PHYSICS

1. If a ball is thrown vertically upwards with a speed u, the distance covered by it during the last t seconds of its ascent is
1) ut
2) $\frac{1}{2} g t^{2}$
3) $u t-\frac{1}{2} g t^{2}$
4) $(u t-g t) t$
2. An ideal gas at $27^{\circ} \mathrm{C}$ is compressed adiabatically to $\frac{8}{27}$ of its original volume. If $\gamma=\frac{5}{3}$, then the rise in temperature is
1) 450 K
2) 375 K
3) 675 K
4) 405 K
3. An earthen pitcher loses 1 kg of water per minute due to evaporation. If the water equivalent of the pitcher is 0.5 kg and the pitcher contains 9.5 kg of water, then cal culate the time required for the water in pitcher to cool to $28^{\circ} \mathrm{C}$ from its original temperature of $30^{\circ} \mathrm{C}$. Neglect the effect of radiation. Latent heat of vaporization of water in this range of temperature is $580 \mathrm{cal} / \mathrm{g}$ and specific heat of water is $1 \mathrm{cal} / \mathrm{g} /{ }^{\circ} \mathrm{C}$
1) 30.5 min
2) 41.2 min
3) 38.6 min
4) 34.5 min
4. The displacement x of a particle varies with timet as $x=a e^{-\alpha t}+b e^{\beta_{1}}$, where $\mathrm{a}, \mathrm{b}, \alpha$ and β are positive constants. The velocity of the particle will
1) be independent of β
2) drop to zero, when $\alpha=\beta$
3) decrease with time
4) increase with time
5. A cylindrical capacitor has charge Q and length L. If both the charge and the length of the capacitor are doubled by keeping the other parameters fixed, then the energy stored in the capacitor
1) remains same
2) increase two times
3) decrease two times
4) increase four times
6. The reflectance and emittance of a perfectly black body are respectively
1) 0,1
2) 1,0
3) $0.5,0.5$
4) 0,0
7. If a diamagnetic substance is brought near the north or the south pole of a bar magnet, it is
1) attracted by both poles
2) repelled by both poles
3) repelled by north pole but attracted towards south pole
4) attracted by north pole but repelled by south pole
8. A ball is projected from the bottom of an inclined plane of inclination 30°, with a velocity of 30 ms^{-1}, at an angle of 30° with the inclined plane. If $\mathrm{g}=10 \mathrm{~ms}^{-2}$, then the range of the ball on given inclined plane is
1) 12 m
2) 60 m
3) 120 m
4) 600 m
9. The ratio of the acceleration due to gravity on two planets P_{1} and P_{2} is K_{1}. The ratio of their respective radii is K_{2}. The ratio of their respective escape velocities is
1) $\sqrt{K_{1} K_{2}}$
2) $\sqrt{2 K_{1} K_{2}}$
3) $\sqrt{\frac{K_{1}}{K_{2}}}$
4) $\sqrt{\frac{K_{2}}{K_{1}}}$

AAJ KA TOPPER

10. A body has equal amount of rotational kinetic energy and translation kinetic energy while rolling without slipping on a horizontal surface. Given body is an example of
1) disc
2) sphere
3) ring
4) cylinder
11. Path difference between two wavefronts emitted from coherent sources is $2.1 \mu \mathrm{~m}$. Phase difference between the wavefronts at that point is 7.692π. Wavelength of light emitted by source will be
1) $5385 A^{0}$
2) $5600 A^{0}$
3) $5460 A^{0}$
4) $5892 A^{0}$
12. Potential difference between point A and B (i.e., $V_{A}-V_{B}$) is

1) 2 V
2) 4 V
3) 6 V
4) 8 V
13. Given that $\vec{A}+\vec{B}+\vec{C}=0$. Out of three vectors, two are equal in magnitude and the magnitude of third vector is $\sqrt{2}$ times that of either of the two having equal magnitude. Then the angle between vectors are given by
1) $45^{\circ}, 45^{\circ}, 90^{\circ}$
2) $90^{\circ}, 135^{\circ}, 135^{\circ}$
3) $30^{\circ}, 60^{\circ}, 90^{\circ}$
4) $45^{\circ}, 60^{\circ}, 90^{\circ}$
14. Two large insulating plates having surface charge densities $+\sigma$ and $-\sigma$ are fixed at a distance d from each other. A small test charge q of mass m is attached to two identical springs as shown in the figure. The charge q is now released from rest with springs in natural length. Then q will (neglect gravity)

AAJ KA TOPPER

1) perform SHM with angular frequency $\sqrt{\frac{k}{m}}$
2) perform SHM with amplitude $\frac{\sigma q}{2 k \varepsilon_{0}}$
3) not perform SHM but will have a periodic motion
4) remain stationary

