Area levelled in = curved surface area 1 rotation of the roller.
\therefore Area levelled in $=200 \times 2 \pi r h$
200 rotations (A)

$$
\begin{aligned}
& =200 \times 2 \times \frac{22}{7} \times 60 \times 84 \\
& =6336000 \mathrm{~cm}^{2} \\
& =\frac{6336000}{100 \times 100} \mathrm{~m}^{2} \\
\therefore \quad \text { A } & =633.6 \mathrm{~m}^{2} \\
\text { Cost of levelling } & =\mathrm{A} \times \mathrm{R} \\
& =633.6 \times 10=₹ 6336
\end{aligned}
$$

$\therefore \quad$ Cost of levelling the ground is ₹ 6336 .

Points to Remember:

- Right Circular Cone

An ice-cream cone, a clown's hat, a funnel are examples of cones. A cone has one circular flat surface and one curved surface.
In the diagram alongside,
 seg OA is the height of the cone denoted by ' h '. seg AP is the radius of the base denoted by ' r '. seg OP is the slant height of the cone denoted by ' l '.

FORMULAE

(1) The h, r and l of a cone represents the sides of a right angled triangle where l is the hypotenuse.
$\therefore \quad l^{2}=r^{2}+h^{2}$
(2) Curved surface area of a right circular cone $=\pi r l$
(3) Total surface area of a right circular cone
$=\pi r(r+l)$
(4) Volume of a right circular cone $=\frac{1}{3} \times \pi r^{2} h$

Solve the following example (Texbook pg no. 141)
(1) The adjoining figure shows the measures of a joker's cap. How much cloth is needed to make such a cap?

Solution :

For the jokers cap,
 radius $(\mathrm{r})=10 \mathrm{~cm}$, slant height $(l)=21 \mathrm{~cm}$ cloth required to make such cap

$$
=\text { curved surface area of cone }
$$

$=\pi r l$
$=\frac{22}{7} \times 10 \times 21$
$=660 \mathrm{~cm} \quad[\because 1 \mathrm{~m}=100 \mathrm{~cm}]$
$=6.6 \mathrm{~m}$
6.6 m cloth is needed to make such a cap.

Pracitce Set - 7.1 (Textbook Page No. 145)

(1) Find the volume of cone if the radius of its base is 1.5 cm and its perpendicular height is 5 cm .
(1 mark)

Solution :

For the cone.
radius $(r)=1.5 \mathrm{~cm}$, height $(h)=5 \mathrm{~cm}$

$$
\begin{array}{ll}
& \text { Volume (V) }=\frac{1}{3} \pi r^{2} h \\
\therefore & =\frac{1}{3} \times 3.14 \times 1.5 \times 1.5 \times 5 \\
\therefore & \mathrm{~V}=11.775 \mathrm{~cm}^{3} \\
\therefore & \text { Volume of the cone is } 11.775 \mathrm{~cm}^{3}
\end{array}
$$

(5) The dimensions of a cuboid are $44 \mathrm{~cm}, 21 \mathrm{~cm}$, 12 cm . It is melted and a cone of height 24 cm is made. Find the radius of its base.
(3 marks)

Solution :

For the solid cuboid,
$l=44 \mathrm{~cm}, b=21 \mathrm{~cm}, h=12 \mathrm{~cm}$
For the solid cone.
$h_{1}=24 \mathrm{~cm}$
$r=$?
Cone is made by melting the cuboid.
\therefore Volume of cone $=$ volume of cuboid.

$$
\begin{aligned}
& \frac{1}{3} \pi r^{2} h_{1}= \\
& \frac{1}{3} \times \frac{22}{7} \times r^{2} \times 24=44 \times 21 \times 12 \\
& \therefore r^{2}= \\
& \therefore r^{2}= \\
& \therefore r^{2}= \\
& \therefore 21 \times 3 \times 7 \times 21 \times 12 \times 3 \times 7 \\
& \therefore \quad r= \\
& \therefore \quad 21 \times 24 \\
& \hline
\end{aligned}
$$

$\therefore \quad$ Radius of the cone is 21 cm
(6) Observe the measures of pots in below figure How many jugs of water can the cylindrical pot hold.
(3 marks)

Solution :

For the conical watering, $r=3.5 \mathrm{~cm}, h=10 \mathrm{~cm}$
For the cylindrical water pot, $r_{1}=7 \mathrm{~cm}, h_{1}=10 \mathrm{~cm}$ Let ' N ' be the number of jugs required to fill the cylindrical pot completely.
$\therefore \mathrm{N} \times$ Volume of cone $=$ Volume of cylinder
$\therefore \mathrm{N} \times \frac{1}{3} \pi r^{2} h \quad=\pi r_{1}{ }^{2} h_{1}$
$\therefore \mathrm{N} \times \frac{1}{3} \pi \times 3.5 \times 3.5 \times 10=\pi \times 7 \times 7 \times 10$
$\therefore \mathrm{N}=\frac{\pi \times 7 \times 7 \times 10 \times 3}{\pi \times 3.5 \times 3.5 \times 10}$
$\therefore \mathrm{N}=12$
$\therefore \quad$ Number of conical jugs required to fill up cylindrical pot completely is 12.
(7) A cylinder and a cone have equal bases. The height of the cylinder is 3 cm and the area of its base is $100 \mathrm{~cm}^{2}$. The cone is placed upon the cylinder. Volume of the solid figure so
 formed is $500 \mathrm{~cm}^{2}$. Find the total height of figure.
(3 marks)
Solution :

Let the radius of base of each part be r.
Height of the cylinder $\left(h_{1}\right)=3 \mathrm{~cm}$. Let the height of the cone be h_{2}

Area of the base $=100 \mathrm{~cm}^{2}$
$\therefore \pi r^{2}=100 \mathrm{~cm}^{2}$
Volume of the solid figure formed $=$
Volume of the cylinder + Volume of the cone
$\therefore 500=\pi r^{2} h_{1}+\frac{1}{3} \pi r^{2} h_{2}$
$\therefore 500=\pi r^{2}\left(h_{1}+\frac{1}{3} h_{2}\right)$
...[From (i)]
$\therefore 500=100\left(3+\frac{h_{2}}{3}\right)$
$\therefore \quad \frac{500}{100}=3+\frac{h_{2}}{3}$
$\therefore \quad 5=3+\frac{h_{2}}{3}$
$\therefore 5-3=\frac{h_{2}}{3}$
$\therefore \quad \frac{h_{2}}{3}=2$
$\therefore \quad h_{2}=6$
Total height $=h_{1}+h_{2}$

$$
=3+6
$$

Total height of the figure is 9 cm

Problem Set - 7 (Textbook Pg No. 161)

(7) A cylinder bucket of diameter 28 cm and height 20 cm was full of sand. When the sand in the bucket was poured on the ground, the sand got converted into a shape of a cone. If the height of
the cone was 14 cm , what was the base area of the cone?
(3 marks)
Solution :
For the cylindrical bucket,
diameter $=28 \mathrm{~cm}$
$\therefore \quad$ Radius $(r)=14 \mathrm{~cm}$.
height (h) $=20 \mathrm{~cm}$
Volume of sand in the bucket $=$
Volume of the bucket $=\pi r^{2} h$
For conical shape sand
height $\left(h_{1}\right)=14 \mathrm{~cm}$
Let the radius be r_{1}
Sand from the bucket is emptied to form a cone.
\therefore Volume of sand in the conical shape $=$ Volume of the sand in the bucket

$$
\begin{array}{rlrl}
& \therefore & \frac{1}{3} \pi r_{1}^{2} h_{1} & =\pi r^{2} h \\
& \therefore & \frac{1}{3} \pi r_{1}^{2} h_{1} & =\frac{22}{7} \times 14 \times 14 \times 20 \\
& \therefore & \frac{1}{3} \times \pi r_{1}^{2} \times 14 & =\frac{22}{7} \times 14 \times 14 \times 20 \\
& \therefore & \pi r_{1}^{2} & =\frac{22}{7} \times 14 \times 14 \times 20 \times \frac{3}{14} \\
& \pi r_{1}^{2} & =2,640 \mathrm{sq} . \mathrm{cm}
\end{array}
$$

$\therefore \quad$ Area of base of the cone is $2640 \mathrm{~cm}^{2}$

Points to Remember:

- Sphere

The set of all points in the space which are at a fixed distance from a fixed point is called a sphere.
The fixed point is called
 the centre and the fixed distance is called the Radius of the sphere.
In the adjoining figure, point O is the centre of the sphere and seg OA is the radius of the sphere which is denoted as ' r '.
Since the entire surface of the sphere is curved, its area is called as curved surface area or simply surface area of the sphere.
Some common examples of a sphere are cricket ball, football, globe, spherical soap bubble etc.

FORMULAE

(1) Surface area (curved surface area) of a sphere

$$
=4 \pi r^{2}
$$

(2) Volume of a sphere $=\frac{4}{3} \times \pi r^{3}$

- Hemisphere

Half of a sphere is called as hemisphere.
Any hemisphere is made up of a curved surface and a plane circular surface.

FORMULAE

(1) Curved surface area of a hemisphere $=2 \pi r^{2}$
(2) Total surface area of a solid hemisphere $=3 \pi r^{2}$
(3) Volume of a hemisphere $=\frac{2}{3} \times \pi r^{3}$

As shown in the adjacent figure, a sphere is placed in a cylinder. It touches the top, bottom and the curved surface of the cylinder. If radius of the base of the cylinder is ' r ',

(1) What is the ratio of the radii of the sphere and the cylinder?
(2) What is the ratio of the curved surface area of the cylinder and the surface area of the sphere?
(3) What is the ratio of the volumes of the cylinder and the sphere?

Solution :

radius of the base of the cylinder $=r$
\because ball touches the top, bottom and curved surface of the cylinder,
radius of the sphere $=r$
height of cylinder $=$ diameter of sphere $=2 r$.
(i) $\frac{\text { Radius of sphere }}{\text { Radius of cylinder }}=\frac{r}{r}=1$
...[From (i)]
(ii) Curved surface area of the cylinder

$$
\begin{aligned}
& =2 \pi r h \\
& =2 \pi r(2 r) \ldots[\text { From (i)] } \\
& =4 \pi r^{2}
\end{aligned}
$$

Also surface area of sphere $=4 \pi r^{2}$
$\therefore \quad \frac{\text { Curved surface area of cylinder }}{\text { Surface area of sphere }}=\frac{4 \pi r^{2}}{4 \pi r^{2}}=1$
(iii) Volume of cylinder $=\pi r^{2} h$

$$
=\pi r^{2}(2 r) \quad \ldots[\text { From }(\mathrm{i})]
$$

$$
\begin{aligned}
& =2 \pi r^{3} \\
& =\frac{4}{3} \pi r^{3} \\
\therefore \quad \frac{\text { Volume of sphere cylinder }}{\text { Volume of sphere }} & =\frac{2 \pi r^{3}}{\frac{4}{3} \pi r^{3}}=\frac{3}{2}
\end{aligned}
$$

Practice Set - 7.1 (Textbook Page No. 145)

(2) Find the volume of a sphere with diameter 6 cm .
(1 mark)
Solution :
For the sphere,
Diameter $=6 \mathrm{~cm}$
\therefore Radius $(r) \quad=\frac{6}{2} \mathrm{~cm}=3 \mathrm{~cm}$
Volume of the sphere $=\frac{4}{3} \times \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \times 3.14 \times 3 \times 3 \times 3 \\
& =113.04 \mathrm{~cm}^{2}
\end{aligned}
$$

$\therefore \quad$ Volume of the sphere $113.04 \mathrm{~cm}^{3}$
(4) Find the surface area of sphere of radius 7 cm .
(1 mark)

Solution :

For the sphere,
Radius (r) $=7 \mathrm{~cm}$
Cruved surface area of the sphere $=4 \pi r^{2}$

$$
\begin{aligned}
& =4 \times \frac{22}{7} \times 7 \times 7 \\
& =616 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Curved surface area of the sphere is $616 \mathrm{~cm}^{2}$
(11) Find the surface area and the volume of a beach ball shown in the figure. (3 marks)

Solution :

For a spherical beach ball.
Diameter $=42 \mathrm{~cm}$
...(Given)
\therefore Radius $(r)=\frac{42}{2}=21 \mathrm{~cm}$
Volume of the spherical beach ball $=\frac{4}{3} \times \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \times \frac{22}{7} \times 21 \times 21 \times 21 \\
& =38,808 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\therefore \quad \begin{gathered}
\text { Volume of the spherical beach } \\
\text { ball is } 38,808 \mathrm{~cm}^{3}
\end{gathered}
$$

Surface area of the spherical beach ball $=4 \pi \mathrm{r}^{2}$

$$
\begin{aligned}
& =4 \times \frac{22}{7} \times 21 \times 21 \\
& =5,544 \mathrm{~cm}^{3}
\end{aligned}
$$

$\therefore \quad$| Surface area of the spherical |
| :---: |
| beach ball is $5,544 \mathrm{~cm}^{2}$ |

(8) In below figure, a toy made from a hemisphere, a cylinder and a cone is shown. Find the total area of the toy.
(4 marks)

Solution :
Toy is made up of a cone, cylinder and hemisphere of equal radii.

For the conical	For the cylindrical	For hemisphere
part	part	Radius $(r)=3 \mathrm{~cm}$
Radius $(r)=3 \mathrm{~cm}$	Radius $(r)=3 \mathrm{~cm}$	
Height $(h)=4 \mathrm{~cm}$	height $\left(h_{1}\right)=40 \mathrm{~cm}$	

Let the slant height of conical part be l.

$$
\begin{aligned}
l^{2} & =r^{2}+h^{2} \\
\therefore & =3^{2}+4^{2} \\
& =9+16 \\
\therefore \quad l^{2} & =25 \\
\therefore \quad l & =5 \mathrm{~cm}
\end{aligned}
$$

(Taking square roots)
Total surface area of the toy =
Curved surface area of the hemisphere

+ Curved surface area of the cylinder
+ Curved surface area of the cone
$=2 \pi r^{2}+2 \pi r h_{1}+\pi r l$
$=\pi r\left(2 r+2 h_{1}+l\right)$
$=\frac{22}{7} \times 3 \times(3 \times 2+2 \times 40+5)$
$=\frac{22}{7} \times 3 \times(6+80+5)$
$=\frac{22}{7} \times 3 \times 91$
$=22 \times 3 \times 13$
$=858 \mathrm{~cm}^{2}$
$\therefore \quad$ Total Surface area of the toy is 858 sq.cm
(10)

The adjoining figure shows a toy. Its lower part is a hemisphere and the upper part is a cone. Find the volume and the surface area of the toy from the measures shown in the figure. $(\pi=$ 3.14)
(4 marks)

Solution :

For the conical part
Radius $(r)=3 \mathrm{~cm}$
Height $(h)=4 \mathrm{~cm}$
Let l be the slant height of conical part

$$
\therefore l=5 \mathrm{~cm} \quad \text { (Taking square }
$$

roots)

Volume of the toy = Volume of the Cone

+ volume of the hemisphere
$=\frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3}$
$=\frac{1}{3} \pi r^{2}(h+2 r)$
$=\frac{1}{3} \times 3.14 \times 3 \times 3(4+2 \times 3)$
$=3.14 \times 3(4+6)$
$=3.14 \times 3 \times 10$
$=3.14 \times 30$
$=94.2 \mathrm{~cm}^{3}$
$\therefore \quad$ Volume of the toy is $94.2 \mathrm{~cm}^{3}$
Surface area of toy = Curved surface area of the cone + Curved surface area of the hemisphere

$$
\begin{aligned}
& =\pi r l+2 \pi r^{2} \\
& =\pi r(l+2 r) \\
& =3.14 \times 3(5+2 \times 3) \\
& =3.14 \times 3(5+6) \\
& =3.14 \times 3 \times 11 \\
& =3.14 \times 33 \\
& =103.62 \mathrm{~cm}^{2}
\end{aligned}
$$

$\therefore \quad$ Surface area of toy is $103.62 \mathrm{~cm}^{2}$
(12)

As shown in the figure, a cylindrical glass contains water. A metal sphere of diameter 2 cm is immersed in it water. Find the volume of water.
(3 marks)

$$
\begin{aligned}
& l^{2}=r^{2}+h^{2} \\
& \therefore \quad=3^{2}+4^{2} \\
& =9+16 \\
& \therefore \quad l^{2}=25
\end{aligned}
$$

Solution :

For the cylindrical vessel
Diameter $=14 \mathrm{~cm}$
Radius $\left(r_{1}\right)=7 \mathrm{~cm}$
Height of the water level $\left(h_{1}\right)$

For the Sphere
Diameter $=2 \mathrm{~cm}$
$\operatorname{Radius}\left(r_{2}\right)=1 \mathrm{~cm}$
(When sphere is immersed)
Apparent volume of water when sphere is immersed in water $\left(\mathrm{V}_{1}\right) \quad=\pi r_{1}^{2} h_{1}$

$$
\begin{aligned}
& =\frac{22}{7} \times 7 \times 7 \times 30 \\
& =4620 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of the Sphere $\left(V_{2}\right)=\frac{4}{3} \times \pi r_{2}^{3}$

$$
\text { Actual volume of water } \quad=\mathrm{V}_{1}-\mathrm{V}_{2}
$$

$$
\begin{aligned}
& =\frac{4}{3} \times 3.14 \times 1 \times 1 \times 1 \\
& =4.19 \mathrm{~cm}^{3} \\
& =\mathrm{V}_{1}-\mathrm{V}_{2} \\
& =4620-4.19 \\
& =4615.81 \mathrm{~cm}^{3}
\end{aligned}
$$

$\therefore \quad$ Actual volume of Water is $4615.81 \mathrm{~cm}^{3}$

Problem Set-7 (Textbook Pg No. 161)

(6) The diameter and thickness of a hollow metallic sphere are 12 cm and 0.01 m respectively. The density of the metal is 8.88 gm per cm^{3}. Find the outer surface area and mass of the sphere.
(4 marks)
Solution:
For the metallic hollow sphere,
Outer diameter $=12 \mathrm{~cm}$
\therefore Outer radius $\left(r_{1}\right)=\frac{12}{2}=6 \mathrm{~cm}$
Thickness $\quad=0.01 \mathrm{~m}$

$$
=0.01 \times 100 \ldots[\because 1 \mathrm{~m}=100 \mathrm{~cm}]
$$

$$
=1 \mathrm{~cm}
$$

Inner radius $\left(r_{2}\right)=r_{1}$-thickness

$$
=6-1
$$

$$
=5 \mathrm{~cm}
$$

Outer surface area of the hollow sphere

$$
\begin{aligned}
& =4 \pi r_{1}^{2} \\
& =4 \times 3.14 \times 6 \times 6 \\
& =452.16 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Outer surface area is 452.16 sq. cm.
Volume of metal in the hollow metalic sphere
$=$ Volume of the outer sphere - Volume of the inner sphere

$$
\begin{aligned}
&=\frac{4}{3} \pi r_{1}^{3}-\frac{4}{3} \pi r_{2}^{3} \\
&=\frac{4}{3} \pi\left(r_{1}^{3}-r_{2}^{3}\right) \\
&=\frac{4}{3} \times \frac{22}{7} \times\left(6^{3}-5^{3}\right) \\
&=\frac{4}{3} \times \frac{22}{7} \times(216-125) \\
&=\frac{4}{3} \times \frac{22}{7} \times 91 \\
&=\frac{4}{3} \times 22 \times 13 \\
& \mathrm{~V}=\frac{1144}{3} \mathrm{~cm} \\
& \\
& \text { Density }=\frac{\text { Mass }}{\text { Volume }} \\
& \therefore \text { Mass }=\text { Density } \times \text { Volume }
\end{aligned}
$$

...(Formula)

Mass of the hollow sphere $=$
Volume of the hollow sphere \times Density of Sphere

$$
\begin{aligned}
V & =\frac{1144}{3} \times 8.88 \\
& =1144 \times 2.96 \\
& =3386.24 \mathrm{gm}
\end{aligned}
$$

$\therefore \quad$ Mass of the hollow sphere is 3386.24 gm
(8) The radius of a metallic sphere is 9 cm . It was melted to make a wire of diameter 4 mm . Find the length of the wire.
(3 marks)

Solution :

For the sphere, $r=9 \mathrm{~cm}$
For the wire, Thickness $($ diameter $)=4 \mathrm{~mm}$
\therefore Radius $\left(r_{1}\right)=\frac{4}{2} \mathrm{~mm}=2 \mathrm{~mm}=\frac{2}{10} \mathrm{~cm}$
$\ldots[1 \mathrm{~cm}=10 \mathrm{~mm}]$
Let the length of wire be h_{1}
Wire is made by melting the sphere,
Volume of the wire = Volume of the sphere

$$
\begin{array}{lr}
\therefore & \pi r_{1}^{2} h_{1}=\frac{4}{3} \times \pi \mathrm{r}^{3} \\
\therefore & \pi \times \frac{2}{10} \times \frac{2}{10} \times h_{1}=\frac{4}{3} \pi \times 9 \times 9 \times 9 \\
\therefore & h_{1}=\frac{4 \times \pi \times 9 \times 9 \times 9 \times 10 \times 10}{3 \times \pi \times 2 \times 2} \\
\therefore & h_{1}=24,300 \mathrm{~cm} \\
\therefore & h_{1}=243 \mathrm{~m} \quad \ldots[\because 1 \mathrm{~m}=100 \mathrm{~cm}]
\end{array}
$$

$\therefore \quad$ Length of the wire formed is 243 m .