AAJ KA TOPPER

15. The north pole of a magnet is falling on a metallic ring as shown in the figure. The direction of induced current, if looked from upside in the ring will be

1) anti-clockwise
2) clockwise
3) clockwise or anti-clockwise depending on radius of the ring
4) no induced current
16. There are two forces each having same magnitude 10N. One is indined at an angle of 30° and other is inclined at an angle of 135° to the positive direction of x-axis. The x and y components of the resultant are
1) $1.59 \mathrm{~N} \hat{i}$ and $12.07 \mathrm{~N} \hat{j}$
2) $10 \mathrm{~N} \hat{i}$ and $10 \mathrm{~N} \hat{j}$
3) $1.59 \mathrm{~N} \hat{i}$ and $10 \mathrm{~N} \hat{j}$
4) $1.59 \mathrm{~N} \hat{i}$ and $2 \mathrm{~N} \hat{j}$
17. A rgon gas is adiabatically compressed to half of its volume. If P, V and T represent the pressure, volume and temperature of the gaseous system respectively, then the correct equation representing the process is
1) $T V^{2 / 5}=$ constant
2) $V P^{5 / 3}=$ constant
3) $T P^{-2 / 5}=$ constant
4) $P T^{2 / 5}=$ constant
18. A circular coil of radius 20 cm and 20 turns, is mounted vertically with its plane in the magnetic meridian. A small magnetic needle (free to rotate about vertical axis) is placed at the centre of the coil. It is deflected through 45° when a current passes through the coil and is in equilibrium (H orizontal component of earth's field is $B_{H}=0.34 \times 10^{-4} \mathrm{~T}$). The current in the coil is
1) $\frac{17}{10 \pi} \mathrm{~A}$
2) 6 A
3) $6 \times 10^{-3} \mathrm{~A}$
4) $\frac{3}{50} \mathrm{~A}$
19. One litre of oxygen at a pressure of 1 atm and two litres of nitrogen at a pressure of 0.5 atm , are introduced into a vessel of volume 1 L . If there is no change in temperature, the final pressure of the mixture of gas (in atm) is
1) 1.5
2) 1
3) 2
4) 4
20. The coil of a moving coil galvanometer is wound over a metal frame in order to
1) reduce hysteresis
2) provide electromagnetic damping
3) increase the moment of inertia
4) increase the sensitivity
21. A ccording to Newton's law of cooling, the rate of cooling of a body is proportional to $(\Delta \theta)^{n}$, where $\Delta \theta$ is the difference in temperature of the body and its surroundings. Value of n is
1) Two
2) Three
3) Four
4) One

AAJ KA TOPPER

22. In Young's double slit experiment, the intensities at two points P_{1} and P_{2} on the screen are I_{1} and I_{2} respectively. If P_{1} is located at the central bright fringe and P_{2} is located at a distance equal to a quarter of fringe width from P_{1}, then $\frac{I_{1}}{I_{2}}$ is;
1) 2
2) $\frac{1}{2}$
3) 4
4) 16
23. A body slides down on a frictionless track which ends in a circular loop of diameter D. The minimum height h in terms of D so that the body may just complete the circular loop, is

1) $h=\frac{5}{2} D$
2) $h=\frac{3}{2} D$
3) $h=\frac{5}{4} D$
4) $h=2 D$
24. Let N_{β} be the number of β particle emitted by 1 gram of $N a^{24}$ radioactive nuclei having a half life of 15 h . In 7.5 h , the number N_{β} is close to [$N_{A}=6.023 \times 10^{23}$ mole ${ }^{-1}$]
1) 1.75×10^{22}
2) 6.2×10^{21}
3) 7.5×10^{21}
4) 1.25×10^{22}
25. The binding energy of deuteron is 2.2 MeV and that of ${ }_{2}^{4} \mathrm{He}$ is 28 MeV . If two deuterons are fused to form one ${ }_{2}^{4} \mathrm{He}$, then the energy released is
1) 30.2 MeV
2) 25.8 MeV
3) 23.6 MeV
4) 19.2 MeV
26. A long straight wire of radius R carries a current i. The magnetic field inside the wire at distance $r(r<R)$, from its centre is expressed as