Points to Remember:

- Frustum Of The Cone :

If the cone is cut off by a plane parallel to the base not passing through the vertex, two parts are formed as
(i) cone (a part towards the vertex)
(ii) frustum of cone (the part
 left over on the other side i.e. towards base of the original cone)

FORMULAE

(1) Slant height (l) of the frustum $=\sqrt{h^{2}+\left(r_{1}-r_{2}\right)^{2}}$
(2) Curved surface area $=\pi\left(r_{1}+r_{2}\right) l$
(3) Total surface area of the frustum $=$ $\pi\left(r_{1}+r_{2}\right) l+\pi r_{1}^{2}+\pi r_{2}^{2}$
(4) Volume of the frustum $=\frac{1}{3} \pi\left(r_{1}{ }^{2}+r_{2}{ }^{2}+r_{1} \times r_{2}\right) h$

Practice Set - 7.2 (Textbook Page No. 148)

(1) The radii of two circular ends of frustum shape bucket are 14 cm and 7 cm . Height of the bucket is 30 cm . How many litres of water it can hold? (1 litre $=1000 \mathrm{~cm}^{3}$)
(3 marks)

Solution :

For a frustum shaped bucket,
radius of bigger circle $\left(r_{1}\right)=14 \mathrm{~cm}$
radius of smaller circle $\left(r_{2}\right)=7 \mathrm{~cm}$
height (h) $\quad=30 \mathrm{~cm}$
Capacity of the bucket $=$ Volume of the bucket

$$
\begin{aligned}
& =\frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{1} \times r_{2}\right) \\
& =\frac{1}{3} \times \frac{22}{7} \times 30\left(14^{2}+7^{2}+14 \times 7\right) \\
& =\frac{22}{7} \times 10 \times(196+49+98) \\
& =\frac{22}{7} \times 10 \times 343 \\
& =22 \times 10 \times 49 \\
& =10,780 \mathrm{~cm}^{3} \\
& =\frac{10780}{1000} \\
& =10.78 \text { litres }
\end{aligned}
$$

$\therefore \quad$ Capacity of the bucket is $\mathbf{1 0 . 7 8 0}$ litres

(2) The radii of ends of a frustum are 14 cm and 6 cm respectively and its height is 6 cm . Find its (i) curved surface area (ii) Total surface area (iii) Volume $(\pi=3.14)$.
(4 marks)

Solution :

For a frustum
radius of bigger circle $\left(r_{1}\right)=14 \mathrm{~cm}$
radius of smaller circle $\left(r_{2}\right)=6 \mathrm{~cm}$
height (h)
$=6 \mathrm{~cm}$
Slant height of the frustum $(l)=\sqrt{h^{2}+\left(r_{1}-r_{2}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{6^{2}+(14-6)^{2}} \\
& =\sqrt{6^{2}+8^{2}} \\
& =\sqrt{36+64} \\
& =\sqrt{100} \\
& =10 \mathrm{~cm}
\end{aligned}
$$

...(Taking square roots)
(i) Curved surface area of the frustum $=\pi\left(r_{1}+r_{2}\right) l$

$$
\begin{aligned}
& =3.14 \times(14+6) \times 10 \\
& =3.14 \times 20 \times 10 \\
& =628 \mathrm{~cm}^{2}
\end{aligned}
$$

Curved surface area of the frustum is $628 \mathrm{~cm}^{2}$
(ii) Total surface area of the frustum

$$
\begin{aligned}
& =\pi\left(r_{1}+r_{2}\right) l+\pi r_{1}^{2}+\pi r_{2}^{2} \\
& =628+\pi\left(14^{2}+6^{2}\right) \\
& =628+\pi(196+36) \\
& =628+3.14 \times 232 \\
& =628+728.48 \\
& =1,356.48 \mathrm{~cm}^{2}
\end{aligned}
$$

Total surface area of the frustum is $1356.48 \mathrm{~cm}^{2}$
(iii) Volume of the frustum $=\frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{1} \times r_{2}\right)$

$$
\begin{aligned}
& =\frac{1}{3} \times 3.14 \times 6\left(14^{2}+6^{2}+14 \times 6\right) \\
& =3.14 \times 2(196+36+84) \\
& =3.14 \times 2 \times 316 \\
& =1,984.48 \mathrm{~cm}^{3}
\end{aligned}
$$

$\therefore \quad$ Volume of the frustum is $1,984.48 \mathrm{~cm}^{3}$
(3) The circumferences of circular faces of a frustum are 132 cm and 88 cm and its height is 24 cm . To find curved surface area of frustum complete the following activity. ($\pi=\frac{22}{7}$)
(3 marks) Solution :

For the frustum
Circumference $_{1}=2 \pi r_{1}=132$

$$
\begin{aligned}
& \therefore \quad r_{1}=\frac{132}{2 \pi}=21 \mathrm{~cm} \\
& \therefore \quad C_{1} \\
& \therefore \quad r_{2}=\frac{88}{2 \pi}=14 \mathrm{~cm}
\end{aligned}
$$

Slant height of the frustum $=(l)=\sqrt{h^{2}+\left(r_{1}-r_{2}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{(24)^{2}+(21-14)^{2}} \\
& =\sqrt{(24)^{2}+(7)^{2}} \\
& l=25 \mathrm{~cm}
\end{aligned}
$$

Curved surface area of frustum $=\pi\left(r_{1}+r_{2}\right) l$

$$
\begin{aligned}
& =\pi \times 35 \times 25 \\
& =2,750 \mathrm{sq} . \mathrm{cm}
\end{aligned}
$$

Problem Set-7 (Textbook Pg No. 161)

(2) A washing tub in the shape of a frustum of a cone has height 21 cm . The radii of the circular top and bottom are 20 cm and 15 cm respectively. What is the capacity of the tub? $\left(\pi=\frac{22}{7}\right) \quad$ (3 marks)

Solution:

For frustum shaped tub,
$r_{1}=20 \mathrm{~cm}, r_{2}=15 \mathrm{~cm}, h=21 \mathrm{~cm}$
Quantity of water that can be contained in the tub
$=$ Inner volume of tub
$=\frac{1}{3} \pi \times h\left(r_{1}{ }^{2}+r_{2}{ }^{2}+r_{1} \times r_{2}\right)$
$=\frac{1}{3} \times \frac{22}{7} \times 21\left(20^{2}+15^{2}+20 \times 15\right)$
$=22(400+225+300)$
$=22 \times 925$
$=20,350 \mathrm{~cm}^{3}$
$=\frac{20350}{1000}$ litres $\quad[\because 1$ litres $=1000 \mathrm{~cm}]$
$=20.35$ litres
\therefore Quantity of water that can be contained in the tub is 20.35 litres

Points to Remember:

Now we will study how to find some measurements related to circle

- Circle : Arc, Sector, Segment

Area of sector :

Sector of a circle is the part of the circle enclosed by two radii of the circle and their intercepted arc. (i.e. arc between the two ends of radii)
Area of the sector $(A)=\frac{\theta}{360} \times \pi r^{2}$
Length of an arc :
Length of an arc of a circle (arc length) is the distance along the curved line making up the arc.
Length of the arc $(l)=\frac{\theta}{360} \times 2 \pi r$
Relation between the area of the sector and the length of an arc :

Activity I: (Textbook page no. 154)
Area of a sector, $(\mathrm{A})=\frac{\theta}{360} \times \pi r^{2}$
Length of the arc, $(l)=\frac{\theta}{360} \times 2 \pi r$

$$
\therefore \quad=\frac{\theta}{360}=\frac{l}{2 \pi r}
$$

$\therefore \mathrm{A} \quad=\frac{l}{2 \pi r} \times \pi r^{2} \quad \ldots[$ From (i) and (ii)]

$$
\therefore \text { A } \quad=\frac{l}{2} r=\frac{l r}{2}
$$

$\therefore \quad$ Area of the sector $=\frac{\text { Length of the arc } \times \text { Radius }}{2}$
Similarity

$$
=\frac{\mathrm{A}}{\pi r^{2}}=\frac{l}{2 \pi r}=\frac{\theta}{360}
$$

Area of circle $=A$ (minor sector $O-A X B)$

$$
+\mathrm{A}(\text { major sector } \mathrm{O}-\mathrm{AYB})
$$

Activity II :
(Textbook page no. 154)
In the figure given, side of square ABCD is 7 cm with centre D and radius DA. Sector $D-A X C$ is
drawn. Fill in the following boxes propertly and find out the area of the shaded region.

Solution :

$$
\begin{aligned}
\text { Area of a square } & =(\text { side })^{2} \\
& =7^{2} \\
& =49 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area of sector }(\mathrm{D}-\mathrm{AXC}) & =\frac{\theta}{360} \times \pi r^{2} \\
& =\frac{\overline{90}}{360} \times \frac{22}{7} \times 7^{2} \\
& =38.5 \mathrm{~cm}^{2}
\end{aligned}
$$

A (shaded region) $=\mathrm{A} \square \mathrm{ABCD}-\mathrm{A}$ sector (D-AXC)

$$
\begin{aligned}
& =49 \mathrm{~cm}^{2}-38.5 \mathrm{~cm}^{2} \\
& =10.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Practice Set - 7.3 (Textbook Page No. 154)

(1) Radius of a circle is 10 cm . Measure of an arc of the circles 54°. Find the area of the sector associated with the arc. $(\pi=3.14) \quad$ (2 marks) Solution :

For the sector, $r=10 \mathrm{~cm}, \theta=54^{\circ}$
Area of the sector $=\frac{\theta}{360} \times \pi r^{2}$

$$
\begin{aligned}
& =\frac{54}{360} \times 3.14 \times 10 \times 10 \\
& =\frac{3}{20} \times 314 \\
& =\frac{942}{20} \\
& =47.1 \mathrm{~cm}^{2}
\end{aligned}
$$

$\therefore \quad$ Area of the sector is $47.1 \mathrm{~cm}^{2}$
(2) Measure of an arc of a circle is 80 cm and its radius is 18 cm . Find the length of the $\operatorname{arc}(\pi=3.14)$
(2 marks)

Solution :

For a sector, $r=18 \mathrm{~cm}, \theta=80$
Length of an arc $=\frac{\theta}{360} \times 2 \pi r$

$$
\begin{aligned}
& =\frac{80}{360} \times 2 \times 3.14 \times 18 \\
& =3.14 \times 8 \\
& =25.12 \mathrm{~cm}
\end{aligned}
$$

$\therefore \quad$ Length of the arc is 25.12 cm
(3) Radius of a sector of a circle is 3.5 cm and length of its arc is 2.2 cm . Find the area of the sector.
(1 mark)
Solution :
For the sector, $r=3.5 \mathrm{~cm}$, length of $\operatorname{arc}(l)=2.2 \mathrm{~cm}$
Area of the sector $=l \times \frac{r}{2}$

$$
\begin{aligned}
& =2.2 \times \frac{3.5}{2} \\
& =3.85 \mathrm{~cm}^{2}
\end{aligned}
$$

$\therefore \quad$ Area of the sector is $3.85 \mathrm{~cm}^{2}$
(4) Radius of a circle is 10 cm . Area of a sector of the circle is $100 \mathrm{~cm}^{2}$. Find the area its corresponding major sector. ($\pi=3.14$)
(2 marks)
Solution :
For the circle, $r=10 \mathrm{~cm}$
Area of minor sector $=100 \mathrm{~cm}^{2}$
Area of the circle $=\pi r^{2}$

$$
\begin{aligned}
& =3.14 \times 10 \times 10 \\
& =314 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of a major circle $=$
Area of the circle - Area of corresponding minor sector

$$
\begin{aligned}
& =314-100 \\
& =214 \mathrm{~cm}^{2}
\end{aligned}
$$

$\therefore \quad$ Area of the major sector is $=214 \mathrm{~cm}^{2}$
(5) Area of a sector of a circle of radius 15 cm is 30 cm^{2}. Find the length of the arc of the sector
(2 marks)

Solution :

For the circle, $r=15 \mathrm{~cm}$
Area of the sector $=30 \mathrm{~cm}^{2}$
Area of the sector $=$ Length of $\operatorname{arc} \times \frac{r}{2}$
$\therefore \quad 30=$ Length of $\operatorname{arc} \times \frac{15}{2}$
\therefore Length of arc $=\frac{30 \times 2}{15}$
$\therefore \quad$ Length of arc $=4 \mathrm{~cm}$
$\therefore \quad$ Length of the arc is 4 cm
(6)

In the adjoining figure, the radius of the circle is 7 cm and $m(\operatorname{arc} M B N)=60$. Find
(i) Area of the circle (ii) A ($\mathrm{O}-\mathrm{MBN}$) (iii) A ($\mathrm{O}-\mathrm{MCN}$)
(3 marks)

Solution:
For the circle, $r=7 \mathrm{~cm}$
$\mathrm{m}(\operatorname{arc} M B N)=\theta=60^{\circ}$
(i) Area of the circle $=\pi r^{2}$

$$
\begin{aligned}
& =\frac{22}{7} \times 7 \times 7 \\
& =154 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of the circle is $154 \mathrm{~cm}^{2}$
(ii)

$$
\begin{aligned}
\mathrm{A}(\text { sector } \mathrm{O}-\mathrm{MBN}) & =\frac{\theta}{360} \times \pi r^{2} \\
& =\frac{60}{360} \times 154 \\
& =\frac{1}{6} \times 154 \\
& =25.67 \mathrm{~cm}^{2} \\
\text { A (sector } \mathbf{O}-\mathrm{MBN}) \text { is } & \mathbf{2 5 . 6 7} \mathrm{cm}^{2}
\end{aligned}
$$

(iii)
iii) $\mathrm{A}($ sector $\mathrm{O}-\mathrm{MCN})$
$=$
Area of the circle -A (sector $\mathrm{O}-\mathrm{MBN})$

$$
\begin{aligned}
& =154-25.67 \\
& =128.33 \mathrm{~cm}^{2}
\end{aligned}
$$

A (sector $\mathrm{O}-\mathrm{MCN}$) is $128.33 \mathrm{~cm}^{2}$
(7)

In the adjoining figure, radius of circle is 3.4 cm and perimeter of sector $\mathrm{P}-\mathrm{ABC}$ is 12.8 cm . Find $\mathbf{A}(\mathbf{P}-\mathbf{A B C})$. (2 marks)

Solution:
For the circle, $r=3.4 \mathrm{~cm}$
perimeter of sector $\mathrm{P}-\mathrm{ABC}=12.8 \mathrm{~cm}$
$\mathrm{P}(\mathrm{P}-\mathrm{ABC})=$ Length of arc $(l)+r+r$
$\therefore 12.8=l+3.4+3.4$
$\therefore 12.8-6.8=l$
$\therefore l=6 \mathrm{~cm}$
Area of the sector $=l \times \frac{r}{2}$
$=6 \times \frac{3.4}{2} \times 7 \times 7$
Area of the sector $=10.2 \mathrm{~cm}^{2}$
Area of the sector is $10.2 \mathbf{~ c m}^{2}$
(8)
and arc MYN. $\left(\pi=\frac{22}{7}\right)$
(3 marks)
Solution :
(i) For arc $R X Q, \theta=\angle \mathrm{ROQ}=60^{\circ}$

$$
\mathrm{OR}(\mathrm{r})=7 \mathrm{~cm}
$$

$$
\begin{aligned}
\text { Length of arc RXQ } & =\frac{\theta}{360} \times 2 \pi r \\
& =\frac{60}{360} \times 2 \times \frac{22}{7} \times 7 \\
& =7.33 \mathrm{~cm}
\end{aligned}
$$

Length of arc RXQ is 7.33 cm

(ii) For arc MYN, OM (r) $=21 \mathrm{~cm}, \theta=\angle \mathrm{MON}=60^{\circ}$

$$
\begin{aligned}
\text { Length of arc MYN } & =\frac{\theta}{360} \times 2 \pi r \\
& =\frac{60}{360} \times 2 \times \frac{22}{7} \times 21 \\
& =22 \mathrm{~cm}
\end{aligned}
$$

Length of arc (MYN) is 22 cm
(9)

In the adjoining figure A $(P-A B C)=154 \mathrm{~cm}^{2}$ and radius of the circle is 14 cm . Find (i) $\angle \mathrm{APC}$ (ii) $l(\operatorname{arc} \mathrm{ABC})$.
(3 marks)

Solution :

Region P - ABC is a sector

$$
\begin{aligned}
& A(P-A B C)=\frac{\theta}{360} \times \pi r^{2} \\
\therefore & 154=\frac{\theta}{360} \times \frac{22}{7} \times 14 \times 14 \\
\therefore & \frac{154 \times 360 \times 7}{22 \times 14 \times 14}=\theta
\end{aligned}
$$

$$
\therefore \theta=90^{\circ}
$$

$$
\therefore \angle \mathrm{APC}=90^{\circ}
$$

$$
\frac{\angle \mathrm{APC}=90^{\circ}}{\text { length of arc } \mathrm{ABC}=\frac{\theta}{360} \times 2 \pi r}
$$

$$
=\frac{90}{360} \times 2 \times \frac{22}{7} \times 14
$$

$$
\text { length of arc } \mathrm{ABC}=22 \mathrm{~cm}
$$

$$
\therefore l(\operatorname{arc} \mathrm{ABC}) \text { is } 22 \mathrm{~cm}
$$

(10) Radius of a sector of a circle is 7 cm . If measure of arc of the sector is (1) 30° (2) 210° (3) three right angles; find the area of the sector in each case
(3 marks)
Solution :
For the circle, $\mathrm{r}=7 \mathrm{~cm}$
(i) For the sector, $\theta=30^{\circ}$

$$
\begin{aligned}
\text { Area of sector } & =\frac{\theta}{360} \times \pi r^{2} \\
& =\frac{30}{360} \times \frac{22}{7} \times 7 \times 7 \\
& =12.83
\end{aligned}
$$

\therefore Area of the sector is $12.83 \mathrm{~cm}^{2}$
(ii) For the sector, $\theta=210^{\circ}$

$$
\begin{aligned}
\text { Area of sector } & =\frac{\theta}{360} \times \pi r^{2} \\
& =\frac{210}{360} \times \frac{22}{7} \times 7 \times 7 \\
& =89.83
\end{aligned}
$$

Area of sector is $89.83 \mathrm{~cm}^{2}$

(iii) For the sector, $\theta=3$ right angles $=3 \times 90^{\circ}=270^{\circ}$

$$
\begin{aligned}
\text { Area of sector } & =\frac{\theta}{360} \times \pi r^{2} \\
& =\frac{270}{360} \times \frac{22}{7} \times 7 \times 7 \\
& =115.5
\end{aligned}
$$

Area of the sector is $115.50 \mathrm{~cm}^{2}$
(11) The area of a minor sector of a circle is $3.85 \mathrm{~cm}^{2}$ and the measure of its central angle is 36°. Find the radius of the circle.
(2 marks)

Solution :

For the sector, Area $=3.85 \mathrm{~cm}^{2}, \theta=36^{\circ}$
$\mathrm{A}=\frac{\theta}{360} \times \pi r^{2}$
$\therefore 3.85=\frac{36}{360} \times \frac{22}{7} \times r^{2}$
$\therefore \frac{3.85 \times 360 \times 7}{36 \times 22}=r^{2}$
$\therefore \quad r^{2}=12.25$
$\therefore r=3.5 \mathrm{~cm}$
$\therefore \quad$ Radius of the circle is 3.5 cm
(12)

x, y and z.
In the adjoining figure, $\square P Q R S$ is a rectangle. $P Q=14 \mathrm{~cm}, \mathrm{QR}=$ 21 cm , find the areas of the parts
(4 marks)
Solution :
$\square \mathrm{PQRS}$ is a rectangle with $\mathrm{l}=21 \mathrm{~cm}$ and $\mathrm{b}=14 \mathrm{~cm}$

$$
\begin{align*}
\mathrm{A}(\square \mathrm{PQRS}) & =l \times b \\
& =21 \times 14 \\
\mathrm{~A}(\square \mathrm{PQRS}) & =294 \mathrm{~cm}^{2} \tag{i}
\end{align*}
$$

For region x ie. for sector Q - PT,

$$
\begin{aligned}
& \mathrm{r}=14 \mathrm{~cm}, \theta=90^{\circ} \\
& \mathrm{A}(\text { region } \mathrm{x})=\mathrm{A}(\text { sector } \mathrm{Q}-\mathrm{PT}) \\
&=\frac{\theta}{360} \times \pi r^{2}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{90}{360} \times \frac{22}{7} \times 14 \times 14 \\
& =154 \mathrm{~cm}^{2} \tag{ii}
\end{align*}
$$

A (region x) is $154 \mathrm{~cm}^{2}$

$\mathrm{QP}=\mathrm{QT}$
...(Radii of the same circle)

$$
\begin{equation*}
\therefore \mathrm{QT}=14 \mathrm{~cm} \tag{iii}
\end{equation*}
$$

$\mathrm{QR}=\mathrm{QT}+\mathrm{RT}$
... $(\mathrm{Q}-\mathrm{T}-\mathrm{R})$
$\therefore 21=14+\mathrm{RT}$...(From (iii) and given)
$\therefore \mathrm{RT}=21-14=7 \mathrm{~cm}$
For region y i.e. for (sector $\mathrm{R}-\mathrm{B} \mathrm{T}$)
$r_{1}=7 \mathrm{~cm}, \quad \theta=90^{\circ}$
$\mathrm{A}($ region $y)=\mathrm{A}($ sector $\mathrm{R}-\mathrm{B} \mathrm{T})$
$=\frac{\theta}{360} \times \pi r^{2}$
$=\frac{90}{360} \times \frac{22}{7} \times 7 \times 7$

$$
=38.5 \mathrm{~cm}^{2}
$$

A (region y) is $38.5 \mathrm{~cm}^{2}$

$\mathrm{A}($ rectangle PQRS$)=$
$\mathrm{A}($ region $x)+\mathrm{A}($ region $y)+\mathrm{A}($ region $z)$ [Area addition property]
$294=154+\mathrm{A}($ region $z)+38.5$
A (region z) $=294-154-38.5 \quad[$ From (i), (ii) and (iv)]

$$
=101.5 \mathrm{~cm}^{2}
$$

A (region z) is $101.5 \mathrm{~cm}^{2}$
(13)

$\Delta \mathrm{LMN}$ is an equilateral triangle. $\mathrm{LM}=$ 14 cm . As shown in the figure, three sectors are drawn with vertices as centre and radius 7 cm . Find,
(i) A ($\triangle \mathrm{LMN}$) (ii) Area of any one of the sectors. (iii) Total area of all the three sectors (iv) Area of the shaded region.
(4 marks)

Solution :

(i) $\quad \triangle \mathrm{LMN}$ is an equilateral triangle with side 14 cm

$$
\mathrm{A}(\triangle \mathrm{LMN}) \quad=\frac{\sqrt{3}}{4} \times \operatorname{side}^{2}
$$

$$
\begin{aligned}
& =\frac{1.73}{4} \times 14 \times 14 \\
& =87.77 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{A}(\Delta \mathrm{LMN}) \text { is } 84.77 \mathrm{~cm}^{2} \tag{i}
\end{equation*}
$$

(ii) For sector $\mathrm{L}-\mathrm{AB}, r=7 \mathrm{~cm}$

$$
\theta=60^{\circ}(\text { Angle of an equilateral }
$$

$\mathrm{A}($ sector $\mathrm{L}-\mathrm{AB})=\frac{\theta}{360} \times \pi r^{2} \quad$ triangle)

$$
=\frac{60}{360} \times \frac{22}{7} \times 7 \times 7
$$

$$
=\frac{77}{3}
$$

$\therefore \mathrm{A}($ sector $\mathrm{L}-\mathrm{AB})=25.67 \mathrm{~cm}^{2}$
\therefore Area of a sector is $25.67 \mathrm{~cm}^{2}$
(iii) For all three sectors, radii and central angles are equal
\therefore Area of all sectors are equal.
\therefore Total of areas of all three sectors $=$

$$
\begin{aligned}
& 3 \times \mathrm{A}(\text { sector } \mathrm{A}-\mathrm{LB}) \\
= & 3 \times \frac{77}{3} \\
= & 77 \mathrm{~cm}^{2}
\end{aligned}
$$

$\therefore \quad$ Total areas of all three sectors $=77 \mathrm{~cm}^{2}$
(iv) Area of the shaded region $=$

A ($\triangle \mathrm{LMN})$ - Area of three sectors
$=84.77-77 \quad \ldots[$ From (i) and
(ii)]
$=7.77 \mathrm{~cm}^{2}$
$\therefore \quad$ Area of the shaded region is $7.77 \mathrm{~cm}^{2}$

Problem Set - 7 (Textbook Pg No. 161)

(9) The area of a sector of a circle of 6 cm radius is $15 \pi \mathrm{sq} . \mathrm{cm}$. Find the measure of the arc and length of the arc corresponding to the sector. (3 marks)

Solution :

For the sector,

$$
\begin{array}{ll}
\text { Radius }(\mathrm{r}) & =6 \mathrm{~cm} \\
\text { Area of the sector } & =15 \pi \mathrm{~cm}^{2}
\end{array}
$$

Area of the sector $=\frac{\theta}{360} \times \pi r^{2}$

$$
\begin{array}{lcl}
\therefore & 15 \pi & =\frac{\theta}{360} \times \pi \times 6 \times 6 \\
\therefore & \frac{15 \pi \times 360}{\pi \times 6 \times 6} & =\theta \\
\therefore & \theta & =150
\end{array}
$$

\therefore Measure of the arc is 150°

Area of the sector $=$
Length of corresponding arc $(l) \times \frac{r}{2}$
$\therefore 15 \pi=l \times \frac{6}{2}$
$\therefore \frac{15 \pi \times 2}{6}=l$
$\therefore 5 \pi=l$

Length of the corresponding arc is $5 \pi \mathrm{~cm}$

(11)

In the adjoining figure, square $A B C D$ is inscribed in the sector A-PCQ. The radius of sector C-BXD is 20 cm . Complete the following activity to find the area of shaded region. (4 marks)

Solution :

Side of square $\mathrm{ABCD}=$ Radius of sector

$$
\mathrm{C}-\mathrm{BXD}=20 \mathrm{~cm}
$$

Area of square $=(\text { side })^{2}=20^{2}=400 \mathrm{sq} \mathrm{cm} \ldots$ (i)
Area of shaded region inside the square

$$
\begin{aligned}
& =A(\text { square } A B C D)-A(\text { sector } C-B X D) \\
& =400-\frac{\theta}{360} \times \pi r^{2} \\
& =400-\frac{90}{360} \times \frac{3.14}{1} \times \frac{400}{1} \\
& =400-314 \\
& =86 \mathrm{sq} \mathrm{~cm}
\end{aligned}
$$

Radius of bigger sector = Length of diagonal of square $A B C D$

$$
=20 \sqrt{2} \mathrm{~cm}
$$

Area of shaded portion outside square within bigger sector

$$
\begin{aligned}
& =\mathrm{A}(\mathrm{~A}-\mathrm{PCQ})-\mathrm{A}(\square \mathrm{ABCD}) \\
& =\frac{\theta}{360} \times \pi \mathrm{r}^{2}-\square^{\text {side }} \\
& \\
& =\frac{90}{360} \times 3.14 \times(20 \sqrt{2})^{2}-(20)^{2} \\
& =628-400 \\
& =228
\end{aligned}
$$

$\therefore \quad$ Total Area of the shaded region $=$ $86+228=314$ sq cm

Points to Remember:

- Segment of a circle :

A segment of a circle is the region bounded by a chord and an arc.

Minor segment: The area enclosed by a chord and its corresponding minor arc is called a minor segment. In the figure, segment $A X B$ is a minor segment.
Major segment: The area enclosed by a chord and its corresponding minor arc is called a major segment. In the figure, segment AYB is a major segment.