AAJ KA TOPPER

1) $\left(\frac{\mu_{0} i}{\pi R^{2}}\right) \cdot r$
2) $\left(\frac{2 \mu_{0} i}{\pi R^{2}}\right) \cdot r$
3) $\left(\frac{\mu_{0} i}{2 \pi R^{2}}\right) \cdot r$
4) $\left(\frac{\mu_{0} i}{2 \pi R}\right) \cdot r$
27. Water rises upto a height h in a capillary tube of certain diameter. This capillary tube is replaced by a similar tube of half the diameter. N ow water will rise to a height of
1) 4 h
2) 3 h
3) 2 h
4) $\frac{h}{2}$
28. The tolerance level of a resistor with the colour codered, blue, orange, gold is
1) $\pm 5 \%$
2) $\pm 10 \%$
3) $\pm 20 \%$
4) $\pm 40 \%$
29. An athletic coach told his team that muscle multiplied with speed equal to power. What dimensions does he view for muscle?
1) $M L T^{-2}$
2) $M L^{2} T^{-2}$
3) $M L T^{-2}$
4) L

AAJ KA TOPPER

30. In the figure, a smooth pulley of negligible weight is suspended by a spring bal ance. Masses of 1 kg and 5 kg are attached to the opposite ends of a string passing over the pulley and move with some acceleration. During their motion, the spring balance reads a weight of

1) 6 kg
2) Less than 6 kg
3) M ore than 6 kg
4) May be more or less than 6 kg
31. Assuming that the potential energy of spring is zero when it is stretched by x_{0}, then its potential energy when it is compressed by $\frac{x_{0}}{2}$ is
1) $\frac{3}{8} k x_{0}^{2}$
2) $-\frac{3}{4} k x_{0}^{2}$
3) $-\frac{3}{8} k x_{0}^{2}$
4) $\frac{1}{8} k x_{0}^{2}$
32. The engine of a car produces an acceleration of $6 \mathrm{~ms}^{-2}$ in the car. If this car pulls another car of the same mass, then the acceleration would be
1) $6 \mathrm{~ms}^{-2}$
2) $12 \mathrm{~ms}^{-2}$
3) $3 \mathrm{~ms}^{-2}$
4) $1.5 \mathrm{~ms}^{-2}$
33. A body of mass $m=10^{-2} \mathrm{~kg}$ is moving in a medium and experiences a frictional force $F=-k v^{2}$. Its initial speed is $v_{0}=10 \mathrm{~ms}^{-1}$. After 10 s , its kinetic energy is $\frac{1}{8} m v_{0}^{2}$, then value of k will be:-
1) $10^{-1} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$
2) $10^{-3} \mathrm{~kg} \mathrm{~m}^{-1}$
3) $10^{-3} \mathrm{~kg} \mathrm{~s}^{-1}$
4) $10^{-4} \mathrm{~kg} \mathrm{~m}^{-1}$
34. An electron is accelerated under a potential difference of 64 V , the de-Broglie wavelength associated with electron is $\left[e=-1.6 \times 10^{-19} \mathrm{C}, m_{e}=9.1 \times 10^{-31} \mathrm{~kg}, h=6.623 \times 10^{-34} \mathrm{Js}\right.$]
1) $1.53 \mathrm{~A}^{0}$
2) $2.53 \mathrm{~A}^{0}$
3) $3.35 \mathrm{~A}^{0}$
4) $4.54 A^{0}$
35. To get an output 1 from the circuit shown in the figure, the input must be

1) $A=0, B=1, C=0$
2) $A=1, B=0, C=0$
3) $A=1, B=0, C=1$
4) $A=1, B=1, C=0$

AAJ KA TOPPER

36. A body is performing simple harmonic motion of amplitude A and time period T. The figure shows position-time graph of the body. At any timet, acceleration of the body if f, then which of the following graphs is/ are appropriate?

1)

3)

2)

4)

37. It is desired to make a converging achromatic combination of mean focal length 50 cm by using two lenses of materials A and B. If the dispersive power of A and B are in the ratio $1: 2$, the focal lengths of the convex and the concave lenses are respectively

1) 25 cm and 50 cm
2) 50 cm and 25 cm
3) 50 cm and 100 cm
4) 100 cm and 50 cm
38. Two factories are sounding their sirens at 800 Hz . A man goes from one factory to other at a speed of $2 \mathrm{~m} / \mathrm{s}$. The velocity of sound is $320 \mathrm{~m} / \mathrm{s}$. The number of beats heard by the person in one second will be