- Area of a segment :

$\mathrm{A}($ segment PXQ$)=\mathrm{A}(\mathrm{O}-\mathrm{PXQ})-\mathrm{A}(\triangle \mathrm{OPQ})$

$$
\begin{equation*}
=\frac{\theta}{360} \times \pi \mathrm{r}^{2}-\mathrm{A}(\Delta \mathrm{OPQ}) \tag{i}
\end{equation*}
$$

Seg $\mathrm{PT} \perp$ radius OQ ,

$$
\text { In } \triangle \mathrm{OTP}, \sin \theta=\frac{\mathrm{PT}}{\mathrm{OP}}
$$

$\therefore \quad \mathrm{PT}=\mathrm{OP} \sin \theta$
$\therefore \quad \mathrm{PT}=r \times \sin \theta(\because \mathrm{OP}=r)$
$\mathrm{A}(\triangle \mathrm{OPQ})=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times \mathrm{OQ} \times \mathrm{PT}$
$=\frac{1}{2} \times \mathrm{r} \times \mathrm{r} \sin \theta$

$$
\begin{equation*}
=\frac{1}{2} \times r^{2} \sin \theta \tag{ii}
\end{equation*}
$$

$\therefore \quad \mathrm{A}($ ssegment PXQ$)=\frac{\theta}{360} \times \pi r^{2}-\frac{1}{2} \mathrm{r}^{2} \sin \theta \ldots$..[From
(i) and (ii)]

$$
=\mathrm{r}^{2}\left[\frac{\pi \theta}{360}-\frac{\sin \theta}{2}\right]
$$

Also,
Area of circle $=\mathrm{A}($ minor seg PXQ$)+\mathrm{A}($ major seg PRQ$)$

Practice Set - 7.4 (Textbook Page No. 159)
(1)

In the adjoining figure, is the centre of the circle. $\angle A B C 45^{\circ}$ and $A C=7 \sqrt{2} \mathrm{~cm}$. Find the area of segment BXC. $(\pi=3.14, \sqrt{2}=1.41)$
(3 marks)
Solution :
In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$
...(Radii of same circle)
$\therefore \angle A B C=\angle A C B \quad$...(Isosceles triangle theorem)
But $\angle \mathrm{ABC}=45^{\circ}$
...(given)
$\therefore \angle \mathrm{ACB}=45^{\circ}$
In $\triangle \mathrm{ABC}, \angle \mathrm{ACB}=\angle \mathrm{ABC}=45^{\circ}$
...[From (i) and given]
$\therefore \angle \mathrm{BAC}=90^{\circ}$
...(Remaining angle of $\triangle \mathrm{ABC}$)
For segment BXC, $\theta=90^{\circ}, r=7 \sqrt{2} \mathrm{~cm}$
Arc of segment BXC) $=r^{2}\left[\frac{\pi \theta}{360}-\frac{\sin \theta}{2}\right]$
$=(7 \sqrt{2})^{2}\left[\frac{3.14 \times 90}{360}-\frac{\sin \theta}{2}\right]$
$=(7 \sqrt{2})^{2}\left[\frac{3.14 \times 90}{360}-\frac{\sin 90}{2}\right]$
$=98 \times\left[\frac{1.57}{2}-\frac{1}{2}\right]$
$=98 \times\left[\frac{1.57-1}{2}\right]$
$=98 \times \frac{0.57}{2}$
$=49 \times 0.57$
$=27.93$
$\therefore \quad$ Arc of segment BXC is 27.93 sq cm
(2)

In the adjoining figure, point ' O ' is the centre of the circle, $\mathrm{m}($ acr PQR$)=60^{\circ}, \mathrm{OP}=10 \mathrm{~cm}$. Find the area of the shaded portion. $(\pi=3.14, \sqrt{3}=1.73)$ (3 marks)

Solution :

$\mathrm{m}(\operatorname{arc} \mathrm{PQR})=\mathrm{m} \angle \mathrm{POR}$
...(Definition of measure of minor arc)
$\mathrm{m} \angle \mathrm{PQR} \quad=60^{\circ}$

For segment $\mathrm{PQR}, r=\mathrm{OP}=10 \mathrm{~cm}$

$$
\theta \quad=\mathrm{m} \angle \mathrm{POR}=60^{\circ}[\text { From (i) }]
$$

Area of shaded portion $=A($ segment $P Q R)$

$$
\begin{aligned}
& =r^{2}\left[\frac{\pi \theta}{360}-\frac{\sin \theta}{2}\right] \\
& =10 \times 10\left[\frac{3.14 \times 60}{360}-\frac{\sin 60}{2}\right] \\
& =100\left[\frac{3.14}{6}-\frac{\sqrt{3}}{2 \times 2}\right] \\
& =100\left[\frac{3.14 \times 2}{6 \times 2}-\frac{1.73 \times 3}{4 \times 3}\right] \\
& =100\left[\frac{6.28-5.19}{12}\right] \\
& =100 \times \frac{1.09}{12} \\
& =9.08 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of shaded potion $=9.08 \mathrm{~cm}^{2}$
(3)

In the adjoining figure, if A is the centre of the circle. $\angle \mathrm{PAR}=30^{\circ} \mathrm{AP}=7.5$, find the area of segment PQR . ($\pi=3.14$)
(3 marks)

Solution :

For segment $\mathrm{PQR}, r=\mathrm{AP}=7.5$ units

$$
\begin{aligned}
\theta= & \angle \mathrm{PAR}=30^{\circ} \\
\mathrm{A}(\text { segment } \mathrm{PQR}) & =\mathrm{r}^{2}\left[\frac{\pi \theta}{360}-\frac{\sin \theta}{2}\right] \\
& =(7.5)^{2}\left[\frac{3.14 \times 30}{360}-\frac{\sin 30}{2}\right] \\
& =56.25\left[\frac{3.14}{12}-\frac{1}{2 \times 2}\right] \\
& =56.25\left[\frac{3.14-3}{12}\right] \\
& =56.25 \times \frac{0.14}{12} \\
& =0.66
\end{aligned}
$$

$\therefore \quad \mathrm{A}$ (segment PQR) is 0.66 sq. units
(4)

In the adjoining figure, if O is the centre of the circle, PQ is a chord. $\angle \mathrm{POQ}=90^{\circ}$, area of shaded region is $114 \mathrm{~cm}^{2}$, find the radius of the circle ($\pi=3.14$)
(3 marks)

Solution :
For segment PRQ, $\theta=\angle \mathrm{POQ}=90^{\circ}$
$\mathrm{A}($ segment PRQ$)=114 \mathrm{~cm}^{2}$
$\mathrm{A}($ segment PQR$)=r^{2}\left[\frac{\pi \theta}{360}-\frac{\sin \theta}{2}\right]$
$\therefore \quad 114=r^{2}\left[\frac{3.14 \times 90}{360}-\frac{\sin 90}{2}\right]$
$\therefore \quad 114=r^{2}\left[\frac{3.14}{4}-\frac{1}{2}\right]$
$\therefore \quad 114=r^{2}\left[\frac{1.57-1}{2}\right]$
$\therefore \quad 114=r^{2}\left[\frac{0.57}{2}\right]$
$\therefore \frac{114 \times 2}{0.57}=r^{2}$
$\therefore \quad r^{2}=\frac{114 \times 2 \times 100}{57}$
$\therefore \quad r^{2}=2 \times 2 \times 10 \times 10$
$\therefore \quad r=20 \quad$...(Taking square roots)
$\therefore \quad$ Radius of the circle is 20 cm
(5) A chord PQ of a circle with radius 15 cm subtends an angle of 60° with the centre of the circle. Find the area of the minor as well as the major segment. ($\pi=3.14, \sqrt{3}=1.73$)
(4 marks)
Solution :
For minor segment, $r=15 \mathrm{~cm}$ and $\theta=60^{\circ}$
Area of minor segment $=r^{2}\left[\frac{\pi \theta}{360}-\frac{\sin \theta}{2}\right]$

$$
\begin{aligned}
& =15 \times 15\left[\frac{3.14 \times 60}{360}-\frac{\sin 60}{2}\right] \\
& =225 \times\left[\frac{3.14}{6}-\frac{\sqrt{3}}{2 \times 2}\right] \\
& =225 \times\left[\frac{3.14 \times 2}{6 \times 2}-\frac{1.73 \times 3}{4 \times 3}\right] \\
& =225 \times\left[\frac{6.28-5.19}{12}\right] \\
& =225 \times \frac{1.09}{12} \\
& =20.44
\end{aligned}
$$

$\therefore \quad$ Area of minor segment is $20.44 \mathrm{~cm}^{2}$
Area of circle $=\pi r^{2}$

$$
\begin{aligned}
& =3.14 \times 15 \times 15 \\
& =706.5 \mathrm{~cm}^{2}
\end{aligned}
$$

$\therefore \quad$ Area of the circle is $706.5 \mathrm{~cm}^{2}$
Area of major segment $=$
Area of circle - Area of minor segment

$$
\begin{aligned}
& =706.5-20.44 \\
& =686.06 \mathrm{~cm}^{2}
\end{aligned}
$$

$\therefore \quad$ Area of the major segment is $686.06 \mathrm{~cm}^{2}$

Problem Set - 7 (Textbook Pg No. 161)

(10)

In the adjoining figure, seg $A B$ is a chord of a circle with centre P. If $P A=8 \mathrm{~cm}$ and distance of chord $A B$ from the centre P is 4 cm , find the area of the shaded portion. ($\pi=3.14, \sqrt{3}=1.73$) (4marks) Solution:

Radius of the circle is $=8 \mathrm{~cm}$
...(i) (Given)
i.e. $\mathrm{PA}=8 \mathrm{~cm}$
seg $\mathrm{PM} \perp$ chord $\mathrm{AB}, \mathrm{A}-\mathrm{M}-\mathrm{B}$
Distance of the chord $A B$ from the centre P is 4 cm i.e. $\mathrm{PM}=4 \mathrm{~cm}$

In $\triangle \mathrm{PMA}, \angle \mathrm{PMA}=90^{\circ}$
...[From (ii)]
$\mathrm{PM}=\frac{1}{2} \mathrm{PA}$
...[From (i) and (iii)]
$\therefore \quad \angle \mathrm{PAM}=30^{\circ} \quad \ldots$ (iv) (Converse of $30^{\circ}-60^{\circ}-90^{\circ}$ theorem)
In $\triangle \mathrm{PMA}, \quad \angle \mathrm{PMA}=90^{\circ}$
...[From (ii)]
$\angle \mathrm{PAM}=30^{\circ}$
...[From (iv)]
$\angle \mathrm{APM}=60^{\circ} \ldots$...v) (Remaining angle of triangle)
Similarly, we can prove. $\angle \mathrm{BPM}=60^{\circ}$
$\angle \mathrm{APB}=\angle \mathrm{APM}+\angle \mathrm{BPM}$
...(Angle addition property)
$\therefore \angle \mathrm{APB}=60^{\circ}+60^{\circ} \quad . .[$ From (v) and (vi)]
$\therefore \angle \mathrm{APB}=120^{\circ}$
For sector ($\mathrm{P}-\mathrm{AXB}$)
$\theta=\angle \mathrm{APB}=120^{\circ}$
$\mathrm{r}=8 \mathrm{~cm}$
Area $($ sector $P-A X B)=\frac{\theta}{360} \times \pi r^{2}$
\therefore Area (sector $\mathrm{P}-\mathrm{AXB})=\frac{120}{360} \times 3.14 \times 8 \times 8$
Area (sector $P-A X B)=66.99 \mathrm{sq} \mathrm{cm}$
$\triangle \mathrm{PMA}$ is $30^{\circ}-60^{\circ}-90^{\circ}$ triangle ...[From (ii), (iv)
$A M=\frac{\sqrt{3}}{2} \times P A$
and (v)]
...(Side opposite to 30°)
$\mathrm{AM}=\frac{\sqrt{3}}{2} \times 8=4 \sqrt{3} \mathrm{~cm}$
seg PM \perp chord AB
[From (i)]
$\therefore \mathrm{AB}=2 \mathrm{AM}$ (Perpendicular drawn from the centre to the chord bisects the chord)
$\mathrm{AB}=2 \times 4 \sqrt{3} \mathrm{~cm}$
...[From (ix)]
$\mathrm{AB}=8 \sqrt{3} \mathrm{~cm}$
$\mathrm{A}(\triangle \mathrm{PAB})=\frac{1}{2} \times$ base \times height

$$
=\frac{1}{2} \times \mathrm{AB} \times \mathrm{PM}
$$

$$
=\frac{1}{2} \times 8 \sqrt{3} \times 4
$$

$$
=16 \sqrt{3}
$$

$$
\begin{equation*}
=16 \times 1.73 \tag{xi}
\end{equation*}
$$

$\mathrm{A}(\triangle \mathrm{PAB})=27.68 \mathrm{sq} \mathrm{cm}$
$\mathrm{A}($ sector $\mathrm{P}-\mathrm{AXB})=$

$$
\begin{aligned}
\mathrm{A}(\triangle \mathrm{PAB}) & +\mathrm{A}(\text { segment } \mathrm{AXB}) \\
& \ldots(\text { Area addition property })
\end{aligned}
$$

$\therefore 66.99=27.68+\mathrm{A}($ segment AXB$)$
...[From (viii) and (xi)]
$\therefore \mathrm{A}($ segment AXB$)=66.99-27.68$
$A($ segment $A X B)=39.28$ sq. cm
Area of shaded portion $=A(\operatorname{seg} \mathrm{PXB})=39.28 \mathrm{sq} . \mathrm{cm}$
$\therefore \quad$ Area of the shaded portion is 39.28 sq cm .
(12)

In the adjoining figure, two circles with centres O and P are touching internally at point A. If $B Q=9, D E=5$, complete the following activity to find the radii of the circles.
(4 marks)

Solution :

Let the radius of the bigger circle be R and the radius of the smaller circle be r
$\mathrm{OA}, \mathrm{OB}, \mathrm{OC}$ and OD are radii of the bigger circle.
$\therefore \mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\mathrm{OD}=\mathrm{R}$
$\mathrm{PQ}=\mathrm{PA}=\mathrm{r}$
$\mathrm{OQ}=\mathrm{OB}-\mathrm{BQ}=\mathrm{R}-9$
$\mathrm{OE}=\mathrm{OD}-\mathrm{DE}=\mathrm{R}-5$
As the chords QA and EF of the circle with centre P intersect in the interior of the circle, so by the property of internal division of two chords of a circle,

$$
\begin{aligned}
& \mathrm{OQ} \times \mathrm{OA}=\mathrm{OE} \times \mathrm{OF} \\
& \mathrm{R}-9 \times(\because \mathrm{OE}=\mathrm{OF}) \\
& \mathrm{R}^{2}-9 \mathrm{R}=\mathrm{R}^{2}-10 \mathrm{R}+25 \\
& -9 \mathrm{R}=-10 \mathrm{R}+25 \\
& -9 \mathrm{R}+10 \mathrm{R}=25 \\
\therefore & \mathrm{R}=25 \text { units } \\
& \mathrm{AQ}=2 r=\mathrm{AB}-\mathrm{BQ} \\
\therefore & 2 r=50-9=41 \\
\therefore & r=\frac{41}{2}=\mathrm{r}=20.5
\end{aligned}
$$

Problem Set - 7 (Textbook Pg No. 161)

MCQ's

Choose the correct alternative answer for each of the following questions.
(1 mark each)
(1) The ratio of circumference and area of a circle is 2 : 7. Find its circumference.
(A) 14π
(B) $\frac{7}{\pi}$
(C) 7π
(D) $\frac{14}{\pi}$
(2) If measure of an arc of circle is 160° and its length is 44 cm , find the circumference of the circle.
(A) 66 cm
(B) 44 cm
(C) 160 cm
(D) 99 cm
(3) Find the perimeter of a sector of a circle if its measure is 90° and radius is 7 cm .
(A) 44 cm
(B) 25 cm
(C) 36 cm
(D) 56 cm
(4) Find the curved surface area of a cone of radius 7 cm and height 24 cm .
(A) $440 \mathrm{~cm}^{2}$
(B) $550 \mathrm{~cm}^{2}$
(C) $330 \mathrm{~cm}^{2}$
(D) $110 \mathrm{~cm}^{2}$
(5) The curved surface area of a cylinder is $440 \mathrm{~cm}^{2}$ and its radius is 5 cm . Find its height.
(A) $\frac{44}{\pi} \mathrm{~cm}$
(B) $22 \pi \mathrm{~cm}$
(C) $44 \pi \mathrm{~cm}$
(D) $\frac{44}{\pi} \mathrm{~cm}$
(6) A cone was melted and cast into a cylinder of the same radius as that of the base of the cone. If the height of the cylinder is 5 cm , find the height of the cone.
(A) 15 cm
(B) 10 cm
(C) 18 cm
(D) 5 cm
(7) Find the volume of a cube of side 0.01 cm .
(A) $1 \mathrm{~cm}^{3}$
(B) $0.001 \mathrm{~cm}^{3}$
(C) $0.0001 \mathrm{~cm}^{3}$
(D) $0.000001 \mathrm{~cm}^{3}$
(8) Find the side of a cube of volume $1 \mathrm{~m}^{3}$.
(A) 1 cm
(B) 10 cm
(C) 100 cm
(D) 1000 cm

Additional MCQ's

In each of the following, choose the correct alternative.
(9) Vertical surface area of a cuboid is \qquad
(A) $2(l \times b)+h$
(B) $2(l \times b) \times h$
(C) $2(l+b)+h$
(D) $2(l+b) \times h$
(10) Total surface area of a cube is $216 \mathrm{~cm}^{2}$. Find its volume.
(A) $36 \mathrm{~cm}^{3}$
(B) $100 \mathrm{~cm}^{3}$
(C) $216 \mathrm{~cm}^{3}$
(D) $400 \mathrm{~cm}^{3}$
(11) The length, breadth, height of cuboid are in the ratio $1: 1: 2$, its total surface area is $1000 \mathrm{~cm}^{2}$. Therefore \therefore Its length is \qquad
(A) 10 cm
(B) 15 cm
(C) 20 cm
(D) 12 cm
(12) A tent is made up of cylinder and mounted by a conical top. In order to calculate its total surface area, find sum of their.
(A) Volumes
(B) Total surface area
(C) Curved surface area
(D) Base areas
(13) If diameter of a semicircle is

35 cm . Find its length.
(A) 110 cm
(B) 55 cm
(C) 90 cm
(D) 70 cm
(14) If $r=7 \mathbf{~ c m}$ and $\theta=180^{\circ}$. Length of arc is \qquad
(A) 44 cm
(B) 22 cm
(C) 10 cm
(D) 18 cm
(15) If $r=7 \mathrm{~cm}$ and $\theta=36^{\circ}$ then area of sector is \qquad
(A) $15.4 \mathrm{~cm}^{2}$
(B) $20.36 \mathrm{~cm}^{2}$
(C) $10.46 \mathrm{~cm}^{2}$
(D) $18.2 \mathrm{~cm}^{2}$
(16) Bricks of dimensions $15 \mathrm{~cm} \times 8 \mathrm{~cm} \times 5 \mathrm{~cm}$ are used to build a wall of dimensions $120 \mathrm{~cm} \times 16$ $\mathrm{cm} \times 200 \mathrm{~cm}$. How many bricks are used?
(A) 1280
(B) 640
(C) 160
(D) 320
(17) If the volume of cylinder is $12436 \mathrm{~cm}^{3}$ and radius and height of cylinder are in the ratio $2: 3$, find its height.
(A) 21 cm
(B) 7 cm
(C) 14 cm
(D) 18 cm
(18) Find the volume of a right circular cone if $r=14 \mathrm{~cm}$ and $h=9 \mathrm{~cm}$.
(A) $161 \mathrm{~cm}^{3}$
(B) $2438 \mathrm{~cm}^{3}$
(C) $1848 \mathrm{~cm}^{3}$
(D) $1488 \mathrm{~cm}^{3}$
(19) The volume of two spheres are in the ration 8:27, find the ratio of their radii.
(A) $2: 3$
(B) $2: 9$
(C) $1: 3$
(D) $4: 9$

ANSWERS

(1) (A) 14π (2) (D) 99 cm (3) (B) 25 cm (4) (B) $550 \mathrm{~cm}^{2}$
(5) (A) $\frac{44}{\neq}$
(6) (A) 15 cm (7) (D) $0.000001 \mathrm{~cm}^{3}$
(8)
(C) 100 cm
(9) (D) $2(l+b) \times h$
(10) (C) $216 \mathrm{~cm}^{3}$
(11) (A) 10 cm (12) (C) Curved surface area
(13)
(B) 55 cm (14) (B) 22 cm (15) (A) $15.4 \mathrm{~cm}^{2}$
(16)
(B) 640 (17) (A) 21 cm (18) (C) $1848 \mathrm{~cm}^{3}$
(19) (A) $2: 3$

PROBLEMS FOR PRACTICE

Based on Practice Set 7.1

(1) Two cubes each with 12 cm edge, are joined end to end. Find the surface area of the resulting cuboid.
(2 marks)
(2) A solid cube with edge 'l' was divided exactly into two equal halves. Find the ratio of the total surface area of the given cube and that of the cuboid formed.
(3 marks)
(3) A beam 4 m long, 50 m wide and 20 m deep is made of wood, which weighs 25 kg per m^{3}. Find the weight of the beam.
(3 marks)
(4) A fish tank is in the form of a cuboid, external measures of that cuboid are $80 \mathrm{~cm} \times 40 \mathrm{~cm} \times 30$ cm . The base, side faces and back face are to be covered with a coloured paper. Find the area of the paper needed.
(4 marks)
(5) The base radii of two right circular cones of the same height are in the ratio $2: 3$. Find ratio of their volumes.
(3 marks)
(6) If the radius of a sphere is doubled, what will be the ratio of its surface area and volume as to that of the first?
(4 marks)
(7) The dimensions of a metallic cuboid are $44 \mathrm{~cm} \times$ $42 \mathrm{~cm} \times 21 \mathrm{~cm}$. It is molten and recast into a sphere. Find the surface area of the sphere. (4 marks)

Based on Practice Set 7.2

(8) If the radii of the conical frustum bucket are 14 cm and 7 cm . If its height is 30 cm , then find (i) Its total surface area (ii) capacity of the bucket.
(4 marks)
(9) The slant height of the frustum of the cone is 6.3 cm and the perimeters of its circular bases are 18 cm and 6 cm respectively. Find the curved surface area of the frustum.
(4 marks)
(10) The radii of the circular ends of a frustum of
a cone are 14 cm and 8 cm . If the height of the frustum is 8 cm . Find (i) Curved surface area of the frustum (ii) Total surface area of the frustum (iii) Volume of the frustum.
(4 marks)
(11) The curved surface area of the frustum of a cone is 180 sq cm and the circumfernce of its circular bases are 18 cm and 6 cm respectively. Find the slant height of the frustum of a cone. (4 marks)

Based on Practice Set 7.3

(12) A sector of a circle with radius 10 cm has central angle 72°. Find the area of the sector $(\pi=3.14)$
(3 marks)
(13) If the area of a sector is $\frac{1}{12}$ th of the area of the circle, then what is the measure of the corresponding central angle.
(3 marks)
(14) In a clock, the minute hand is of length 14 cm . Find the area covered by the minute hand in 5 minutes.
(3 marks)
(15) The radius of the circle is 3.5 cm and the area of sector is 3.85 sq cm . Find the measure of the arc of the circle.
(3 marks)
(16) Find the area of the sector of a circle of radius 6 cm and arc with length 15 cm .
(17) Find the length of the arc of the circle of diametr 8.4 cm with area of the sector $18.48 \mathrm{~cm}^{2}$. Also find measure of the arc. (3 marks)

Based on Practice Set 7.4

(18) Find the area of minor segment of a circle of radius 6 cm when its chord subtends an angle of 60° at its centre. $(\sqrt{3}=1.73)$
(3 marks)
(19) Area of segment PRQ is 114 sq cm. Chord PQ subtends centre angle $\angle \mathrm{POQ}$ measuring 90°. Find the radius of the circle. $(\pi=3.14)$ (3 marks)
(20)

In the adjoining figures, arc AXC and arc AYC are drawn with radius 8 cm and centres as point B and point D respectively. Find the area of shaded region if $\square \mathrm{ABCD}$ is a square with side 8 cm .
(4 marks)
(21)

In the adjoining figure, P is the centre of the circle with radius 18 cm . If the area of the $\triangle \mathrm{PQR}$ is $100 \mathrm{~cm}^{2}$. Find the central angle QPR.
(4 marks)

ANSWERS

(1)
$1440 \mathrm{sq} \mathrm{cm}(2) 3: 2$
(3) 10 kg
(4) $8000 \mathrm{~cm}^{3}$
(5)
$4: 9$ (6) $4: 1,8: 1$ (7) $5544 \mathrm{~cm}^{2}$
(8)
(i) $(770+66 \sqrt{449}) \mathrm{sq} \mathrm{cm}$ (ii) $10,780 \mathrm{~cm}^{3}$
(9) $75.6 \mathrm{~cm}^{2} \quad$ (10) (i) $690.8 \mathrm{~cm}^{2} \quad$ (ii) $157.2 \mathrm{~cm}^{2}$
(iii)
$3114.88 \mathrm{~cm}^{3}$ (11) 15 cm (12) $62.8 \mathrm{~cm}^{2}$ (13) 30°
(14) $51.33 \mathrm{~cm}^{2}$ (15) 36° (16) $45 \mathrm{~cm}^{2}$ (17) $8.8 \mathrm{~cm}, 120^{\circ}$
(18) $3.29 \mathrm{~cm}^{2}$ (19) 20 cm (20) $36.48 \mathrm{~cm}^{2}$ (21) 40°
\|(1) The radius of a circle with centre P is 10 cm . If chord $A B$ of the circle substends a right angle at P, find the \| areas of minor segment and the major segment $(\pi=3.14)$
(2) The diameter and length of a roller is 120 cm and 84 cm respectively. To level the ground, 200 rotations of the roller are required. Find the expenditure to level the ground at the rate of ₹ 10 per sq. m .
(3) Complete the following activity to solve the following question In the adjoining figure,$\square \mathrm{ABCD}$ is a square with side 7 cm . With centre D and radius DA, sector D - AXC is drawn. Find area of shaded portion.
$\begin{aligned} \text { Sol. Area of square } & =\square \text { (Formula) } \\ & =\square \\ & =49 \mathrm{~cm}^{2}\end{aligned}$

$$
\text { Area of sector } \begin{aligned}
\triangle \text {-AXC } & =\square \text { (Formula) } \\
& =\square \\
& =\frac{22}{7} \times \square 8.5 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\text { Area of shaded region }=\mathrm{A} \square-\mathrm{A} \square
$$

$$
\begin{aligned}
& =\square \mathrm{cm}^{2}-\square \mathrm{cm}^{2} \\
& =\square \mathrm{cm}^{2}
\end{aligned}
$$

Q.4. Attempt any two of the following:
|(1) A regular hexagon is inscribed in a circle of radius 14 cm . Find the area of the region between the circle and the hexagon.
(2) The radius of a metallic sphere is 9 cm . It was melted to make a wire of diameter 4 mm . Find the length of the wire.
|(3) The radius and height of a cylindrical water reservoir is 2.8 m and 3.5 m respectively. How much maximum water can the tank hold? A person needs 70 litres of water per day. For how many persons is the water sufficient for a day? $\left(\pi=\frac{22}{7}\right)$.

Challenging Questions

1. Similarity

(1) Bisectors of $\angle B$ and $\angle C$ in $\triangle A B C$ meet each other at P. Line AP cuts the side $B C$ at Q. Then prove that : $\frac{\mathbf{A P}}{\mathbf{P Q}}=\frac{\mathbf{A B}+\mathbf{A C}}{\mathbf{B C}}$
(4 marks)

Proof:
In $\triangle A B Q$, ray $B P$ bisects $\angle A B Q$.
[Given]
$\therefore \frac{A P}{P Q}=\frac{A B}{B Q} \ldots$ (i) $\begin{array}{r}\text { [By property of an angle } \\ \text { bisector of a triangle }]\end{array}$
In $\triangle A C Q$, ray $C P$ bisects $\angle A C Q$.
[Given]
$\therefore \frac{A P}{P Q}=\frac{A C}{C Q} \ldots$ (ii) [By property of an angle $\begin{array}{r}\text { bisector of a triangle }]\end{array}$
$\therefore \frac{A P}{P Q}=\frac{A B}{B Q}=\frac{A C}{C Q} \quad \ldots[$ [From (i) and (ii)]
$\therefore \quad \frac{\mathrm{AP}}{\mathrm{PQ}}=\frac{\mathrm{AB}+\mathrm{AC}}{\mathrm{BQ}+\mathrm{CQ}} \quad[\mathrm{By}$ theorem on equal ratios]
$\therefore \quad \frac{A P}{P Q}=\frac{A B+A C}{B C}$
$\therefore \quad \frac{\mathrm{AP}}{\mathrm{PQ}}=\frac{\mathrm{AB}+\mathrm{AC}}{\mathrm{BC}}$
(2) In $\square A B C D$, side $B C \|$ side $A D$. Diagonal $A C$ and diagonal BD intersects in point Q . If $\mathrm{AQ}=\frac{1}{3} \mathrm{AC}$, then show that $\mathrm{DQ}=\frac{1}{2} \mathrm{BQ}$.
(4 marks)

Proof:
Side $A D \|$ side $B C$ on transversal $B D$.
$\angle \mathrm{ADB} \cong \angle \mathrm{CBD}$
... (i) [Alternate angles]
In $\triangle A Q D$ and $\triangle C Q B$,
$\angle A D Q \cong \angle C B Q$
... [From (i), B-Q-D]
$\angle \mathrm{AQD} \cong \angle C Q B$
... [Vertically opposite angles]
$\therefore \quad \triangle \mathrm{AQD} \sim \triangle \mathrm{CQB}$
... [By AA test of similarity]
$\therefore \quad \frac{\mathrm{AQ}}{\mathrm{CQ}}=\frac{\mathrm{DQ}}{\mathrm{BQ}}$
... (ii) [c.s.s.t.]
Now, $\mathrm{AQ}=\frac{1}{3} \mathrm{AC}$
... [Given]
$\therefore 3 A Q=A C$
$\therefore 3 A Q=A Q+C Q$
$\therefore \quad 3 A Q-A Q=C Q$
$\therefore 2 A Q=C Q$
$\therefore \quad \frac{\mathrm{AQ}}{\mathrm{CQ}}=\frac{1}{2}$
$\therefore \quad \frac{1}{2}=\frac{\mathrm{DQ}}{\mathrm{BQ}}$
.. [From (ii) and (iii)]
$\therefore \quad \mathrm{DQ}=\frac{1}{2} \mathrm{BQ}$
(3) A line cuts two sides $A B$ and side $A C$ of $\triangle A B C$ in points P and Q respectively.
Show that $\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{APQ})}=\frac{\mathbf{A P} \times \mathbf{A Q}}{\mathbf{A B} \times \mathbf{A C}} \quad$ (4 marks)

Construction : Join seg BQ
Proof:
Considering $\triangle \mathrm{APQ}$ and $\triangle \mathrm{ABQ}$,
$\frac{\mathrm{A}(\triangle \mathrm{APQ})}{\mathrm{A}(\triangle \mathrm{ABQ})}=\frac{\mathrm{AP}}{\mathrm{AB}}$
[Ratio of areas of two triangles having equal height is equal to the ratio of their corresponding bases] Considering $\triangle \mathrm{ABQ}$ and $\triangle \mathrm{ABC}$
$\frac{\mathrm{A}(\triangle \mathrm{ABQ})}{\mathrm{A}(\triangle \mathrm{ABC})}=\frac{\mathrm{AQ}}{\mathrm{AC}}$
[Ratio of areas of two triangles having equal height is equal to the ratio of their corresponding bases]
$\frac{A(\triangle A P Q)}{A(\triangle A B Q)} \times \frac{A(\triangle A P Q)}{A(\triangle A B Q)}=\frac{A P}{A B} \times \frac{A Q}{A C}$
... [Multiplying (i) and (ii)]
$\therefore \frac{\mathbf{A}(\triangle \mathrm{ABC})}{\mathbf{A}(\triangle \mathrm{APQ})}=\frac{\mathbf{A P} \times \mathbf{A Q}}{\mathbf{A B} \times \mathbf{A C}}$
(4) In the adjoining figure, AD is the bisector of the exterior $\angle A$ of $\triangle A B C$. Seg AD intersects the side $B C$ produced in D.
Prove that : $\frac{B D}{C D}=\frac{A B}{A C}$
(4 marks)

Construction : Draw seg CE $\|$ seg DA meeting BA at E

Proof:

In $\triangle \mathrm{ABD}$,
$\operatorname{seg} C E \| \operatorname{seg} D A$
$\therefore \quad \frac{\mathrm{BC}}{\mathrm{CD}}=\frac{\mathrm{BE}}{\mathrm{EA}}$
... [By B.P.T.]
$\therefore \quad \frac{\mathrm{BC}+\mathrm{CD}}{\mathrm{CD}}=\frac{\mathrm{BE}+\mathrm{EA}}{\mathrm{EA}} \quad \ldots$ [By componendo]
$\therefore \quad \frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{AB}}{\mathrm{EA}}$
... (i) [By B-E-A, B-C-D]
seg CE $\| \operatorname{seg} \mathrm{DA}$, on transversal BK
$\angle \mathrm{KAD} \cong \angle \mathrm{AEC} \quad .$. (ii) [Corresponding angles theorem]
seg CE $\|$ seg DA, on transveral AC
$\angle C A D \cong \angle A C E$
... (iii) [Alternate angles theorem]
Also, $\angle \mathrm{KAD} \cong \angle \mathrm{CAD} \quad$... (iv)
[Ray AD bisects $\angle \mathrm{KAC}$]
$\therefore \quad \angle \mathrm{AEC} \cong \angle \mathrm{ACE} \ldots$ (v) [From (ii), (iii) and (iv)] In $\triangle \mathrm{AEC}$,
$\angle \mathrm{AEC} \cong \angle \mathrm{ACE}$
... [From (v)]
$\therefore \mathrm{EA}=\mathrm{AC}$
... (vi)[By converse of isosceles triangle theorem]

$$
\therefore \quad \frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{AB}}{\mathrm{AC}}
$$

... [From (i) and (vi)]
(5) In the adjoining figure, each of the segments PA, $Q B, R C$ and $S D$ is perpendicular to line l. If $A B$ $=6, B C=9, C D=12, P S=36$, then determine $P Q$, QR and RS.
(4 marks)
Proof:

Seg PA \perp line l
Seg QB \perp line l
Seg $R C \perp$ line l
... [Given]
Seg SD \perp line l)
$\therefore \quad \operatorname{seg} \mathrm{PA}\|\operatorname{seg} \mathrm{QB}\| \operatorname{seg} R C \| \operatorname{seg}$ SD
[\because lines perpendicular to same lines are parallel]
Now, seg PA || seg QB || seg RC
$\therefore \quad \frac{\mathrm{PQ}}{\mathrm{QR}}=\frac{\mathrm{AB}}{\mathrm{BC}} \ldots\left[\begin{array}{r}\text { Property of three parallel lines } \\ \text { and their transversals] }\end{array}\right.$
$\therefore \frac{\mathrm{PQ}}{\mathrm{QR}}=\frac{6}{9} \quad \ldots[$ Given $\mathrm{AB}=6, \mathrm{BC}=9$]
$\therefore \quad \frac{\mathrm{PQ}}{\mathrm{QR}}=\frac{2}{3}$
Also, seg QB $\|\operatorname{seg} R C\| \operatorname{seg}$ SD $\quad .$. [From (i)]
$\therefore \frac{\mathrm{QR}}{\mathrm{RS}}=\frac{\mathrm{BC}}{\mathrm{CD}} \ldots[$ Property of three parallel lines and their transversals]
$\therefore \frac{\mathrm{QR}}{\mathrm{RS}}=\frac{9}{12} \quad \ldots$ [Given, $\mathrm{BC}=9, \mathrm{CD}=12$]
$\therefore \quad \frac{\mathrm{QR}}{\mathrm{RS}}=\frac{3}{4}$
$\therefore P Q: Q R: R S=2: 3: 4 \quad \ldots[$ [From (ii) and (iii)] Let the common multiple be x.
$\therefore \mathrm{PQ}=2 x, \mathrm{QR}=3 x, \mathrm{RS}=4 x$
Now, $\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}=\mathrm{PS} \quad . . .[\mathrm{P}-\mathrm{Q}-\mathrm{R}, \mathrm{Q}-\mathrm{R}-\mathrm{S}]$
$\therefore 2 x+3 x+4 x=36$
$\therefore 9 x=36 \quad \therefore x=\frac{36}{9}=4$
$\therefore \mathrm{PQ}=2 x=2 \times 4=8$ units
$\therefore \mathrm{QR}=3 x=3 \times 4=12$ units
$\therefore \mathrm{RS}=4 x=4 \times 4=16$ units
$\therefore \quad \mathrm{PQ}=8$ units, $\mathrm{QR}=12$ units, $\mathrm{RS}=16$ units
(6) In the adjoining figure, $X Y \| A C$ and $X Y$ divides the triangular region $A B C$ into two equal areas. Determine AX : AB.
(4 marks)
Proof :

seg $X Y \|$ side $A C$ on transversal $B C$.
$\angle X Y B \cong \angle A C B \quad$... (i) [Corresponding angles] In $\triangle X Y B$ and $\triangle A C B$,

$$
\angle X Y B \cong \angle A C B
$$

... [From (i)]

$$
\begin{array}{rlr}
& \angle \mathrm{ABC} \cong \angle \mathrm{XBY} & \ldots \text { [Common angle] } \\
\therefore & \Delta \mathrm{XYB} \sim \triangle \mathrm{ACB} & \ldots[\mathrm{BY} \text { AA test of similarity] } \\
& \frac{\mathrm{A}(\triangle \mathrm{XYB})}{\mathrm{A}(\triangle \mathrm{ACB})}=\frac{\mathrm{XB}^{2}}{\mathrm{AB}^{2}} \ldots \text { (ii) [By theorem on areas } \\
\text { of similar triangles] }
\end{array}
$$

Now, $\mathrm{A}\left(\triangle \mathrm{XYB}=\frac{1}{2} \mathrm{~A}(\triangle \mathrm{ACB}) \ldots[\because \operatorname{seg} \mathrm{XY}\right.$ divides the triangular region ABC into two equal areas]
$\therefore \frac{\mathrm{A}(\varnothing \mathrm{XYB})}{\mathrm{A}(\varnothing \mathrm{ACB})}=\frac{1}{2}$
$\therefore \quad \frac{\mathrm{XB}^{2}}{\mathrm{AB}^{2}}=\frac{1}{2}$
... [From (ii) and (iii)]
$\therefore \quad \frac{\mathrm{XB}}{\mathrm{AB}}=\frac{1}{\sqrt{2}} \ldots$ [Taking square root on both sides]
$\therefore 1-\frac{\mathrm{XB}}{\mathrm{AB}}=1-\frac{1}{\sqrt{2}} \quad \ldots\left[\begin{array}{r}\text { Subtracting both sides } \\ \text { from } 1]\end{array}\right.$
$\therefore \quad \frac{\mathrm{AB}-\mathrm{XB}}{\mathrm{AB}}=\frac{\sqrt{2}-1}{\sqrt{2}} \quad \therefore \frac{\mathrm{AX}}{\mathrm{AB}}=\frac{\sqrt{2}-1}{\sqrt{2}} \ldots[\mathrm{~A}-\mathrm{X}-\mathrm{B}]$
$\therefore \mathrm{AX}: \mathrm{AB}=(\sqrt{2}-1): \sqrt{2}$
$\therefore \quad \mathrm{AX}: \mathrm{AB}=(\sqrt{2}-1): \sqrt{2}$
(7) Let X be any point on side $B C$ of $\triangle A B C, X M$ and $X N$ are drawn parallel to BA and CA. MN meets in T. Prove that $T^{2}=T B . T C$.
(4 marks)

Proof :
In $\triangle \mathrm{TXM}$,
seg BN $\| \operatorname{seg} X M$
... [Given]

$$
\therefore \quad \frac{\mathrm{TN}}{\mathrm{NM}}=\frac{\mathrm{TB}}{\mathrm{BX}}
$$

... (i) [By B.P.T.]
In $\triangle \mathrm{TMC}$,

$$
\operatorname{seg} \mathrm{XN} \| \operatorname{seg} \mathrm{CM}
$$

$\therefore \quad \frac{\mathrm{TN}}{\mathrm{NM}}=\frac{\mathrm{TX}}{\mathrm{CX}}$
... (ii) [By B.P.T.]
$\therefore \quad \frac{\mathrm{TB}}{\mathrm{BX}}=\frac{\mathrm{TX}}{\mathrm{CX}}$
... [From (i) and (ii)]
$\therefore \quad \frac{\mathrm{BX}}{\mathrm{TB}}=\frac{\mathrm{CX}}{\mathrm{TX}}$
... [By invertendo]
$\therefore \quad \frac{\mathrm{BX}+\mathrm{TB}}{\mathrm{TB}}=\frac{\mathrm{CX}+\mathrm{TX}}{\mathrm{TX}}$
... [By componendo]
$\therefore \quad \frac{\mathrm{TX}}{\mathrm{TB}}=\frac{\mathrm{TC}}{\mathrm{TX}}$
... [T-B-X, T-X-C]
$\therefore \quad \mathrm{TX}^{2}=\mathrm{TB} . \mathrm{TC}$
(8) Two triangles, $\triangle A B C$ and $\triangle D B C$, lie on the same side of the base $B C$. From a point P on $B C$, $P Q \| A B$ and $P R \| B D$ are drawn. They intersect $A C$ at Q and $D C$ at R. Prove that $Q R \| A D$.
(4 marks)

Proof:
In $\triangle C A B$,
$\operatorname{seg} \mathrm{PQ} \| \operatorname{seg} \mathrm{AB}$
... [Given]
$\therefore \quad \frac{C P}{P B}=\frac{C Q}{A Q}$
... (i) [By B.P.T.]
In $\triangle B C D$,
seg PR \| seg BD
... [Given]
$\therefore \quad \frac{\mathrm{CP}}{\mathrm{PB}}=\frac{\mathrm{CR}}{\mathrm{RD}}$
... (ii) [By B.P.T.]

In $\triangle A C D$,
$\therefore \frac{C Q}{A Q}=\frac{C R}{R D} \quad \ldots[$ [From (i) and (ii)]
$\therefore \quad \operatorname{seg} \mathrm{QR}|\mid \boldsymbol{s e g} \mathrm{AD} \quad .$. [By converse of B.P.T.]
(9) In $\triangle A B C, D$ is a point on $B C$ such that $\frac{B D}{D C}=\frac{A B}{A C}$. Prove that $A D$ is the bisector of $\angle A$. (Hint : Produce BA to E such that AE = AC. Join EC)

Proof :

Proof: Seg BA is produced to point E such that $\mathrm{AE}=\mathrm{AC}$ and seg EC is drawn.

$$
\therefore \quad \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}
$$

$$
\begin{array}{rlr}
& A C=A E & \ldots \text { (ii) [By construction] } \\
\therefore & \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AE}} \quad \ldots \text { (iii) [Substituting (ii) in (i)] } \\
\therefore & \operatorname{seg} \mathrm{AD} \| \text { seg EC } & \ldots \text { [By converse of B.P.T.] } \\
& \text { On transversal BE, } \\
& \angle \mathrm{BAD} \cong \angle \mathrm{BEC} & \ldots \text { [Corresponding angles } \\
& & \\
\therefore & \angle \mathrm{BAD} \cong \angle \mathrm{AEC} & \text { theorem] }
\end{array}
$$

On transversal AC,
$\angle C A D \cong \angle A C E$
... (v) [Alternate angles theorem]

In $\triangle \mathrm{ACE}$,
$\operatorname{seg} A C \cong \operatorname{seg} A E$
... [By construction]
$\angle \mathrm{AEC} \cong \angle \mathrm{ACE}$... (vi) [By isosceles triangle theorem]
$\therefore \quad \angle \mathrm{BAD} \cong \angle \mathrm{CAD}$
... [From (iv), (v) and (vi)]
$\therefore \quad$ Ray AD is the bisector of $\angle B A C$.
(10) In the adjoining figure, $\square \mathrm{ABCD}$ is a square. $\triangle B C E$ on side $B C$ and $\triangle A C F$ on the diagonal $A C$ are similar to each other. Then, show that $A(\triangle B C E)=\frac{1}{2} A(\triangle A C F)$
(4 marks)

Proof:
$\square \mathrm{ABCD}$ is a square.
... [Given]
$\therefore \quad A C=\sqrt{2} B C$
\ldots (i) $[\because$ Diagonal of a square $=\sqrt{2} \times$ side of square $]$
$\triangle \mathrm{BCE} \sim \triangle \mathrm{ACF}$
... [Given]
$\therefore \frac{\mathrm{A}(\triangle \mathrm{BCE})}{\mathrm{A}(\triangle \mathrm{ACF})}=\frac{(\mathrm{BC})^{2}}{(\mathrm{AC})^{2}}$
... (ii)[By theorem on areas of similar triangles]
$\therefore \frac{\mathrm{A}(\triangle \mathrm{BCE})}{\mathrm{A}(\triangle \mathrm{ACF})}=\frac{(\mathrm{BC})^{2}}{(\sqrt{2} \cdot B C)^{2}} \quad \ldots[$ From (i) and (ii)]
$\therefore \frac{\mathrm{A}(\triangle \mathrm{BCE})}{\mathrm{A}(\triangle \mathrm{ACF})}=\frac{\mathrm{BC}^{2}}{2 \mathrm{BC}^{2}}$
$\therefore \frac{\mathrm{A}(\triangle \mathrm{BCE})}{\mathrm{A}(\triangle \mathrm{ACF})}=\frac{1}{2}$
$\therefore \quad \mathrm{A}(\triangle \mathrm{BCE})=\frac{1}{2} \mathrm{~A}(\triangle \mathrm{ACF})$

2. Theorem of Pythagoras

(1) In $\triangle P Q R, \angle P Q R=90^{\circ}$, as shown in figure, seg QS \perp side PR , seg QM is angle bisector of $\angle P Q R$.
Prove that: $\frac{\mathbf{P M}^{2}}{\mathbf{M R}^{2}}=\frac{\mathbf{P S}}{\mathrm{SR}}$
(4 marks)

Proof :

In $\triangle P Q R$,
Seg QM bisects $\angle P Q R$
... [Given]

$$
\therefore \quad \frac{\mathrm{PM}}{\mathrm{MR}}=\frac{\mathrm{PQ}}{\mathrm{QR}} \quad \begin{array}{r}
\text { Property of an angle } \\
\text { bisector of a triangle] }
\end{array}
$$

$\therefore \quad \frac{\mathrm{PM}^{2}}{\mathrm{MR}^{2}}=\frac{\mathrm{PQ}^{2}}{\mathrm{QR}^{2}}$
... (i) [Squaring both sides]
In $\triangle P Q R$,
$\mathrm{m} \angle \mathrm{PQR}=90^{\circ}$
... [Given]
Seg QS \perp hypotenuse PR
... [Given]
$\therefore \quad \triangle \mathrm{PQR} \sim \Delta \mathrm{PSQ} \sim \Delta \mathrm{QSR} \quad . .$. (ii) [Theorem on similarity of right angled triangles]
$\Delta \mathrm{PSQ} \sim \Delta \mathrm{PQR}$
... [From (ii)]
$\therefore \quad \frac{P Q}{P R}=\frac{P S}{P Q}$
... [c.s.s.t.]
$\therefore \mathrm{PQ}^{2}=\mathrm{PR} \times \mathrm{PS}$
Also, $\triangle \mathrm{QSR} \sim \Delta \mathrm{PQR}$
... [From (ii)]
$\therefore \quad \frac{\mathrm{QR}}{\mathrm{PR}}=\frac{\mathrm{SR}}{\mathrm{QR}}$
... [c.s.s.t.]
$\therefore \mathrm{QR}^{2}=\mathrm{PR} \times \mathrm{SR}$
$\therefore \quad \frac{\mathrm{PM}^{2}}{\mathrm{MR}^{2}}=\frac{\mathrm{PR} \times \mathrm{PS}}{\mathrm{PR} \times \mathrm{SR}} \quad \ldots[$ From (i), (iii) and (iv)]
$\therefore \frac{\mathbf{P M}^{2}}{\mathbf{M R}^{2}}=\frac{\mathbf{P S}}{\mathbf{S R}}$
(2) In $\triangle A B C, m \angle B A C=90^{\circ}$, seg $D E \perp$ side $A B$, seg $D F \perp$ side $A C$, seg $A D \perp$ side $B C$.
Prove : $\mathrm{A}(\square \mathrm{AEDF})=\sqrt{\mathrm{AE} \times \mathrm{EB} \times \mathrm{AF} \times \mathrm{FC}}$)
(4 marks)
Proof :

In $\triangle \mathrm{ADB}$,
$\mathrm{m} \angle \mathrm{ADB}=90^{\circ}$
... [Given]
seg $\mathrm{DE} \perp$ side AB
... [Given]
$\therefore \mathrm{DE}^{2}=\mathrm{AE} \times \mathrm{EB}$
... (i) [By property of geometric mean]
In $\triangle \mathrm{ADC}$,
$m \angle \mathrm{ADC}=90^{\circ}$
... [Given]
Seg DF \perp side AC
... [Given]
$\therefore \mathrm{DF}^{2}=\mathrm{AF} \times \mathrm{FC}$
... (ii) [By property of geometric mean]
Multiplying (i) and (ii), we get
$\therefore \mathrm{DE}^{2} \times \mathrm{DF}^{2}=\mathrm{AE} \times \mathrm{EB} \times \mathrm{AF} \times \mathrm{FC}$
$\therefore \mathrm{DE} \times \mathrm{DF}=\sqrt{\mathrm{AE} \times \mathrm{EB} \times \mathrm{AF} \times \mathrm{FC}}$
In $\square \mathrm{AEDF}$,
$\therefore \mathrm{m} \angle \mathrm{EAF}=\mathrm{m} \angle \mathrm{AED}=\mathrm{m} \angle \mathrm{AFD}=90^{\circ} \quad \ldots$ [Given]
$\therefore \mathrm{m} \angle \mathrm{EDF}=90^{\circ} \quad \ldots$ [Remaining angle]
$\therefore \quad \square$ AEDF is a rectangle ... [By definition]
$\therefore \quad \mathrm{A}(\square \mathrm{AEDF})=\mathrm{DE} \times \mathrm{DF}$... (iv) [Area of rectangle $=l \times b]$

From (iii) and (iv), we get
$\therefore \quad \mathrm{A}(\square \mathrm{AEDF})=\sqrt{\mathrm{AE} \times \mathrm{EB} \times \mathrm{AF} \times \mathrm{FC}}$
(3) In $\triangle \mathrm{ABC}, \angle \mathrm{ACB}=90^{\circ}$,
$\operatorname{seg} C D \perp$ side $A B$,
$\operatorname{seg} D E \perp \operatorname{seg} C B$.
Show that: $\mathrm{CD}^{2} \times \mathbf{A C}=\mathbf{A D} \times \mathbf{A B} \times \mathrm{DE}$ (4 marks) Proof:

In $\triangle \mathrm{ACB}$,

$$
\angle \mathrm{ACB}=90^{\circ},
$$

... [Given] seg $\mathrm{CD} \perp$ hypotenuse AB ,
$\therefore \mathrm{CD}^{2}=\mathrm{AD} \times \mathrm{DB}$
... (i) [By property of geometric mean]

In $\triangle \mathrm{DEB}$ and $\triangle \mathrm{ACB}$,

$$
\begin{array}{lr}
\angle \mathrm{DEB} \cong \angle \mathrm{ACB} & \ldots\left[\text { Each is } 90^{\circ}\right] \\
\angle \mathrm{DBE} \sim \angle \mathrm{ABC} & \ldots[\text { Common angle }]
\end{array}
$$

$\therefore \quad \triangle \mathrm{DEB} \cong \triangle \mathrm{ACB} \quad \ldots$ [By AA test of similarity]
$\therefore \quad \frac{\mathrm{DE}}{\mathrm{AC}}=\frac{\mathrm{DB}}{\mathrm{AB}}$
$\therefore \quad A C=\frac{D E \times A B}{D B}$
$\therefore \mathrm{CD}^{2} \times \mathrm{AC}=\mathrm{AD} \times \mathrm{DB} \times \frac{\mathrm{DE} \times \mathrm{AB}}{\mathrm{DB}} \ldots$ (Multiplying
$\therefore \quad \mathrm{CD}^{2} \times \mathrm{AC}=\mathrm{AD} \times \mathrm{AB} \times \mathrm{DE}$
(4) In an equilateral $\triangle \mathrm{ABC}$, the side BC is trisected at D. Prove that $9 A D^{2}=7 A B^{2}$. (Hint : $A E \perp B C$)
(4 marks)
Proof :

Construction : $\mathrm{AE} \perp \mathrm{BC}$ is drawn In $\triangle \mathrm{AED}$,
$\mathrm{m} \angle \mathrm{AED}=90^{\circ}$
... [By construction]
$\therefore \quad \mathrm{AD}^{2}=\mathrm{AE}^{2}+\mathrm{DE}^{2} \ldots$... (i) [By Pythagoras theorem]
$\therefore \angle A B C=60^{\circ} \quad$... (ii) [Angle of an equilateral triangle]

In $\triangle \mathrm{AEB}$,
$m \angle A E B=90^{\circ}$
... [By construction]
$\therefore \quad \angle \mathrm{ABE}=60^{\circ}$
$\therefore \angle B A E=30^{\circ} \ldots$ [Remaining angle of a triangle]
$\therefore \quad \triangle \mathrm{AEB}$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle
$\therefore \quad \mathrm{AE}=\frac{\sqrt{3}}{2}(\mathrm{AB}) \quad \ldots$ (iii) [Side opposite to 60°]
$\therefore \quad \mathrm{BE}=\frac{1}{2}(\mathrm{AB}) \quad \ldots$ (iv) [Side opposite to 30°]
$\therefore \quad \mathrm{BD}=\frac{1}{3}(\mathrm{BC})$
... [Given]
$\therefore \quad \mathrm{BD}=\frac{1}{3}(\mathrm{AB})$
(v) [Since, $\mathrm{BC}=\mathrm{AB}$, sides of an equilateral triangle]
$\therefore \quad \mathrm{DE}+\mathrm{BD}=\mathrm{BE}$
$\therefore \quad \mathrm{DE}=\mathrm{BE}-\mathrm{BD}$
$\therefore \quad \mathrm{DE}=\frac{1}{2} \mathrm{AB}-\frac{1}{3} \mathrm{AB} \quad \ldots[$ From (iv) and (v)]
$\therefore \quad \mathrm{DE}=\frac{3 \mathrm{AB}-2 \mathrm{AB}}{6}$
$\therefore \quad \mathrm{DE}=\frac{1}{6}(\mathrm{AB})$
$\therefore \quad \mathrm{AD}^{2}=\left[\frac{\sqrt{3}}{2} \mathrm{AB}\right]^{2}+\left[\frac{1}{6} \mathrm{AB}\right]^{2}$
... [Substituting
(iii), (vi) in (i)]
$\therefore \mathrm{AD}^{2}=\frac{3}{4} \mathrm{AB}^{2}+\frac{1}{36} \mathrm{AB}^{2}$
$\therefore \quad \mathrm{AD}^{2}=\frac{27 \mathrm{AB}^{2}+\mathrm{AB}^{2}}{36}$
$\therefore \quad \mathrm{AD}^{2}=\frac{28 \mathrm{AB}^{2}}{36}$
$\therefore \quad \mathrm{AD}^{2}=\frac{7}{9} \mathrm{AB}^{2}$
$\therefore 9 \mathrm{AD}^{2}=7 \mathrm{AB}^{2}$
(5) In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=135^{\circ}$.

Prove that : $A C^{2}=A B^{2}+B C^{2}+4 A(\triangle A B C)$.
Construction : Draw seg $A D \perp$ side $B C$, such that
D-B-C.
(4 marks)

Proof:

$\mathrm{m} \angle \mathrm{ABC}+\mathrm{m} \angle \mathrm{ABD}=180^{\circ}$
...(Angles forming linear pair)
$\therefore 135^{\circ}+\mathrm{m} \angle \mathrm{ABD}=180^{\circ}$
$\therefore \mathrm{m} \angle \mathrm{ABD}=180^{\circ}-135^{\circ}$
$\therefore \mathrm{m} \angle \mathrm{ABD}=45^{\circ}$
In $\triangle \mathrm{ADB}$,

$$
\begin{array}{rlr}
\mathrm{m} \angle \mathrm{ADB} & =90^{\circ} & \ldots(\text { (Given }) \\
\mathrm{m} \angle \mathrm{ABD} & =45^{\circ} & \ldots[\text { From (i)] } \\
\therefore \quad \mathrm{m} \angle \mathrm{BAD} & =45^{\circ} & \ldots \text { (ii) } \text { (Remaining angle) }
\end{array}
$$

In $\triangle \mathrm{ABD}$,

$$
\angle \mathrm{ABD} \cong \angle \mathrm{BAD} \quad \ldots[\text { From }(\mathrm{i}) \text { and }(\mathrm{ii})]
$$

$\therefore \operatorname{seg} \mathrm{AD} \cong \operatorname{seg} \mathrm{DB}$
...(iii) (Converse of isosceles triangle theorem) \}
In $\triangle \mathrm{ADB}$,

$$
\begin{array}{rlr}
& \mathrm{m} \angle \mathrm{ADB}=90^{\circ} & \text { (Construction) } \\
\therefore & \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{DB}^{2} & \ldots(\mathrm{iv})
\end{array}
$$

(By Pythagoras theorem)

In $\triangle \mathrm{ADC}$,
$\mathrm{m} \angle \mathrm{ADC}=90^{\circ}$
...(Construction)
$\therefore \quad \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2} \ldots$ (By Pythagoras theorem)
$\therefore \quad \mathrm{AC}^{2}=\mathrm{AD}^{2}+(\mathrm{DB}+\mathrm{BC})^{2} \quad \ldots(\because \mathrm{D}-\mathrm{B}-\mathrm{C})$
$\therefore \quad \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DB}^{2}+2 \times \mathrm{DB} \times \mathrm{BC}+\mathrm{BC}^{2}$
$\therefore \quad \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \times \mathrm{DB} \times \mathrm{BC} \quad \ldots[$ [From (iv)]
$\therefore \quad A C^{2}=A B^{2}+\mathrm{BC}^{2}+2 \times \mathrm{AD} \times \mathrm{BC}$
...(v) [From (iii)]
Area of triangle $=\frac{1}{2} \times$ base \times height
$\therefore \quad \mathrm{A}(\triangle \mathrm{ABC})=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}$
$\therefore 4 \mathrm{~A}(\triangle \mathrm{ABC})=4 \times \frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}$
...(Multiplying throughout by 4)
$\therefore 4 \mathrm{~A}(\triangle \mathrm{ABC})=2 \times \mathrm{AD} \times \mathrm{BC}$
$\therefore \quad \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+4 \mathrm{~A}(\triangle \mathrm{ABC})$
(6) In $\triangle P Q R$ is a right angled triangle, right angled at Q such that $Q R=b$ and $A(\triangle P Q R)=a$.
If $\mathrm{QN} \perp \mathrm{PR}$, then show that $\mathrm{QN}=\frac{2 \mathrm{a} \cdot \mathrm{b}}{\sqrt{\mathrm{b}^{2}+4 \mathrm{a}^{2}}}$.
(4 marks)
Proof:

Area of triangle $=\frac{1}{2} \times$ base \times height
$\therefore \mathrm{A}(\triangle \mathrm{PQR})=\frac{1}{2} \times \mathrm{QR} \times \mathrm{PQ}$
$\therefore a=\frac{1}{2} \times b \times \mathrm{PQ}$
...(Given)
$\therefore \quad \frac{2 a}{b}=\mathrm{PQ}$
Also,
$\mathrm{A}(\triangle \mathrm{PQR})=\frac{1}{2} \times \mathrm{PR} \times \mathrm{QN}$
$\therefore a=\frac{1}{2} \times \mathrm{PR} \times \mathrm{QN}$
...(Given)
$\therefore \mathrm{QN}=\frac{2 a}{\mathrm{PR}}$
In $\triangle P Q R$,

$$
\begin{equation*}
\mathrm{m} \angle \mathrm{PQR}=90^{\circ} \tag{Given}
\end{equation*}
$$

$\therefore \quad \mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2} \quad \ldots$ (By Pythagoras theorem $)$
$\therefore \quad \mathrm{PR}=\sqrt{\mathrm{PQ}^{2}+\mathrm{QR}^{2}} \quad \ldots$ (Taking square roots)

$$
\begin{align*}
& \therefore \quad \mathrm{PR}=\sqrt{\left(\frac{2 a}{b}\right)^{2}+b^{2}} \quad \ldots[\text { From (i) and given] } \\
& \therefore \mathrm{PR}=\sqrt{\left(\frac{4 a^{2}}{b^{2}}\right)+b^{2}} \\
& \therefore \quad \mathrm{PR}=\frac{\sqrt{b^{4}+4 a^{2}}}{b} \tag{iii}\\
& \therefore \mathrm{QN}=\frac{2 a}{\frac{\sqrt{b^{4}+4 a^{2}}}{b}} \quad \ldots \text {...(From (iii) and (iii)] } \\
& \therefore \\
& \therefore \\
& \mathrm{QN}=\frac{2 a b}{\sqrt{b^{4}+4 a^{2}}}
\end{align*}
$$

(7) In $\square \mathrm{ABCD}$ is a quadrilateral. M is the midpoint of diagonal AC and N is the midpoint of diagonal $B D$. Prove that : $A B^{2}+B C^{2}+C D^{2}+D A^{2}=A C^{2}+$ $\mathrm{BD}^{2}+4 \mathbf{M N}^{2}$.
(4 marks)

Given : $\square \mathrm{ABCD}$ is a quadrilateral.
M and N are the midpoints of diagonal $A C$ and $B D$ respectively.

$$
\text { To prove : } \begin{aligned}
\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2} & +\mathrm{DA}^{2} \\
& =\mathrm{AC}^{2}+\mathrm{BD}^{2}+4 \mathrm{MN}^{2}
\end{aligned}
$$

Construction : Join seg DM and seg BM.
Proof:
In $\triangle \mathrm{ADC}$,
seg DM is the median.
$\therefore \quad \mathrm{AD}^{2}+\mathrm{CD}^{2}=2 \mathrm{DM}^{2}+2 \mathrm{CM}^{2}$
... [Apollonius theorem]
$\therefore \quad \mathrm{AD}^{2}+\mathrm{CD}^{2}=2 \mathrm{DM}^{2}+2\left[\frac{1}{2} \mathrm{AC}\right]^{2}$
... [M is the midpoint of AC]

$$
\begin{align*}
& \therefore \quad \mathrm{AD}^{2}+\mathrm{CD}^{2}=2 \mathrm{DM}^{2}+2 \times \frac{1}{4} \mathrm{AC}^{2} \\
& \therefore \quad \mathrm{AD}^{2}+\mathrm{CD}^{2}=2 \mathrm{DM}^{2}+\frac{1}{2} \mathrm{AC}^{2} \tag{i}
\end{align*}
$$

Similarly, in $\triangle \mathrm{ABC}$ seg BM is the median.
$A B^{2}+B C^{2}=2 B^{2}+\frac{1}{2} A C^{2}$
$\therefore \mathrm{AD}^{2}+\mathrm{CD}^{2}+\mathrm{AB}^{2}+\mathrm{BC}^{2}=2 \mathrm{DM}^{2}+\frac{1}{2} \mathrm{AC}^{2}$
$+2 \mathrm{BM}^{2}+\frac{1}{2} \mathrm{AC}^{2} \quad \ldots$ [Adding (i) and (ii)]
$\therefore \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}=2 \mathrm{BM}^{2}+2 \mathrm{DM}^{2}+\mathrm{AC}^{2}$

In $\triangle \mathrm{DMB}$,
seg MN is the median
$\therefore \quad \mathrm{BM}^{2}+\mathrm{DM}^{2}=2 \mathrm{MN}^{2}+2 \mathrm{BN}^{2}$
... [Apollonius theorem]
$\therefore \quad \mathrm{BM}^{2}+\mathrm{DM}^{2}=2 \mathrm{MN}^{2}+2\left[\frac{1}{2} \mathrm{BD}^{2}\right.$
... [N is the midpoint of BD]
$\therefore \quad \mathrm{BM}^{2}+\mathrm{DM}^{2}=2 \mathrm{MN}^{2}+2 \times \frac{1}{4} \mathrm{BD}^{2}$
$\therefore \mathrm{BM}^{2}+\mathrm{DM}^{2}=2 \mathrm{MN}^{2}+\frac{1}{2} \mathrm{BD}^{2}$
$\therefore \quad 2 \mathrm{BM}^{2}+2 \mathrm{DM}^{2}=4 \mathrm{MN}^{2}+2 \times \frac{1}{2} \mathrm{BD}^{2}$
... [Multiplying by 2]
$\therefore \quad 2 \mathrm{BM}^{2}+2 \mathrm{DM}^{2}=4 \mathrm{MN}^{2}+\mathrm{BD}^{2}$
$\therefore \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}=\left(4 \mathrm{MN}^{2}+\mathrm{BD}^{2}\right)+\mathrm{AC}^{2}$
... [Substituting (iv) in (iii)]
$\therefore \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}+4 \mathrm{MN}^{2}$

3. Circle

(1) From the end points of a diameter of circle perpendiculars are drawn to a tangent of the same circle. Show that their feet on the tangent are equidistant from the centre of the circle.
(4 marks)

Given : (i) A circle with centre O.
(ii) $\operatorname{Seg} \mathrm{AB}$ is the diameter of the circle.
(iii) Line l is tangent to the circle at point C.
(iv) Seg AD \perp line l
(v) Seg BE \perp line l

To Prove : OD = OE
Construction : Draw seg OC

Proof:

Seg AD \perp line l
... [Given]
Seg OC \perp line $l \quad$... [Radius is perpendicular to the tangent]
Seg BE \perp line l
... [Given]
\therefore Seg AD $\|\operatorname{seg} \mathrm{OC}\|$ seg BE ... [Perpendiculars drawn to the same line are parallel to each other]
\therefore On transversal AB and DE ,

$$
\frac{\mathrm{AO}}{\mathrm{OB}}=\frac{\mathrm{DC}}{\mathrm{CE}} \quad \begin{aligned}
& \ldots(\text { i) }[\text { Property of three parallel } \\
& \text { lines and their transversals }]
\end{aligned}
$$

But, $\mathrm{AO}=\mathrm{OB}$
... [Radii of the same circle]
$\therefore \quad \frac{\mathrm{AO}}{\mathrm{OB}}=1$
$\therefore \quad \frac{\mathrm{DC}}{\mathrm{CE}}=1$
... [From (i) and (ii)]
$\therefore \quad \mathrm{DC}=\mathrm{CE}$
In $\triangle \mathrm{OCD}$ and $\triangle \mathrm{OCE}$,

$$
\begin{align*}
& \operatorname{seg} \mathrm{OC} \cong \operatorname{seg} \mathrm{OC} \\
& \text {... [Common side] } \\
& \angle O C D \cong \angle O C E \\
& \text {... [Each is a right angle] } \\
& \operatorname{seg} \mathrm{DC} \cong \operatorname{seg} C E \\
& \therefore \quad \triangle \mathrm{OCD} \cong \triangle \mathrm{OCE} \\
& \text {... [By SAS test of } \\
& \text { congruence] } \\
& \therefore \operatorname{seg} \mathrm{OD} \cong \operatorname{seg} \mathrm{OE} \tag{c.s.c.t}
\end{align*}
$$

$\therefore \quad \mathrm{OD}=\mathrm{OE}$
(2) The bisectors of the angles A, B of $\triangle \mathrm{ABC}$ intersects in I , the bisectors of the corresponding exterior angles intersect in E. Prove that पAIBE is cyclic.
(4 marks)

Solution :

Proof: Take point P and Q as show in fig.

$$
\begin{gathered}
\mathrm{m} \angle \mathrm{CAB}+\mathrm{m} \angle \mathrm{BAP}=180^{\circ} \\
\ldots[\text { Linear pair axiom }] \\
\therefore \quad \frac{1}{2} \mathrm{~m} \angle \mathrm{CAB}+\frac{1}{2} \mathrm{~m} \angle \mathrm{BAP}=\frac{1}{2} \times 180^{\circ} \\
\ldots\left[\text { Multiplying throughout by } \frac{1}{2}\right]
\end{gathered}
$$

$\therefore \mathrm{m} \angle \mathrm{IAB}+\mathrm{m} \angle \mathrm{BAE}=90^{\circ}$
... [\because Ray AI and ray AE bisects
$\angle C A B$ and $\angle B A P$ respectively]
$\therefore \mathrm{m} \angle \mathrm{IAE}=90^{\circ}$... (i) [Angle addition property] Similarly,
$\therefore \mathrm{m} \angle \mathrm{IBE}=90^{\circ}$
$\therefore \mathrm{m} \angle \mathrm{IAE}+\mathrm{m} \angle \mathrm{IBE}=90^{\circ}+90^{\circ}$
... [Adding (i) and (ii)]
$\therefore \mathrm{m} \angle \mathrm{IAE}+\mathrm{m} \angle \mathrm{IBE}=180^{\circ}$
$\therefore \quad \square$ AIBE is cyclic ... [If opposite angles of a quadrilateral are supplementary then quadrilateral is cyclic]
(3) In a right angled $\triangle A B C, \angle A C B=90^{\circ}$. A circle is inscribed in the triangle with radius $r . a, b$, c are the lengths of the sides $B C, A C$ and $A B$ respectively. Prove that $2 r=a+b-c . \quad$ (4 marks)

Proof:
Let the centre of the inscribed circle be ' O^{\prime}

$$
\begin{align*}
& \text { Let } \mathrm{AP}=\mathrm{AQ}=x \quad \ldots \text { (i) }) \text { (The lengths of the two } \\
& \mathrm{CP}=\mathrm{CR}=y \\
& \text {...(ii) tangent segments to a } \\
& \mathrm{BR}=\mathrm{BQ}=z \\
& \text {...(iii) circle drawn from an } \\
& a+b-c=\mathrm{BC}+\mathrm{AC}-\mathrm{AB} \\
& \therefore a+b-c=\mathrm{CR}+\mathrm{RB}+\mathrm{AP}+\mathrm{PC}-(\mathrm{AQ}+\mathrm{QB}) \\
& \text { (} \mathrm{B}-\mathrm{R}-\mathrm{C}, \mathrm{~A}-\mathrm{P}-\mathrm{C}, \mathrm{~A}-\mathrm{Q}-\mathrm{B}) \\
& \therefore a+b-c=y+z+x+y-(x+z) \\
& \text { [From (i), (ii) and (iii)] } \\
& \therefore a+b-c=y+z+x+y-x-z \\
& \therefore a+b-c=2 y \\
& \therefore a+b-c=2 \mathrm{CP} \tag{iv}
\end{align*}
$$

In \square PCRO
$\mathrm{m} \angle \mathrm{OPC}=\mathrm{m} \angle \mathrm{ORC}=90^{\circ}$
...(Radius is perpendicular to tangent)
$\mathrm{m} \angle \mathrm{PCR}=90^{\circ}$
...(Given)
$\therefore \mathrm{m} \angle \mathrm{POR}=90^{\circ}$
...(Remaining angle)
$\therefore \quad \square \mathrm{PCRO}$ is a rectangle
...(By definition)
$\therefore C P=O R$
(Opposite sides of a rectangle)
$\therefore a+b-c=2$ OR
...[From (iv) and (v)]
$\therefore a+b-c=2 r$
(4) If two consecutive angles of cyclic quadrilateral are congruent, then prove that one pair of opposite sides is congruent and other is parallel.
(4 marks)
Given : $\square \mathrm{ABCD}$ is a cyclic quadrilateral $\angle A B C \cong \angle B C D$

To Prove : side $D C \cong$ side $A B, A D \| B C$
Construction : Draw seg AM and seg DN both perpendicular to side BC.

Proof:

$$
\text { I } \quad \begin{array}{rr}
\angle \mathrm{ABC} \cong \angle \mathrm{BCD} & \ldots \text { (i) } \text { [Given] } \\
\angle \mathrm{ABC}+\angle \mathrm{ADC}=180^{\circ} \ldots \text { (ii) }[\text { Opposite angles } \\
\text { of a cyclic quadrilateral } \\
& \text { are supplementary }] \\
& \angle \mathrm{BCD}+\angle \mathrm{ADC}=180^{\circ}
\end{array} \quad \ldots[\text { From (i) and (ii)] } .
$$

\therefore Side $\mathrm{AD}|\mid$ side $\mathrm{BC} \quad . .$. [Interior angles test] In $\triangle \mathrm{DNC}$ and $\triangle \mathrm{AMB}$, $\operatorname{seg} \mathrm{DN} \cong \operatorname{seg} \mathrm{AM} \ldots$ [Perpendicular distance between two parallel lines]

$$
\angle \mathrm{DNC} \cong \angle \mathrm{AMB}
$$... [Each is 90°]

$\angle D C N \cong \angle A B M$
... [Given B-M-N-C]
$\therefore \quad \triangle \mathrm{DNC} \cong \triangle \mathrm{AMB} \ldots$... [By SAA test of congruence]
\therefore side $\mathrm{DC} \cong$ side AB
... [c.s.c.t.]
(5) As shown in the adjoining figure, two circles intersect each other in points A and B. Two tangents touch these circles in points P, Q and R , S as shown. Line $A B$ intersects seg $P Q$ in C and seg RS in D. Show that C and D are midpoints of seg PQ and seg RS respectively. (3 marks)
Given : Two circles intersect each other in points A and B.

Line PQ and RS are the common tangents and line CD is a common secant.
To Prove : C and D are midpoints of seg PQ and seg RS.

Proof:
Line CP is a tangent and line CD is a secant.
$\therefore \quad \mathrm{CP}^{2}=\mathrm{CA} \times \mathrm{CB} \quad \ldots$ (i) [Tangent secant segment theorem]
Similarly, $\mathrm{CQ}^{2}=\mathrm{CA} \times \mathrm{CB}$
$\therefore \mathrm{CP}^{2}=\mathrm{CQ}^{2} \quad \ldots$ [From (i) and (ii)]
$\therefore \quad C P=C Q \quad \ldots$ [Taking square root on both sides]
$\therefore \quad \mathrm{C}$ is the midpoint of seg $\mathrm{PQ} \quad \ldots[\mathrm{P}-\mathrm{C}-\mathrm{Q}]$
Line RD is a tangent and line CD is a secant
$\therefore R^{2}=\mathrm{DB} \times \mathrm{DA} \quad$... (iii) [TTangent secant
Similarly, $\mathrm{SD}^{2}=\mathrm{DB} \times \mathrm{DA} \ldots$ (iv) segment theorem]
$\therefore \quad \mathrm{RD}^{2}=\mathrm{SD}^{2}$
... [From (iii) and (iv)]
$\therefore \quad \mathrm{RD}=\mathrm{SD} \quad \ldots$ [Taking square root on both sides]
$\therefore \quad \mathrm{D}$ is the midpoint of seg RS
... [R - D - S]
(6) $\square \mathrm{ABCD}$ is a parallelogram. A circle passing through D, A, B cuts BC in P. Prove that DC = DP.
(3 marks)
Given : $\square \mathrm{ABCD}$ is a parallelogram .
Prove : $\mathrm{DC}=\mathrm{DP}$

Proof:
$\square A B P D$ is a cyclic quadrilateral.
[By definition]
$\therefore \quad \angle \mathrm{BAD}=\angle \mathrm{DPC} \quad \ldots$ (i) $[$ Exterior angle of a cyclic quadrilateral equals to the interior opposite angle]
$\square \mathrm{ABCD}$ is a parallelogram
... [Given]
$\therefore \angle \mathrm{BAD}=\angle \mathrm{DCB} \quad \ldots$ [Opposite angles of a parallelogram are equal]
$\therefore \quad \angle \mathrm{BAD}=\angle \mathrm{DCP}$... (ii) $[\mathrm{C}-\mathrm{P}-\mathrm{B}]$
In $\triangle \mathrm{DCP}$,

$$
\angle \mathrm{DPC}=\angle \mathrm{DCP}
$$

... [From (i) and (ii)]
$\therefore \quad \mathrm{DC}=\mathrm{DP}$
... [Converse of isosceles triangle theorem]
(7) In a cyclic quadrilateral $A B C D$, the bisectors of opposite angles A and C meet the circle at P and Q respectively. Prove that $P Q$ is a diameter of the circle.
(4 marks)
Given : $\square \mathrm{ABCD}$ is a cyclic quadrilateral.
Ray AP and ray CQ bisect $\angle B A D$ and $\angle B C D$
To Prove : seg PQ is a diameter of the circle.

Proof:
$\angle \mathrm{DAP} \cong \angle \mathrm{BAP}$
$\ldots(\because$ ray AP bisects $\angle \mathrm{DAB})$

Let $\mathrm{m} \angle \mathrm{DAP}=\mathrm{m} \angle \mathrm{BAP}=x^{\circ}$
$\angle \mathrm{DCQ} \cong \angle \mathrm{BCQ} \quad \ldots(\because$ ray CQ bisects $\angle \mathrm{DCB})$
Let, $\mathrm{m} \angle \mathrm{DCQ}=\mathrm{m} \angle \mathrm{BCQ}=y^{\circ}$
$\square \mathrm{ABCD}$ is cyclic
...(Given)
$\therefore \mathrm{m} \angle \mathrm{DAB}+\mathrm{m} \angle \mathrm{DCB}=180^{\circ}$
(Opposite angles of a cyclic quadrilateral are supplementary)
$\therefore \mathrm{m} \angle \mathrm{DAP}+\mathrm{m} \angle \mathrm{BAP}+\angle \mathrm{DCQ}+\mathrm{m} \angle \mathrm{BCQ}=180^{\circ}$
...(Angle addition property)
$\therefore x+x+y+y=180^{\circ} \quad \ldots[$ [From (i) and (ii)]
$\therefore \quad 2 x+2 y=180^{\circ}$
$\therefore \quad \mathrm{m} \angle \mathrm{DAP}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{DP})$...(Inscribed angle theorem)
$\therefore \quad x=\frac{1}{2} \mathrm{~m}(\operatorname{arc} D P) \quad \ldots[$ From (i)]
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{DP})=2 x^{\circ}$
$\mathrm{m} \angle \mathrm{DCQ}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{DQ})$
...(Inscribed angle theorem)
$\therefore \quad y=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \operatorname{DQ}) \quad . .[$ [From (ii)]
$\therefore \mathrm{m}(\operatorname{arc} D Q)=2 y^{\circ}$
$\mathrm{m}(\operatorname{arc} D P)+\mathrm{m}(\operatorname{arc} D Q)=2 x+2 y$
...[Adding (iv) and (v)]
$\therefore \quad \mathrm{m}(\operatorname{arc} \mathrm{PDQ})=180^{\circ}$
...[Arc addition property and from (iii)]
$\therefore \quad$ Arc PDQ is a semicircle
$\therefore \quad$ seg PQ is a diameter of the circle.
(8) In $\triangle A B C, \angle A$ is an obtuse angle, P is the cirumcentre of $\triangle \mathrm{ABC}$.

Prove that $\angle \mathrm{PBC}=\angle \mathrm{A}-90^{\circ}$
(4 marks)
Given: P is centre of the circle.
To Prove : $\angle \mathrm{PBC}=\angle \mathrm{A}-90^{\circ}$
Construction : Extend seg BP to intersect the circle at point D, B-P - D. Join seg AD.

Proof :
Seg BD is the diameter
$\therefore \angle \mathrm{BAD}=90^{\circ} \quad$... (i) [Angles inscribed in a semicircle]
$\therefore \quad \angle \mathrm{DBC} \cong \angle \mathrm{DAC} \quad .$. [Angles inscribed in a same arc are congruent]
$\therefore \quad \angle \mathrm{PBC}=\angle \mathrm{DAC}$
... (ii) $[B-P-D]$
Now, $\angle \mathrm{BAC}=\angle \mathrm{BAD}+\angle \mathrm{DAC} \ldots$ [Angle addition property]
$\therefore \quad \angle \mathrm{A}=90^{\circ}+\angle \mathrm{PBC}$
... [From (i) and (ii)]
$\therefore \quad \angle \mathrm{A}-90^{\circ}=\angle \mathrm{PBC}$
$\therefore \quad \angle \mathrm{PBC}=\angle \mathrm{A}-90^{\circ}$
(10) Two circles with centre O and P intersect each other in point C and D. Chord $A B$ of the circle with centre O touches the circle with centre P in point E. Prove that $\angle \mathrm{ADE}+\angle \mathrm{BCE}=\mathbf{1 8 0}^{\circ}$
(4 marks)
Construction : Draw seg CD.

Proof：

In $\triangle B C E$ ，

$$
\begin{array}{r}
\therefore \quad \angle \mathrm{CBE}+\angle \mathrm{CEB}+\angle \mathrm{BCE}=180^{\circ} \quad \ldots \text { (i) }[\text { Sum of } \\
\text { measures of angles of a triangle is } \left.180^{\circ}\right]
\end{array}
$$

$\square A B C D$ is a cyclic quadrilateral，$\angle C B E$ is its exterior angle．
$\therefore \angle \mathrm{CBE}=\angle \mathrm{ADC}$
．．．（ii）［Exterior angle of a cyclic quadrilaterals equals to interior opposite angle］
$\angle C E D=\angle E D C$ ．．．（iii）［Angles in alternate segments］
$\therefore \quad \angle \mathrm{ADC}+\angle \mathrm{EDC}+\angle \mathrm{BCE}=180^{\circ}$ ．．．［Substituting （ii）and（iii）in（i）］
$\therefore \quad \angle \mathrm{ADE}+\angle \mathrm{BCE}=\mathbf{1 8 \mathbf { 0 } ^ { \circ }} \quad \cdots$［Angle addition $\begin{array}{r}\text { property］}\end{array}$
事果路

4．Geometric Constructions

（1）Draw a $\triangle \mathrm{ABC}$ with side $\mathrm{BC}=6 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}$ and $\angle A=100^{\circ}$ ，then construct a triangle whose sides are $\frac{4}{7}$ times the corresponding sides of $\triangle \mathrm{ABC}$ ． （4 marks）

Solution ：

Analysis ：
In $\triangle \mathrm{ABC}$ ，

$$
\left.\begin{array}{l}
\mathrm{m} \angle \mathrm{~A}=100^{\circ} \\
\mathrm{m} \angle \mathrm{~B}=45^{\circ}
\end{array}\right\}
$$

$\therefore \mathrm{m} \angle \mathrm{C}=35^{\circ}$（Remaining angles of a triangle）

（Analytical Figures）

$\triangle \mathrm{PBQ}$ is the required triangle similar to the given $\triangle \mathrm{ABC}$ ．
（2）Draw a $\triangle \mathrm{ABC}$ ，right angled at B such that $A B=3 \mathrm{~cm}$ and $B C=4 \mathrm{~cm}$ ．Now，construct a triangle similar to $\triangle \mathrm{ABC}$ ，each of whose sides is $\frac{7}{5}$ times the corresponding sides of $\triangle \mathrm{ABC}$ ．
（4 marks）

Solution ：

（Analytical Figure）

$\triangle \mathrm{PBR}$ is the required triangle similar to the given $\triangle \mathrm{ABC}$.
(3) $\triangle \mathrm{AMT}-\triangle \mathrm{AHE}$, In $\triangle \mathrm{AMT}, \mathrm{MA}=6.3 \mathrm{~cm}$, $\angle \mathrm{MAT}=120^{\circ}, \mathrm{AT}=4.9 \mathrm{~cm}$ and $\frac{\mathrm{MA}}{\mathrm{HA}}=\frac{7}{5}$, construct $\triangle \mathrm{AHE}$.
(4 marks)

Solution :

(4) \triangle LTR $\sim \Delta H Y D$. Construct $\triangle H Y D$, where $\mathrm{HY}=7.2 \mathrm{~cm}, \mathrm{YD}=6 \mathrm{~cm}, \angle \mathrm{Y}=40^{\circ}$ and $\frac{\mathrm{LR}}{\mathrm{HD}}=\frac{5}{6}$ and construct Δ LTR.
(4 marks)

Solution :

$$
\begin{aligned}
& \Delta \mathrm{LTR} \sim \Delta \mathrm{HYD} \\
& \therefore \frac{\mathrm{LT}}{\mathrm{HY}}=\frac{\mathrm{TR}}{\mathrm{YD}}=\frac{\mathrm{LR}}{\mathrm{HD}}=\frac{5}{6} \quad \text {... (i) (c.s.s.t.) } \\
& \therefore \quad \angle \mathrm{T}=\angle \mathrm{Y}=40^{\circ} \\
& \text { (c.a.s.t.) } \\
& \frac{\mathrm{LT}}{\mathrm{HY}}=\frac{5}{6} \\
& \text { [From (i)] } \\
& \therefore \quad \frac{\mathrm{LT}}{7.2}=\frac{5}{6} \\
& \therefore \quad \mathrm{LT}=\frac{7.2 \times 5}{6}=\frac{36}{6} \\
& \therefore \quad \mathrm{LT}=6 \mathrm{~cm} \\
& \frac{\mathrm{TR}}{\mathrm{YD}}=\frac{5}{6} \\
& \text { [From (i)] } \\
& \therefore \frac{\mathrm{TR}}{6}=\frac{5}{6} \\
& \therefore \mathrm{TR}=\frac{5 \times 6}{6}=\frac{30}{6} \\
& \therefore \mathrm{TR}=5 \mathrm{~cm}
\end{aligned}
$$

Information for constructing Δ LTR is complete.
(Given triangle)

(Required triangle)

(5) Draw a circle with centre O and radius 3.5 cm . Draw tangents PA and PB to the circle, from a point P outside the circle, at points A and B respectively. $\angle \mathrm{APB}=80^{\circ}$.
(4 marks)

Solution :

In $\square \mathrm{OAPB}, \angle \mathrm{P}=80^{\circ}$
... [Given]
$\angle \mathrm{OAP}=\angle \mathrm{OBP}=90^{\circ}$ [Tangent perpendicularity theorem]
$\therefore \quad \angle \mathrm{AOB}=100$
[Remaining angle of \square]
Analytical figure :

(6) Draw a circle with centre A and radius 4 cm . Draw tangent segments $P Q$ and $P R$ from an external point \mathbf{P} such that $\mathrm{PQ}=\mathbf{P R}=3 \mathrm{~cm}$. (4 marks)
Solution :
In $\triangle \mathrm{APQ}, \angle \mathrm{AQP}=90^{\circ} \quad$ [Tangent theorem]

$\therefore \quad \mathrm{AP}^{2}=\mathrm{AQ}^{2}+\mathrm{PQ}^{2} \quad$ [Pythagoras theorem]
$\therefore \quad \mathrm{AP}^{2}=4^{2}+3^{2}$
$=16+9$
$\therefore \quad \mathrm{AP}^{2}=25$
$\therefore \quad \mathrm{AP}=5 \mathrm{~cm}$

5. Co-ordinate Geometry

(1) If $A(-14,10)$ and $B(6,-2)$ find the coordinates of the points which divides seg $A B$ into four equal parts.
(4 marks)
Solution :

Let points $\mathrm{P}\left(x_{1}, y_{1}\right), \mathrm{Q}\left(x_{2}, y_{2}\right)$ and $\mathrm{R}\left(x_{3^{\prime}}, y_{3}\right)$ be three points which divide seg AB into four equal parts.

$$
\begin{align*}
\therefore \quad & \mathrm{AP}=\mathrm{PQ}=\mathrm{QR}=\mathrm{RB} \\
& \mathrm{AQ}=\mathrm{AP}+\mathrm{PQ}=\mathrm{AP}+\mathrm{AP}=2 \mathrm{AP} \\
& \quad[\mathrm{~A}-\mathrm{P}-\mathrm{Q} \text { and From (i) }) \\
& \mathrm{BQ}=\mathrm{BR}+\mathrm{RQ}=\mathrm{AP}+\mathrm{AP}=2 \mathrm{AP} \tag{iii}
\end{align*}
$$

[B-R - Q and From (i)]
$\therefore \quad A Q=B Q$
[From (ii) and (iii)]
$\therefore Q$ is midpoint of seg $A B$
$\therefore \quad x_{2}=\frac{-14+6}{2} ; y_{2}=\frac{10+(-2)}{2}$
[Midpoint formula]
$\therefore \quad x_{2}=\frac{-8}{2} ; \quad y_{2}=\frac{8}{2}$
$\therefore x_{2}=-4 ; \quad y_{2}=4$
$\therefore \quad Q=(-4,4)$
P is midpoint of seg AQ.
[From (i)]
$\therefore \quad x_{1}=\frac{-14-4}{2} ; y_{1}=\frac{10+4}{2}$ [Midpoint formula]
$\therefore \quad x_{1}=\frac{-18}{2} ; \quad y_{1}=\frac{14}{2}$
$\therefore x_{1}=-9 ; \quad y_{1}=7$
$\therefore \quad P=(-9,7)$
R is midpoint of seg $B Q$.
[From (i)]
$\therefore \quad x_{3}=\frac{-4+6}{2} ; y_{3}=\frac{4+(-2)}{2}$ [Midpoint formula]
$\therefore \quad x_{3}=\frac{2}{2} ; \quad y_{3}=\frac{2}{2}$
$\therefore \quad x_{3}=1 ; \quad y_{3}=1$
$\therefore \quad R=(\mathbf{1}, \mathbf{1})$
(2) If $A(20,10)$ and $B(0,20)$ are end points of a seg $A B$ then find the coordinates of points which divide seg $A B$ into 5 congruent parts. (4 marks) Solution :

Let points $\mathrm{P}\left(x_{1}, y_{1}\right), \mathrm{Q}\left(x_{2}, y_{2}\right)$ and $\mathrm{R}\left(x_{3}, y_{3}\right)$ and
$S\left(x_{4}, y_{4}\right)$ be four points which divide seg $A B$ into five equal parts.
$\therefore \quad \mathrm{BP}=\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{AS}$
$B S=B P+P Q+Q R+R S$
[B-P - Q - R - S]
$\therefore \quad B S=B P+B P+B P+B P$
... [From (i)]
$\therefore \quad \mathrm{BS}=4 \mathrm{BP}$
$\therefore \quad \mathrm{BS}=4 \mathrm{AS}$
[From (i)]
$\therefore \quad \frac{\mathrm{BS}}{\mathrm{AS}}=\frac{4}{1}$
$\therefore \quad$ Point S divides seg BA in the ratio $4: 1$.
i.e. $m: n=4: 1$

By section formula,
$\therefore \quad x_{4}=\frac{4 \times 20+1 \times 0}{4+1} ; y_{4}=\frac{4 \times 10+1 \times 20}{4+1}$
$\therefore \quad x_{4}=\frac{80}{5} ; \quad y_{4}=\frac{40+20}{5}=\frac{60}{5}$
$\therefore x_{4}=16 ; \quad y_{4}=12$
$\therefore \quad \mathrm{S}(16,12)$
Q is midpoint of seg BS.
$\therefore \quad x_{2}=\frac{0+16}{2} ; y_{2}=\frac{20+12}{2}$ [Midpoint formula]
$\therefore \quad x_{2}=\frac{16}{2} ; \quad y_{2}=\frac{32}{2}$
$\therefore x_{2}=8 ; \quad y_{2}=16$
$\therefore \quad \mathrm{Q}(8,16)$
P is midpoint of $\operatorname{seg} B Q$.
$\therefore \quad x_{1}=\frac{0+8}{2} ; \quad y_{1}=\frac{20+16}{2}$
$\therefore \quad x_{1}=\frac{8}{2} ; \quad y_{1}=\frac{36}{2}$
$\therefore x_{1}=4 ; \quad y_{1}=18$
$\therefore \quad \mathbf{P}(4,18)$
R is midpoint of seg QS.
$\therefore \quad x_{3}=\frac{8+16}{2} ; y_{3}=\frac{16+12}{2}$
$\therefore \quad x_{3}=\frac{24}{2} ; \quad y_{3}=\frac{28}{2}$
$\therefore \quad x_{3}=12 ; \quad y_{3}=14$
$\therefore \quad \mathrm{R}(12,14)$
$\therefore \quad$ Point $P(4,18), Q(8,16), R(12,14)$ and $S(16,12)$ divides seg $A B$ into five equal parts.
(3) Find the coordinates of the circumcentre and the radius of the circumcircle of $\triangle \mathrm{ABC}$ if $\mathrm{A}(2,3)$, $B(4,-1)$ and $C(5,2)$.
(4 marks)
Solution :

Let point $\mathrm{P}(h, k)$ be the circumcentre of $\triangle \mathrm{ABC}$.
$\therefore \mathrm{PA}=\mathrm{PB}=\mathrm{PC}$
... (i) [Radii of a circle]
$\therefore \mathrm{PA}=\mathrm{PB}$
... [From (i)]
Using distance formula,
$\sqrt{(h-2)^{2}+(k-3)^{2}}=\sqrt{(h-4)^{2}+(k+1)^{2}}$
Squaring both sides
$\therefore(h-2)^{2}+(k-3)^{2}=(h-4)^{2}+(k+1)^{2}$
$\therefore \quad h^{2}-4 h+4+k^{2}-6 k+9=h^{2}-8 h+16+k^{2}+2 k+1$
$\therefore-4 h-6 k+13=-8 h+2 k+17$
$\therefore-4 h+8 h-6 k-2 k=17-13$
$\therefore \quad 4 h-8 k=4$
$\therefore h-2 k=1$
$\mathrm{PA}=\mathrm{PC}$
[From (i)]
Using distance formula,

$$
\begin{align*}
& (h-2)^{2}+(k-3)^{2}=(h-5)^{2}+(k-2)^{2} \\
\therefore & h^{2}-4 h+4+k^{2}-6 k+9=h^{2}-10 h+25+k^{2}-4 k+4 \\
\therefore & -4 h-6 k+13=-10 h-4 k+29 \\
\therefore & -4 h+10 h-6 k+4 k=29-13 \\
\therefore & 6 h-2 k=16 \tag{iii}
\end{align*}
$$

Subtracting equation (ii) from equation (iii)

$$
\begin{array}{r}
6 h-2 k=16 \\
-\quad h-2 k=1 \\
(-) \quad(+) \quad(-) \\
\hline 5 h \quad=15
\end{array}
$$

$\therefore \quad h=3$
Substituting $h=3$ in equation (ii)
$3-2 k=1$
$\therefore-2 k=1-3$
$\therefore-2 k=-2$
$\therefore k=1$
$\therefore \mathrm{P}(3,1)$ is the centre of the circle.
Radius PA $=\sqrt{(2-3)^{2}+(3-1)^{2}}$
[Distance formula]

$$
\begin{aligned}
& =\sqrt{(-1)^{2}+(2)^{2}} \\
& =\sqrt{1+4}
\end{aligned}
$$

$\therefore \quad$ Radius PA $=\sqrt{5}$ unit
(4) Point $M(-3,7)$ and $N(-1,6)$ divides segment $A B$ into three equal parts. Find the coordinates of point A and point B.
(4 marks)
Solution :
$\begin{array}{cccc}\stackrel{\circ}{\mathrm{A}} & \stackrel{\circ}{\mathrm{M}} & \stackrel{\circ}{\mathrm{N}} & \stackrel{\bullet}{\mathrm{B}} \\ \left(x_{1}, y_{1}\right) & (-3,7) & (-1,6) & \left(x_{2}, y_{2}\right)\end{array}$
Let $\mathrm{A}\left(x_{1}, y_{1}\right)$, and $\mathrm{B}\left(x_{2}, y_{2}\right)$

Points M and N divides seg AB into three equal parts.
$\therefore \quad \mathrm{AM}=\mathrm{MN}=\mathrm{NB}$
$\therefore \quad \mathrm{AM}=\mathrm{MN}$
\therefore Point M is midpoint of seg AN.
$\therefore-3=\frac{x_{1}+(-1)}{2}$ and $7=\frac{y_{1}+6}{2}$
[Midpoint formula]
$\therefore \quad-6=x_{1}-1$ and $14=y_{1}+6$
$\therefore \quad x_{1}=-6+1$ and $y_{1}=14-6$
$\therefore \quad x_{1}=-5, y_{1}=8$
$\therefore \quad \mathrm{A}(-5,8)$

$$
\begin{equation*}
\mathrm{MN}=\mathrm{NB} \tag{i}
\end{equation*}
$$

$\therefore \quad$ Point N is midpoint of seg MB.
$\therefore-1=\frac{-3+x_{2}}{2} ; 6=\frac{7+y_{2}}{2}$ [Midpoint formula]
$\therefore \quad-2=-3+x_{2} ; 12=7+y_{2}$
$\therefore-2+3=x_{2} \quad ; 12-7=y_{2}$
$\therefore x_{2}=1 \quad ; y_{2}=5$
$\therefore \quad \mathrm{B}(1,5)$
(5) Segment $A B$ is divided into four equal parts by points P, Q and R such that $A-P-Q-R-B$. If $P(12,9)$ and $R(0,11)$, then find the coordinates of point A, Q and B.
(4 marks)

Solution :

$$
\begin{align*}
& \begin{array}{ccccc}
\stackrel{\bullet}{\mathrm{A}} & \stackrel{\bullet}{\mathrm{P}} & \stackrel{\bullet}{\mathrm{Q}} & \stackrel{\bullet}{\mathrm{R}} & \stackrel{\bullet}{\mathrm{~B}} \\
\left(x_{1}, y_{1}\right) & (12,9) & \left(x_{2}, y_{2}\right) & (0,11) & \left(x_{3}, y_{3}\right)
\end{array} \\
& \mathrm{AP}=\mathrm{PQ}=\mathrm{QR}=\mathrm{RB} \tag{i}\\
& \text { Let } \mathrm{A}\left(x_{1}, y_{1}\right), \mathrm{Q}\left(x_{2}, y_{2}\right) \text { and } \mathrm{B}\left(x_{3}, y_{3}\right) \\
& \mathrm{Q} \text { is midpoint of seg PR. } \\
& \text { [From (i)] } \\
& \therefore \quad x_{2}=\frac{12+0}{2} ; y_{2}=\frac{9+11}{2} \text { [Midpoint formula] } \\
& \therefore \quad x_{2}=\frac{12}{2} ; \quad y_{2}=\frac{20}{2} \\
& \therefore \quad x_{2}=6 ; \quad y_{2}=10 \\
& \therefore \quad \mathrm{Q}(6,10)
\end{align*}
$$

P is midpoint of $\operatorname{seg} A Q$.
[From (i)]
$\therefore \quad \frac{x_{1}+x_{2}}{2}=12$ and $\frac{y_{1}+y_{2}}{2}=9$
$\therefore 6+x_{1}=24$ and $y_{1}+10=18$
$\therefore \quad x_{1}=24-6$ and $y_{1}=18-10$
$\therefore \quad x_{1}=18$ and $y_{1}=8$
$\therefore \quad \mathrm{A}(18,8)$
R is midpoint of seg $B Q$ ．
［From（i）］
$\therefore \quad \frac{x_{2}+x_{3}}{2}=0$ and $\frac{y_{2}+y_{3}}{2}=11$
$\therefore \quad x_{3}+6=0 \times 2$ and $y_{3}+10=11 \times 2$
$\therefore \quad x_{3}=0-6$ and $y_{3}=22-10$
$\therefore \quad x_{3}=-6$ and $y_{3}=12$
$\therefore \quad B(-6,12)$
（6）If $(-7,6),(8,5)$ and $(2,-2)$ are the midpoints of the sides of a triangle．Find the coordinates of its centroid．
（4 marks）

Solution ：

Let $\mathrm{A}\left(x_{1}, y_{1}\right), \mathrm{B}\left(x_{2}, y_{2}\right)$ and $\mathrm{C}\left(x_{3^{\prime}}, y_{3}\right)$ be three vertices of $\triangle \mathrm{ABC}$ ．
$\mathrm{L}(-7,6)$ is midpoint of seg AB ．
$M(8,5)$ is midpoint of seg $B C$ ．
$\mathrm{N}(2,-2)$ is midpoint of seg AC．
Let $G(x, y)$ be centroid of $\triangle A B C$ ．
L is midpoint of seg AB ．
$\therefore \quad \frac{x_{1}+x_{2}}{2}=-7$ and $\frac{y_{1}+y_{2}}{2}=6$
［Midpoint formula］
$\therefore \quad x_{1}+x_{2}=-14$ and $y_{1}+y_{2}=12$
M is midpoint of seg BC．
$\therefore \quad \frac{x_{2}+x_{3}}{2}=8$ and $\frac{y_{2}+y_{3}}{2}=5$
［Midpoint formula］
$\therefore \quad x_{2}+x_{3}=16$ and $y_{2}+y_{3}=10$
N is midpoint of seg AC．
$\therefore \quad \frac{x_{1}+x_{3}}{2}=2$ and $\frac{y_{1}+y_{3}}{2}=-2$
［Midpoint formula］
$\therefore \quad x_{1}+x_{3}=4$ and $y_{1}+y_{3}=-4$
Adding（i），（ii）and（iii）
$2 x_{1}+2 x_{2}+2 x_{3}=6$ and $2 y_{1}+2 y_{2}+2 y_{3}=18$
$\therefore x_{1}+x_{2}+x_{3}=3$ and $y_{1}+y_{2}+y_{3}=9$
$\therefore G$ is centroid of $\triangle \mathrm{ABC}$
$\therefore x=\frac{x_{1}+x_{2}+x_{3}}{3}$ and $y=\frac{y_{1}+y_{2}+y_{3}}{3}$
［Centroid formula］
$\therefore \quad x=\frac{3}{3}$ and $y=\frac{9}{3}$
$\therefore x=1$ and $y=3$
$\therefore \quad G=(1,3)$

桃路路

6．Trigonometry

（1）If $\sqrt{1+x^{2}} \sin \theta=x$ ，prove that

$$
\begin{equation*}
\tan ^{2} \theta+\cot ^{2} \theta=x^{2}+\frac{1}{x^{2}} \tag{3marks}
\end{equation*}
$$

Proof：

$$
\begin{align*}
& \sqrt{1+x^{2}} \sin \theta=x \tag{Given}\\
& \therefore \quad \sin \theta=\frac{x}{\sqrt{1+x^{2}}} \tag{i}\\
& \therefore \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \therefore \quad \frac{x^{2}}{1+x^{2}}+\cos ^{2} \theta=1 \tag{i}\\
& \therefore \cos ^{2} \theta=1-\frac{x^{2}}{1+x^{2}} \\
& \therefore \cos ^{2} \theta=\frac{1+x^{2}-x^{2}}{1+x^{2}} \\
& \therefore \cos ^{2} \theta=\frac{1}{1+x^{2}} \tag{ii}\\
& \tan ^{2} \theta=\sin ^{2} \theta \div \cos ^{2} \theta \\
& =\frac{x^{2}}{\left(1+x^{2}\right)} \div \frac{1}{\left(1+x^{2}\right)}[\text { From (i) and (ii)] } \\
& =\frac{x^{2}}{\left(1+x^{2}\right)} \times\left(1+x^{2}\right) \\
& \tan ^{2} \theta=x^{2} \tag{iii}\\
& \therefore \cot ^{2} \theta=\frac{1}{\tan ^{2} \theta} \\
& \therefore \cot ^{2} \theta=\frac{1}{x^{2}} \\
& \therefore \tan ^{2} \theta+\cot ^{2} \theta=x^{2}+\frac{1}{x^{2}} \quad \text { [Adding (iii) and (iv)] } \\
& \therefore \tan ^{2} \theta+\cot ^{2} \theta=x^{2}+\frac{1}{x^{2}}
\end{align*}
$$

（2）Prove ：$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\tan \theta+\cot \theta$
（4 marks）
Proof ：

$$
\begin{aligned}
\text { L.H.S. } & =\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta} \\
& =\left[\frac{\sin \theta}{\cos \theta} \div\left(1-\frac{\cos \theta}{\sin \theta}\right)\right]+\left[\frac{\cos \theta}{\sin \theta} \div\left(1-\frac{\sin \theta}{\cos \theta}\right)\right] \\
& =\left[\frac{\sin \theta}{\cos \theta} \div\left(\frac{\sin \theta-\cos \theta}{\sin \theta}\right)\right] \\
& \quad+\left[\frac{\cos \theta}{\sin \theta} \div\left(\frac{\cos \theta-\sin \theta}{\cos \theta}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\frac{\sin \theta}{\cos \theta} \times \frac{\sin \theta}{(\sin \theta-\cos \theta)}\right] \\
& \left.=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos \theta}{\sin \theta} \times \frac{\cos \theta}{(\cos \theta-\sin \theta)}\right] \\
& =\frac{\cos ^{2} \theta}{\sin \theta \times(-1)(\sin \theta-\cos \theta)} \\
& =\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}-\frac{\sin ^{3} \theta-\cos { }^{3} \theta}{\sin \theta(\sin \theta-\cos \theta)} \\
& =\frac{(\sin \theta-\cos \theta)\left(\sin { }^{2} \theta+\sin \theta \cos \theta+\cos ^{2} \theta\right)}{(\sin \theta-\cos \theta) \sin \theta \cdot \cos \theta} \\
& =\frac{\sin 2}{2} \theta+\sin \theta \cos \theta+\cos \theta \\
& \sin \theta \cdot \cos \theta \\
& =\frac{\sin 2}{\sin \theta \cdot \cos \theta}+\frac{\sin \theta \cos \theta}{\sin \theta \cos \theta}+\frac{\cos { }^{2} \theta}{\sin \theta \cdot \cos \theta} \\
& =\frac{\sin \theta}{\cos \theta}+1+\frac{\cos \theta}{\sin \theta}
\end{aligned}
$$

L.H.S. $=\tan \theta+1+\cot \theta$
R.H.S. $=1+\tan \theta+\cot \theta$
\therefore L.H.S. $=$ R.H.S.
(3) Prove :

$$
\sin ^{8} \theta-\cos ^{8} \theta=\left(\sin ^{2} \theta-\cos ^{2} \theta\right)\left(1-2 \sin ^{2} \theta \cos ^{2} \theta\right)
$$

(3 marks)
Proof:

$$
\begin{aligned}
& \text { L.H.S. }= \sin ^{8} \theta-\cos ^{8} \theta \\
&=\left(\sin ^{4} \theta\right)^{2}-\left(\cos ^{4} \theta\right)^{2} \\
&=\left(\sin ^{4} \theta-\cos ^{4} \theta\right)\left(\sin ^{4} \theta+\cos ^{4} \theta\right) \\
&= {\left[\left(\sin ^{2} \theta\right)^{2}-\left(\cos ^{2} \theta\right)^{2}\right]\left[\sin ^{4} \theta+\cos ^{4} \theta\right] } \\
&=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\left(\sin ^{2} \theta-\cos ^{2} \theta\right)\left[\sin ^{4} \theta\right. \\
&\left.\quad+2 \sin ^{2} \theta \cos ^{2} \theta+\cos ^{4} \theta-2 \sin ^{2} \theta \cos ^{2} \theta\right] \\
&= 1\left(\sin ^{2} \theta-\cos ^{2} \theta\right)\left[\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}\right. \\
&\left.\quad \quad \quad \quad-2 \sin ^{2} \theta \cos ^{2} \theta\right] \\
& \quad\left[\because \sin ^{2} A+\cos ^{2} A=1\right] \\
&=\left(\sin ^{2} \theta-\cos ^{2} \theta\right)\left(1^{2}-2 \sin ^{2} \theta \cos ^{2} \theta\right)
\end{aligned}
$$

L.H.S. $=\left(\sin ^{2} \theta-\cos ^{2} \theta\right)\left(1-2 \sin ^{2} \theta \cos ^{2} \theta\right)$
R.H.S. $=\left(\sin ^{2} \theta-\cos ^{2} \theta\right)\left(1-2 \sin ^{2} \theta \cos ^{2} \theta\right)$
\therefore L.H.S. $=$ R.H.S.
(4) A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks towards the building. Find the distance he walked towards the building.
(4 marks)

Solution :

$\mathrm{AB} \Rightarrow$ Building of height 30 m
$C D \Rightarrow$ First position of boy of height 1.5 m
EF \Rightarrow Second position of boy,
Let the distance travelled be $x \mathrm{~m}$.

$$
\mathrm{CD}=\mathrm{EF}=\mathrm{AG}
$$

$\therefore \quad \mathrm{EF}=\mathrm{AG}=1.5 \mathrm{~m}$

$$
\begin{equation*}
\mathrm{BG}=\mathrm{AB}-\mathrm{AG} \tag{A-G-B}
\end{equation*}
$$

$\therefore \quad B G=30-1.5 \mathrm{~m}=28.5 \mathrm{~m}$
In $\triangle \mathrm{BGF}, \angle \mathrm{BGF}=90^{\circ}$
$\therefore \tan 60^{\circ}=\frac{\mathrm{BG}}{\mathrm{GF}}$
[Definition]
$\therefore \quad \sqrt{3}=\frac{28.5}{G F}$
$\therefore \quad \mathrm{GF}=\frac{28.5}{\sqrt{3}}=\frac{28.5 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}$
$\therefore \mathrm{GF}=9.5 \sqrt{3} \mathrm{~m}$
In $\triangle B G D, \angle B G D=90^{\circ}$
$\therefore \tan 30^{\circ}=\frac{\mathrm{BG}}{\mathrm{GD}}$
$\therefore \quad \frac{1}{\sqrt{3}}=\frac{28.5}{\mathrm{GD}}$
$\therefore \mathrm{GD}=28.5 \sqrt{3} \mathrm{~m}$

$$
\begin{equation*}
\mathrm{AC}=\mathrm{GD}, \mathrm{GF}=\mathrm{AE} \tag{ii}
\end{equation*}
$$

$\therefore \quad \mathrm{AC}=28.5 \sqrt{3}, \mathrm{AE}=9.5 \sqrt{3}$
[From (i), (ii) and (iii)]

$$
\begin{equation*}
\mathrm{AC}=\mathrm{AE}+\mathrm{CE} \tag{A-E-C}
\end{equation*}
$$

$\therefore 28.5 \sqrt{3}=x+9.5 \sqrt{3}$
$\therefore x=28.5 \sqrt{3}-9.5 \sqrt{3}$
$\therefore \quad x=19 \sqrt{3} \mathrm{~m}$
\therefore Distance he walked towards the building is $19 \sqrt{3} \mathrm{~m}$.
(4) Prove :
$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A$ $+\cot ^{2} \mathrm{~A}$.
(4 marks)
Proof:
L.H.S. $=(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}$

$$
\begin{aligned}
&= \sin ^{2} \mathrm{~A}+2 \sin \mathrm{~A} \cdot \operatorname{cosec} \mathrm{~A}+\operatorname{cosec}^{2} \mathrm{~A} \\
&+\cos ^{2} \mathrm{~A}+2 \cos \mathrm{~A} \sec \mathrm{~A}+\sec ^{2} \mathrm{~A} \\
&= \sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}+2 \sin \mathrm{~A} \frac{1}{\sin \mathrm{~A}}+2 \cos \mathrm{~A} \\
& \frac{1}{\cos \mathrm{~A}}+\operatorname{cosec}^{2} \mathrm{~A}+\sec ^{2} \mathrm{~A} \\
&= 1+2+2+\left(1+\cot ^{2} \mathrm{~A}\right)+\left(1+\tan ^{2} \mathrm{~A}\right) \\
& {\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1,\right.} \\
& \operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta, \\
&\left.\sec ^{2} \theta=1+\tan ^{2} \theta\right]
\end{aligned}
$$

$$
=5+1+\cot ^{2} \mathrm{~A}+1+\tan ^{2} \mathrm{~A}
$$

L.H.S. $=7+\cot ^{2} \mathrm{~A}+\tan ^{2} \mathrm{~A}$
R.H.S. $=7+\tan ^{2} \mathrm{~A}+\cot ^{2} \mathrm{~A}$
L.H.S. $=$ R.H.S.

$$
\therefore \quad \begin{aligned}
& (\sin \mathbf{A}+\operatorname{cosec} \mathbf{A})^{2}+(\cos \mathbf{A}+\sec \mathbf{A})^{2} \\
& =7+\tan ^{2} \mathbf{A}+\cot ^{2} A .
\end{aligned}
$$

(5) Prove that :

$$
\frac{1-\sin \theta \cos \theta}{\cos \theta(\sec \theta-\operatorname{cosec} \theta)} \times \frac{\sin ^{2} \theta-\cos ^{2} \theta}{\sin ^{3} \theta+\cos ^{3} \theta}=\sin \theta
$$

(4 marks)
Proof:

$$
\begin{aligned}
\text { L.H.S. }= & \frac{1-\sin \theta \cos \theta}{\cos \theta(\sec \theta-\operatorname{cosec} \theta)} \times \frac{\sin ^{2} \theta-\cos ^{2} \theta}{\sin ^{3} \theta+\cos ^{3} \theta} \\
= & \frac{1-\sin \theta \cos \theta}{\cos \theta\left(\frac{1}{\cos \theta}-\frac{1}{\sin \theta}\right)} \times \\
& \frac{(\sin \theta+\cos \theta)(\sin \theta-\cos \theta)}{(\sin \theta+\cos \theta)\left(\sin ^{2} \theta-\sin \theta \cos \theta+\cos ^{2} \theta\right)} \\
= & \frac{(1-\sin \theta \cos \theta)}{\cos \theta\left(\frac{\sin \theta-\cos \theta}{\sin \theta \cdot \cos \theta}\right)} \times \frac{(\sin \theta-\cos \theta)}{(1-\sin \theta \cdot \cos \theta)} \\
= & \frac{1}{\frac{(\sin \theta-\cos \theta)}{\sin \theta} \times\left(\sin \sin ^{2} A+\cos ^{2} A=1\right]}
\end{aligned}
$$

L.H.S. $=\sin \theta$
R.H.S. $=\sin \theta$
\therefore L.H.S. $=$ R.H.S.
(6) Prove that :

$$
\frac{\tan \mathbf{A}}{\sec \mathbf{A}-\mathbf{1}}+\frac{\tan \mathbf{A}}{\sec \mathbf{A}+\mathbf{1}}=2 \operatorname{cosec} \mathbf{A} \quad(4 \text { marks })
$$

Proof:

$$
\begin{aligned}
\text { L.H.S. } & =\frac{\tan A}{\sec A-1}+\frac{\tan A}{\sec A+1} \\
& =\tan A\left[\frac{1}{\sec A-1}+\frac{1}{\sec A+1}\right] \\
& =\tan A\left[\frac{\sec A+1+\sec A-1}{(\sec A-1)(\sec A+1)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\tan \mathrm{A} \times \frac{2 \sec \mathrm{~A}}{\left(\sec ^{2} \mathrm{~A}-1\right)} \\
& =\tan \mathrm{A} \times \frac{2 \sec \mathrm{~A}}{\tan ^{2} \mathrm{~A}} \quad\left[\because 1+\tan ^{2} \theta=\sec ^{2} \theta,\right. \\
& \therefore \tan ^{2} \theta=\sec ^{2} \theta-1 \text {] } \\
& =2 \sec \mathrm{~A} \div \tan \mathrm{A} \\
& =\frac{2}{\cos \mathrm{~A}} \div \frac{\sin \mathrm{A}}{\cos \mathrm{~A}} \\
& =\frac{2}{\cos \mathrm{~A}} \times \frac{\cos \mathrm{A}}{\sin \mathrm{~A}} \\
& =\frac{2}{\sin \mathrm{~A}}
\end{aligned}
$$

L.H.S. $=2 \operatorname{cosec} A$
R.H.S. $=2 \operatorname{cosec} A$
\therefore L.H.S. $=$ R.H.S.
(7) From the top of a light house, 80 metres high, two ships on the same side of light house are observed. The angles of depression of the ships as seen from the light house are found to be of 45° and 30°. Find the distance between the two ships. (Assume that the two ships and the bottom of the lighthouse are in a line)
(4 marks)
Solution :

In the above figure, AB represents lighthouse of height $80 \mathrm{~m} . \mathrm{D}$ and C are positions of two ships.

$$
\angle E A D \text { and } \angle E A C \text { are angles of depression. }
$$

$\angle E A D=30^{\circ}$ and $\angle E A C=45^{\circ} \quad$ [Given]
$\therefore \quad \angle \mathrm{ADB}=30^{\circ}$ and $\angle \mathrm{ACB}=45^{\circ}$
[Alternate angles]
In $\triangle \mathrm{ABD}, \angle \mathrm{B}=90^{\circ}$
$\therefore \tan \angle \mathrm{ADB}=\frac{\mathrm{AB}}{\mathrm{BD}}$
[Definition]
$\therefore \tan 30^{\circ}=\frac{80}{B D}$
[From (i)]
$\therefore \quad \frac{1}{\sqrt{3}}=\frac{80}{\mathrm{BD}}$
$\therefore \quad \mathrm{BD}=80 \sqrt{3} \mathrm{~m}$
In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}$
$\therefore \tan \angle \mathrm{ACB}=\frac{\mathrm{AB}}{\mathrm{BC}}$
[Definition]
$\therefore \tan 45^{\circ}=\frac{80}{B C}$
$\therefore 1=\frac{80}{B C}$
$\therefore \quad B C=80 \mathrm{~m}$
$\therefore \quad \mathrm{BD}=\mathrm{BC}+\mathrm{CD}$
$\therefore 80 \sqrt{3}=80+C D$
$\therefore \mathrm{CD}=80 \sqrt{3}-80$
$\therefore C D=80(\sqrt{3}-1) \mathrm{m}$
\therefore The distance between the two ships is $80(\sqrt{3}-1) \mathrm{m}$.
(8) If $a \cos \theta+b \sin \theta=m$ and $a \sin \theta-b \cos \theta=n$, then prove that $a^{2}+b^{2}=m^{2}+n^{2}$
(4 marks)
Proof:

$$
\begin{align*}
& m=a \cos \theta+b \sin \theta \\
\therefore & m^{2}=(a \cos \theta+b \sin \theta)^{2} \\
\therefore & m^{2}=a^{2} \cos ^{2} \theta+2 a b \cos \theta \sin \theta+b^{2} \sin ^{2} \theta \\
\therefore & \mathrm{~m}^{2}=\mathrm{a}^{2} \cos ^{2} \theta+2 \mathrm{ab} \sin \theta \cos \theta+\mathrm{b}^{2} \sin ^{2} \theta \quad \ldots \text { (i) } \\
& \mathrm{n}=\mathrm{a} \sin \theta-\mathrm{b} \sin \theta \\
\therefore & \mathrm{n}^{2}=(\mathrm{a} \sin \theta-\mathrm{b} \cos \theta)^{2} \\
\therefore & \mathrm{n}^{2}=\mathrm{a}^{2} \sin ^{2} \theta-2 \mathrm{ab} \sin \theta \cos \theta+\mathrm{b}^{2} \cos ^{2} \theta \quad \ldots \text { (ii) } \\
\therefore & \mathrm{m}^{2}+\mathrm{n}^{2}=\mathrm{a}^{2} \cos ^{2} \theta+2 \mathrm{ab} \sin \theta \cos \theta+\mathrm{b}^{2} \sin ^{2} \theta \tag{ii}\\
& +\mathrm{a}^{2} \sin ^{2} \theta-2 \mathrm{ab} \sin \theta \cos \theta+\mathrm{b}^{2} \cos ^{2} \theta \\
& \mathrm{~m}^{2}+\mathrm{n}^{2}=\mathrm{a}^{2} \sin ^{2} \theta+\mathrm{a}^{2} \cos ^{2} \theta+\mathrm{b}^{2} \sin ^{2} \theta \\
& +\mathrm{b}^{2} \cos ^{2} \theta \\
\therefore & \mathrm{~m}^{2}+\mathrm{n}^{2}=\mathrm{a}^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\mathrm{b}^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
\therefore & \mathrm{m}^{2}+\mathrm{n}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2} \quad \quad\left(\because \sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1\right]
\end{align*}
$$

(9) If $\sqrt{3} \tan \theta=3 \sin \theta$, find the value of $\sin ^{2} \theta-\cos ^{2} \theta$, where $\theta \neq 0$.

> (4 marks)

Solution :

$$
\begin{aligned}
& \sqrt{3} \tan \theta=3 \sin \theta \\
\therefore & \frac{\tan \theta}{\sin \theta}=\frac{3}{\sqrt{3}} \\
\therefore & \frac{\sin \theta}{\cos \theta} \div \sin \theta=\frac{\sqrt{3} \times \sqrt{3}}{\sqrt{3}} \\
\therefore & \frac{\sin \theta}{\cos \theta} \times \frac{1}{\sin \theta}=\sqrt{3} \\
\therefore & \frac{1}{\cos \theta}=\sqrt{3} \\
\therefore & \cos \theta=\frac{1}{\sqrt{3}} \\
\therefore & \cos ^{2} \theta=\frac{1}{3} \\
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
\therefore & \sin ^{2} \theta+\frac{1}{3}=1
\end{aligned}
$$

$$
\begin{align*}
& \therefore \sin ^{2} \theta=1-\frac{1}{3} \\
& \therefore \sin ^{2} \theta=\frac{3-1}{3}=\frac{2}{3} \tag{ii}\\
& \therefore \sin ^{2} \theta-\cos ^{2} \theta=\frac{2}{3}-\frac{1}{3} \quad \text { [From (i) and (ii)] } \\
& \therefore \sin ^{2} \theta-\cos ^{2} \theta=\frac{1}{3}
\end{align*}
$$

(10) Prove that:

$$
\left(1+\frac{1}{\tan ^{2} A}\right)\left(1+\frac{1}{\cot ^{2} A}\right)=\frac{1}{\sin ^{2} A-\sin ^{4} A}
$$

(4 marks)
Proof: :

$$
\begin{aligned}
& \text { L.H.S. }=\left(1+\frac{1}{\tan ^{2} \mathrm{~A}}\right)\left(1+\frac{1}{\cot ^{2} \mathrm{~A}}\right) \\
&=\left(1+\cot ^{2} \mathrm{~A}\right)\left(1+\tan ^{2} \mathrm{~A}\right) \\
&=\operatorname{cosec}^{2} \mathrm{~A} \cdot \sec ^{2} \mathrm{~A} \\
&=\frac{1}{\sin ^{2} \mathrm{~A} \cdot \cos ^{2} \mathrm{~A}} \\
&=\frac{1}{\sin ^{2} \mathrm{~A}\left(1-\sin ^{2} \mathrm{~A}\right)} \quad \quad \quad \therefore \sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1 \\
& \text { L.H.S. }=\frac{1}{\sin ^{2} \mathrm{~A}-\sin ^{4} \mathrm{~A}} \\
& \text { R.H.S. }=\frac{1}{\sin ^{2} \mathrm{~A}-\sin ^{4} \mathrm{~A}} \\
& \therefore \quad \text { L.H.S. }=\text { R.H.S. }
\end{aligned}
$$

为 (

7. Mensuration

(1) A tin maker converts a cubical metallic box into 10 cylindrical tins. Side of the cube is 50 cm and radius of the cylinder is 7 cm . Find the height of each cylinder so made if the wastage incurred was $12 \% .\left(\pi=\frac{22}{7}\right)$
(4 marks)
Solution :
Total surface area of cube $=6 l^{2}$
(Formula)

$$
\begin{aligned}
& =6 \times 50 \times 50 \\
& =15000 \mathrm{~cm}^{2} \\
& =12 \% \text { of } 15000 \\
& =\frac{12}{100} \times 15000 \\
& =1800 \mathrm{~cm}^{2}
\end{aligned}
$$

Wastage incurred
\therefore Area of metal sheet

$$
\text { used to make } 10
$$

$$
\text { cylindrical tins } \quad=15000-1800
$$

$$
=13,200 \mathrm{~cm}^{2}
$$

\therefore Area of metal sheet
used to make 1 cylindrical tin $\quad=\frac{13200}{10}=1,320 \mathrm{~cm}^{2}$
\therefore Area of metal sheet $=$ Total surface area required to make 1 of a cylinder cylindrical tin
\therefore Total surface area $=1,320$ of a cylinder
$\therefore 2 \pi r(r+h)=1,320$
$\therefore 2 \times \frac{22}{7} \times 7 \times(7+h)=1,320$
$\therefore 7+h \quad=\frac{1320}{44}$
$\therefore h \quad=30-7$
$\therefore h=23 \mathrm{~cm}$
$\therefore \quad$ Height of each cylinder $=23 \mathrm{~cm}$
(2) The three faces, A, B, C having a common vertex of a cuboid have areas $450 \mathrm{~cm}^{2}, 600 \mathrm{~cm}^{2}$ and $300 \mathrm{~cm}^{2}$ respectively. Find the volume of the cuboid.
(4 marks)

Solution :

Area of surface $A=450 \mathrm{~cm}^{2}$
$\therefore l \times h=450 \mathrm{~cm}^{2}$
Area of surface $B=600 \mathrm{~cm}^{2}$
$\therefore l \times b=600 \mathrm{~cm}^{2}$
Area of surface $C=300 \mathrm{~cm}^{2}$
$\therefore b \times h=300 \mathrm{~cm}^{2}$
Multiplying (1), (2) and (3),

$$
\begin{align*}
& l^{2} \times b^{2} \times h^{2}
\end{align*}=600 \times 450 \times 300, ~=300 \times 2 \times 450 \times 300 ~\left(\begin{array}{ll}
\therefore \quad l^{2} \times b^{2} \times h^{2} & =300 \times 900 \times 300 \\
& =30 \times 30 \\
\therefore \quad l^{2} \times b^{2} \times h^{2} & =300 \times 300 \times 30 \times 30 \\
\therefore \quad l \times b \times h & =300 \times 30 \quad \text { [Taking square roots] } \\
\therefore \quad l \times b \times h & =9000 \mathrm{~cm}^{3}
\end{array}\right.
$$

Volume of cuboid $=l \times b \times h$
$\therefore \quad$ Volume of cuboid $=9000 \mathrm{~cm}^{3}$
(3) Oil tins of cuboidal shape are made from a metallic sheet with length 8 m and breadth 4 m . Each tin has dimensions $60 \times 40 \times 20 \mathrm{in} \mathrm{cm}$ and is open from the top. Find the number of such tins that can be made?
(4 marks)

Solution :

Area of metallic sheet $=8 \mathrm{~m} \times 4 \mathrm{~m}$
$\therefore \quad$ Area of metallic sheet $=800 \mathrm{~cm} \times 400 \mathrm{~cm}$
Total surface area of a tin $=2(l+b) \times h+l \times b$
\therefore Total surface area of a tin

$$
\begin{align*}
& =2(60+40) \times 20+60 \times 40 \\
& =2 \times 100 \times 20+2400 \\
& =4000+2400 \tag{2}
\end{align*}
$$

Total surface area of a tin $=6400 \mathrm{~cm}^{2}$
Number of tins can be made

$$
=\frac{\text { Area of metallic sheet }}{\text { Total surface area of open tin }}
$$

$$
=\frac{800 \times 400}{6400}
$$

$\therefore \quad$ Number of tins can be made $=50$
(4) Plastic drum of cylindrical shape is made by melting spherical solid plastic balls of radius 1 cm . Find the number of balls required to make a drum of thickness 2 cm , height 90 cm and outer radius 30 cm .
(4 marks)

Solution :

For drum, thickness $=2 \mathrm{~cm}$
Inner radius $\left(r_{\mathrm{i}}\right)=$ outer radius $\left(r_{\mathrm{o}}\right)-2$
$\therefore \quad r_{i}=30-2=28 \mathrm{~cm}$
Inner height $\left(h_{i}\right) \quad=$ Outer height $\left(h_{\mathrm{o}}\right)-2$
$\therefore h_{i} \quad=90-2=88 \mathrm{~cm}$
Volume of plastic $\left(\mathrm{V}_{1}\right)=$ Volume of - Volume of required for outer inner cylindrical drum cylinder cylinder

$$
\begin{align*}
& =\pi r_{0}{ }^{2} h_{0}-\pi r_{\mathrm{i}}{ }^{2} h_{\mathrm{i}} \\
& =\pi\left[30^{2} \times 90-28^{2} \times 88\right] \\
& =\pi[900 \times 90-784 \times 88] \\
& =\pi[81,000-68,992] \\
\therefore \mathrm{V}_{1} \quad & =12008 \pi \mathrm{~cm}^{3} \tag{1}
\end{align*}
$$

Volume of one plastic ball $\left(\mathrm{V}_{2}\right)=\frac{4}{3} \pi r^{3}$

$$
\begin{align*}
& =\frac{4}{3} \times \pi \times 1^{3} \\
\left(\mathrm{~V}_{2}\right) & =\frac{4}{3} \pi \tag{2}
\end{align*}
$$

Number of plastic balls required to make the drum

$$
=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}
$$

$$
=\frac{12008 \square}{\frac{4}{3} \square}[\operatorname{From}(1) \text { and }(2)]
$$

$$
=12008 \times \frac{3}{4}
$$

$$
=3002 \times 3
$$

$$
=9006
$$

$\therefore \quad$ Number of plastic balls required to make the cylindrical drum is 9006.
(5) Water drips from a tap at the rate of 4 drops in every 3 seconds. Volume of one drop of $0.4 \mathrm{~cm}^{3}$. If dripped water is collected in a cylinder vessel of height 7 cm and diameter is 8 cm . In what time vessel be completely filled? What is the volume of water collected? How many such vessels will be completely filled in 3 hours in 40 minutes?
(4 marks)

Solution :

Volume of water collected

$$
\begin{aligned}
& =\text { Volume of cylindrical vessel } \\
& =\pi r^{2} h \\
& =\frac{22}{7} \times 4 \times 4 \times 7
\end{aligned}
$$

Volume of water collected $\left(\mathrm{V}_{1}\right)=352 \mathrm{~cm}^{3}$
Volume of 1 drop of water $=0.4 \mathrm{~cm}^{3}$
Volume of 4 drops of water $=4 \times 0.4=1.6 \mathrm{~cm}^{3}$
4 drops drips in 3 seconds
\therefore Volume of water dripped in 3 seconds $=1.6 \mathrm{~cm}^{3}$
\therefore Volume of water dripped in 1 seconds $\left(\mathrm{V}_{2}\right)$

$$
=\frac{1.6}{3} \mathrm{~cm}^{3}
$$

\therefore Volume of time required to fill the cylindrical vessel $=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}$

$$
=352 \div \frac{1.6}{3}
$$

$$
=352 \times \frac{3}{16} \times 10
$$

$$
=660 \text { seconds }
$$

$$
=11 \text { minutes }
$$

3 hours and 40 minutes $=(3 \times 60+40) \mathrm{min}$

$$
=220 \mathrm{~min}
$$

Number of vessels that can be completely $=\frac{220}{11}$
filled

$$
=20
$$

$\therefore \quad 20$ vessels can be filled in 3 hours and 40 minutes.
(6) A cone and a hemisphere have equal bases and equal volumes. Find the ratio of their heights.
(3 marks)

Solution :

As cone and hemisphere have equal bases and they have equal radii.
Let the radius of each be r

For cone height $=h_{1}$
For hemisphere height $\left(h_{2}\right)=r$
Volume of cone $=$ Volume of hemisphere
(Given)
$\therefore \frac{1}{3} \pi r^{2} h_{1}=\frac{2}{3} \pi r^{3}$
$\therefore \frac{1}{3} \pi r^{2} h_{1}=\frac{2}{3} \pi r^{2} \times r$
$\therefore \frac{1}{3} \pi r^{2} \times h_{1}=\frac{2}{3} \pi r^{2} \times h_{2}$
[From (2)]
$\therefore \frac{h_{1}}{h_{2}} \quad=\frac{2}{3} \pi r^{2} \times \frac{3}{1} \times \frac{1}{\pi r^{2}}$
$\therefore \frac{h_{1}}{h_{2}} \quad=\frac{2}{1}$
\therefore Ratio of heights of cone and hemisphere =2:1.
(7) A sphere and a cube have the same surface area. Show that the ratio of the volume of the sphere to that of cube is $\sqrt{6}: \sqrt{\pi}$.
(4 marks)
Solution :
Surface area of sphere $=4 \pi r^{2}$
Surface area of cube $=6 l^{2}$
Surface area of sphere $=$ Surface area of cube
(Given)
$\therefore 4 \pi r^{2}=6 l^{2} \quad$ [From (1) and (2)]
$\therefore \frac{r^{2}}{l^{2}}=\frac{6}{4 \pi}$
$\therefore \frac{r}{l}=\frac{\sqrt{6}}{2 \sqrt{\pi}} \quad \ldots$ [Taking square roots]
$\therefore \frac{r^{3}}{l^{3}}=\frac{\sqrt{6} \times \sqrt{6} \times \sqrt{6}}{2 \times 2 \times 2 \times \sqrt{\pi} \times \sqrt{\pi} \times \sqrt{\pi}}$
$\therefore \frac{r^{3}}{l^{3}}=\frac{6 \sqrt{6}}{8 \pi \sqrt{\pi}}$
Volume of sphere $=\frac{4}{3} \pi r^{3}$
Volume of cube $=l^{3}$
$\frac{\text { Volume of sphere }}{\text { Volume of cube }}=\frac{4 \pi r^{3}}{3 \times l^{3}}$

$$
=\frac{4}{3} \times \pi \times \frac{3 \sqrt{6}}{4 \pi \sqrt{\pi}}
$$

[From (3)]
$=\frac{\sqrt{6}}{\sqrt{\pi}}$
$\therefore \quad$ Ratio of volume of sphere and cube is $\sqrt{6}: \sqrt{\pi}$.
（8）₹ 5 coins were made by melting a solid cuboidal block of metal with dimensions $16 \times 11 \times 10 \mathrm{in} \mathrm{cm}$ ． How many coins of thickness 2 mm and diameter 2 cm can be made．（ $\pi=\frac{22}{7}$ ）
（3 marks）

Solution ：

For cylindrical coin，
height $(h)=2 \mathrm{~mm}=\frac{2}{10} \mathrm{~cm}$
Diameter $=2 \mathrm{~cm} \quad \therefore$ Radius $(r)=1 \mathrm{~cm}$
For cuboidal block，
$l_{1}=16 \mathrm{~cm}, b_{1}=11 \mathrm{~cm}$ and $h_{1}=10 \mathrm{~cm}$
Number of coins can be made

$$
\begin{aligned}
& =\frac{\text { Volume of cuboid }}{\text { Volume of a coin }} \\
& =\frac{l_{1} \times b_{1} \times h_{1}}{\pi r^{2} h} \\
& =\frac{16 \times 11 \times 10}{\frac{22}{7} \times 1^{2} \times \frac{2}{10}} \\
& =\frac{7 \times 16 \times 11 \times 10 \times 10}{22 \times 2}
\end{aligned}
$$

$\therefore \quad$ Number of coins made $=2800$
（9）If the radius of a sphere is doubled，what will be the ratio of its surface area and volume as to that of the first sphere？
（4 marks）

Solution ：

Let r_{1} be the radius of first sphere and r_{2} be the radius of second sphere．
$r_{2}=2 \times r_{1}$
．．．（1）［Given］
Let S_{1} and S_{2} be the surface areas of first and second sphere．
$\therefore \mathrm{S}_{1}=4 \pi r_{1}{ }^{2}$
$\therefore S_{2}=4 \pi r_{2}{ }^{2}$
$\therefore S_{2}=4 \pi \times\left(2 r_{1}\right)^{2}$
$\therefore \mathrm{S}_{2}=4 \pi \times 4 \times r_{1}{ }^{2}$
$\therefore S_{2}=4 \times 4 \pi r_{1}{ }^{2}$
$\therefore \mathrm{S}_{2}=4 \times \mathrm{S}_{1}$
［From（2）］
$\therefore \frac{\mathrm{S}_{2}}{\mathrm{~S}_{1}}=4$
Let V_{1} and V_{2} be the volumes of first and second sphere respectively．
$\therefore \mathrm{V}_{1}=\frac{4}{3} \pi r_{1}{ }^{3}$
$\therefore \mathrm{V}_{2}=\frac{4}{3} \pi r_{2}{ }^{3}$
$\therefore \mathrm{V}_{2}=\frac{4}{3} \pi\left(2 r_{1}\right)^{3}$
［From（1）］
$\therefore \mathrm{V}_{2}=\frac{4}{3} \times \pi \times 8 \times r_{1}{ }^{3}$
$\therefore \mathrm{V}_{2}=8 \times \frac{4}{3} \pi r_{1}{ }^{3}$
$\therefore \mathrm{V}_{2}=8 \times \mathrm{V}_{1}$
［From（3）］
$\therefore \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=8$
$\therefore \quad$ Ratio of surface area is $4: 1$ and the ratio of volume is $8: 1$ ．

Model Activity Sheet - 1

Time : 2 Hrs.
Marks : 40
Q.1. (A) Solve the following questions. (Any 4)
(1)

In the adjoining figure, line $l \|$ line m and line n is the transversal. $\angle a=100^{\circ}$. Find measure of $\angle c$
(2) Write the converse of the statement. 'The diagonals of a rectangle are congruent'. Is the converse statement true?
(3)

' $\triangle \mathrm{PQR} \cong \Delta \mathrm{XYZ}$. [Hypotenuse side test]'
With respect to adjoining figure
Is the above statement true? If no, then correct it.
(4) 'Two pairs of sides of which of the following quadrilaterals are equal?

Kite, Isosceles trapezium, Rectangle.
(5) A line is parallel to X axis is at a distance of 4 units from X - axis. Write possible equations for this line.
(6) Find $\tan \theta$ if $\sin \theta=\frac{4}{5}$ and $5 \times \cos \theta=3$.
Q.1. (B) Solve the following: (Any 2)
(1) Total surface area of a cuboid is 400 cm . Height of the cuboid is 20 cm . Find the perimeter of the base of the cuboid.
(2) Draw an equilateral $\Delta \mathrm{ABC}$ with side measuring 5 cm . Find its incentre.
(3) In $\triangle P Q R, \angle P=40^{\circ}, \angle \mathrm{R}=\angle \mathrm{P}+10^{\circ}$. State the longest side of $\triangle \mathrm{PQR}$ giving reason.

Q.2. (A) Choose the correct alternative:

(1) Out of the dates given below which date constitutes a pythagorean triplet?
(A) $15 / 08 / 17$
(B) $16 / 08 / 17$
(C) $3 / 5 / 17$
(D) $4 / 9 / 15$
(2) $\sin 35 \times \cos 55=$ \qquad
(A) Not possible to find
(B) $\tan 55$
(C) $\cot 35$
(D) 1
(3) If $\mathrm{A}=r^{2}\left[\frac{\pi \theta}{360}-\frac{\sin \theta}{2}\right]$ the A in the formula is \qquad
(A) Length of an arc
(B) Area of circle
(C) Area of sector
(D) Area of a segment
(4) Slope of a line parallel to X axis is
(A) 1
(B) 0
(C) Not defined
(D) None of the above.
(B) Solve the following: (Any 2)
(1) A circle with centre ' O ' and radius 12 cm has a chord $\mathrm{AB} . \angle \mathrm{AOB}=30^{\circ}$. Find $\mathrm{A}(\triangle \mathrm{AOB})$.
(2)

Using the information in the adjoining figure, prove $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.
(3)

In the adjoining figure, ray $P Q$ touches the circle at point Q. Line $P R S$ is a secant, If $P Q=12, P R=8$ then find $P S$ and $R S$
Q.3. (A) Complete the following activities: (Any 2)
(1)

Using the information in the given diagram, complete the following activity.

In $\triangle \mathrm{ABC}, \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=\square$

$$
\therefore \quad \angle \mathrm{A}=\square-\square=\square
$$

$\therefore \quad \triangle \mathrm{ABC}$ is - - triangle.
Applying theorem
$\mathrm{AB}=\frac{\square}{\square} \times \mathrm{AC}$
$\therefore \quad \mathrm{AC}=\square$ unit.
(2)

Proof: In $\triangle A B C$, ray $B D$ bisects $\angle B$

$$
\therefore \quad \frac{\mathrm{AB}}{\square}=\frac{\mathrm{AD}}{\mathrm{DC}}
$$

..... (1) [Angle bisector property]
In $\triangle \mathrm{ABC}$, Side DE II Side BC

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{AE}}{\square}=\frac{\mathrm{AD}}{\mathrm{DC}} \\
\therefore & \frac{\mathrm{AB}}{\square}=\frac{\mathrm{AE}}{\square}
\end{array}
$$

..... (2) [By Basic Proportionality theorem]
.... From (1) and (2)
(3)

In the adjoining figure, A is the centre of the circle. Point D is in the exterior of the circle. Line DP and Line DQ are tangents at points P and Q respectively. Prove that $D P=D Q$.

Proof:

$$
\begin{aligned}
& \text { In } \triangle \mathrm{PAD} \text { and } \triangle \mathrm{QAD} \\
& \operatorname{Seg} \mathrm{PA} \cong \operatorname{Seg} \square \\
& \text { [Radii of the same circle] }
\end{aligned}
$$

MODEL ACTIVITY SHEET - 2

Time : 2 Hrs.
Marks : 40
Q.1. (A) Solve the following questions. (Any 4)
(1)

In the adjoining figure, line n is transversal of line l and line m $\angle x=140^{\circ}, \angle y=40^{\circ}$. Is line $l \mathrm{II}$ line m ?
(2) Write the converse of the statement. 'Diagonals of a rhombus bisects the opposite angles'. Is the converse statement true?
(3)

C Using the given information,
prove $\triangle \mathrm{ABQ} \cong \Delta \mathrm{PBC}$
(4) State the equation of (a) X- axis (b) Y-axis
(5) Find the value of $2 \sin 45 \cdot \cos 45$
(6) $\mathrm{D} \sim \mathrm{If} \angle \mathrm{ADC}=80^{\circ}$ then $\angle \mathrm{CBE}=$?
Q.1. (B) Solve the following questions: (Any 2)
(1) Area of a circle is $154 \mathrm{~cm}^{2}$. Find its circumcircle.
(2) Draw a $\triangle \mathrm{ABC}$ such that $\mathrm{AC}=10 \mathrm{~cm}, \mathrm{AB}=6 \mathrm{~cm}$ and $\mathrm{BC}=8 \mathrm{~cm}$. Find its circumcentre.
(3) In $\triangle A B C$, points M and N are midpoints of side $A B$ and side $A C$ respectively, If $M N=5 \mathrm{~cm}$, then find $B C$.
Q.2. (A) Choose the correct alternative:
(1) In $\triangle A B C, A B=6 \sqrt{3}, A C=12 \mathrm{~cm}, B C=6 \mathrm{~cm}$. Find the measure of $\angle A$
(A) 30
(B) 60
(C) 90
(D) 45
(2) If $\cot \theta=\frac{10}{24}$, then $24 \cos \theta-10 \sin \theta=$?
(A) $\frac{26}{10}$
(B) $\frac{10}{26}$
(C) 0
(D) 1
(3) The perimeter of a sector of a circle with its measure 90° and radius 7 cm is \qquad
(A) 44 cm
(B) 25 cm
(C) 36 cm
(D) 56 cm
(4) Slope of a line parallel to Y axis is
(A) zero
(B) cannot be determined
(C) Positive
(D) Negative.
(B) Solve the following questions: (Any 2)
(1) The area of a minor sector of a circle is $3.85 \mathrm{~cm}^{2}$ and the measure of its central angle is 36°. Find the radius of the circle.
(2)

In the adjoining figure, seg $\mathrm{DE} \|$ side $\mathrm{AB} . \mathrm{AD}=5, \mathrm{DC}=3$ and $B C=6.4$. Find $B E$.
(3)

Q.3. (A) Complete the following activities: (Any 2)
(1)

Proof: In $\triangle \mathrm{ADC}, \angle \mathrm{ADC}=90^{\circ}$

$$
\begin{array}{lll}
\therefore & \square=\square+\square & \text { [Pythagoras Theorem) } \\
\therefore & \mathrm{AD}^{2}=\square-\square & \ldots . .(1) \tag{1}
\end{array}
$$

In $\triangle \mathrm{ADB}, \angle \mathrm{ADB}=90^{\circ}$

$$
\begin{array}{lll}
\therefore & \square=\square+\square & \text { [Pythagoras Theorem) } \\
\therefore & \mathrm{AD}^{2}=\square-\square & \cdots . .(2)
\end{array}
$$

$$
\therefore \quad \square-\square=\square-\square
$$

$$
\therefore \quad \mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}
$$

(2) To prove that "The ratio of the intercepts made on a transversal by three parallel lines is equal to the ratio of the corresponding intercepts made on any other transversal by the same parallel lines". Complete the following instructions.
(a) Draw 3 parallel lines and 2 transversals. Name these 5 lines. Also name 6 points of intersection.
(b) Write 'given' and 'to prove' from the figure drawn.
(3)

Given : (1) A circle with centre B.
(2) Arc APC $\cong \operatorname{Arc} D Q E$

To Prove: chord AC \cong chord $D E$
Complete the following activity for the proof.
Proof: In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBE}$

$$
\begin{array}{lll}
& \text { side } \mathrm{AB} \cong \text { side } \mathrm{DB} & {[\square]} \\
& \text { side } \square \cong \text { side } \square & {[\square]} \\
& \angle \mathrm{ABC} \cong \angle \mathrm{DBE} & {[\text { Measures of congruent arcs] }} \\
\therefore & \triangle \mathrm{ABC} \cong \triangle \mathrm{DBE} & {[\square \text { Test] }}
\end{array}
$$

(B) Solve the following questions: (Any 2)
(1) Draw a circle of radius 3.6 cm . Draw a tangent to the circle at any point on it without using the centre.
(2) Find k, if $R(1,-1), S(-2, k)$ and slope of line RS is -2 .
(3) Eliminate θ if $a \sin \theta=x$ and $b \cos \theta=y$
Q.4. Solve the following questions: (Any 3)
(1) A storm broke a tree and the treetop rested 20 m from the base of the tree, making an angle of 60° with the horizontal. Find the height of the tree.
(2) The dimensions of a cuboid are $44 \mathrm{~cm}, 21 \mathrm{~cm}$. It is melted and a cone of height 24 cm is made. Find the radius of its base.
(3) $\triangle \mathrm{ATM} \sim \triangle \mathrm{AHE}$. In $\triangle \mathrm{AMT}, \mathrm{AM}=6.3 \mathrm{~cm}, \angle \mathrm{TAM}=50^{\circ}$, and $\mathrm{AT}=5.6 \mathrm{~cm} \cdot \frac{\mathrm{AM}}{\mathrm{AH}}=\frac{7}{5}$. Construct $\triangle \mathrm{AHE}$.
(4)

In trapezium $A B C D$, side $A B \|$ side $D C$. Diagonals $A C$ and $B D$ meet in O. If $A B=20, D C=6, O B=15$. Find $O D$.
Q.5. Solve the following questions: (Any 1)
(1)

In the adjoining figure, seg EF is the diameter of the circle with centre H . Line DE is tangent at point E . If r is the radius of the circle, then prove that $\mathrm{DE} \times \mathrm{GE}=4 r^{2}$
(2)

In the adjoining diagras, seg BD and seg CE are altitudes.
Prove that (i) \square AEFD is cyclic quadrilateral
(ii) Points B, E, D, C are non-cyclic points.
(3)

A line cuts two sides $A B$ and $A C$ of $\triangle A B C$ in points P and Q respectively.

Show that $\frac{A(\triangle A P Q)}{A(\triangle A B C)}=\frac{A P \times A Q}{A B \times A C}$

[^0]: Points to Remember:

 - Basic Proportionality

 Theorem (B. P. T.)
 Statement : If a line parallel to a side of a triangle intersects the remaining sides in two distinct
 points, then the line divides those sides in the same proportion.
 Given:
 In $\triangle \mathrm{ABC}$,
 (i) line $l \|$ side BC
 (ii) Line l intersects sides AB and AC at points D and E respectively.