AAJ KA TOPPER

1) 10
2) 4
3) 2
4) 8
39. Photons of energy of 6 eV are incident on a metal surface whose work function is 4 eV . The maximum kinetic energy of the emitted photoelectrons is
1) Zero
2) 1 eV
3) 2 eV
4) 10 eV
40. An electromagnetic wave of frequency $1 \times 10^{14} \mathrm{~Hz}$ is propagating along z-axis. The amplitude of the electric field is $4 \mathrm{~V} / \mathrm{m}$. If $\varepsilon_{0}=8.8 \times 10^{-12} C^{2} / N-m^{2}$, then the averageenergy density of electric field will be
1) $35.2 \times 10^{-12} \mathrm{~J} / \mathrm{m}^{3}$
2) $35.2 \times 10^{-10} \mathrm{~J} / \mathrm{m}^{3}$
3) $35.2 \times 10^{-11} \mathrm{~J} / \mathrm{m}^{3}$
4) $35.2 \times 10^{-13} \mathrm{~J} / \mathrm{m}^{3}$
41. A ball is dropped from height H on to a horizontal surface. If the coefficient of restitution is e then the total time after which it comes to rest is
1) $\sqrt{\frac{2 H}{g}}\left(\frac{1-e}{1+e}\right)$
2) $\sqrt{\frac{2 H}{g}}\left(\frac{1+e}{1-e}\right)$
3) $\sqrt{\frac{2 H}{g}}\left(\frac{1+e^{2}}{1-e^{2}}\right)$
4) $\sqrt{\frac{2 H}{g}}\left(\frac{1-e^{2}}{1+e^{2}}\right)$
42. The resistance of a straight conductor does not depend on its
1) length
2) temperature
3) material
4) shape of cross section

AAJ KA TOPPER

43. A projectile is thrown with velocity $u=20 \mathrm{~m} / \mathrm{s} \pm 5 \%$ at an angle 60°. If the projectile comes back on the ground at the same level which of thefollowing cannot be a possible answer for range. Consider $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$
1) 34.6 m
2) 37.5 m
3) 32.0 m
4) 39.0 m
44. A converging lens having magnitude of focal length as f_{1} is kept coaxially in contact with a diverging lens having magnitude of focal length as f_{2}. The focal length of the combination would be:
1) $\frac{f_{1} f_{2}}{f_{1}-f_{2}}$
2) $\frac{f_{1}+f_{2}}{f_{1} f_{2}}$
3) $\frac{f_{1}-f_{2}}{f_{1} f_{2}}$
4) $\frac{f_{1} f_{2}}{f_{1}+f_{2}}$
45. Which of the following pair have same dimensional formula?
1) A ngular momentum, Torque
2) Torque, work
3) Planck constant, Boltzmann constant
4) Gas constant, Pressure

CHEMISTRY

46. $\quad p K_{a}$ of a weak acid (HA) and $p K_{b}$ of weak base (BOH) are 3.2 and 3.4 respectively. The pH of their salt (AB) solution at $25^{\circ} \mathrm{C}$ is
1) 6.9
2) 7.0
3) 1.0
4) 7.2
47.

$\mathrm{CH}_{3} \mathrm{Br} \xrightarrow{\mathrm{KCN}} A \xrightarrow[\mathrm{LiAlH}_{4}]{4[\mathrm{H}]} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
IUPAC name of A is

1) Methyl cyanide
2) Methyl isonitrile
3) A cetonitrile
4) Ethane nitrile
48. Which of the following exhibits greater coagulation power towards a negative colloid?
1) ZnSO_{4}
2) $\mathrm{Na}_{3} \mathrm{PO}_{4}$
3) AlCl_{3}
4) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
49. Two half cells have reduction potentials -0.76 V and -0.13 V respectively. A galvanic cell is made from these two half cells. Which of the following statements is correct?
1) Electrode of half-cell potential -0.76 V acts as cathode
2) Electrode of half-cell potential -0.76 V acts as anode
3) Electrode of half-cell potential -0.13 V acts as anode
4) Electrode of half-cell potential -0.76 V acts as positive electrode and -0.13 V as negative electrode
50. What will happen when a block of copper metal is dropped into a beaker containing a solution of 1 M ZnSO ?
1) The copper metal will dissolve with evolution of oxygen gas
2) The copper metal will dissolve with evolution of hydrogen gas
3) No reaction will occur
4) The copper metal will dissolve and zinc metal will be deposited
51. Electrometallurgical process is used to extract
1) Fe
2) Pb
3) Na
4) Ni

AAJ KA TOPPER

52. The correct IUPAC name of the following compound is

1) 7-Ethyl-2, 4, 5, 6- tetramethyldeca-1, 8-diene
2) 4-Ethyl-5,6,7,9-tetramethyldeca-2,9-diene
3) 2, 4, 5, 6-tetramethyl-7-ethyldeca-1, 7-diene
4) None of these
53. Which of the following sulphates has the highest solubility?
1) BeSO_{4}
2) MgSO_{4}
3) BaSO_{4}
4) CaSO_{4}
54. In Clemmensen's reduction, the catalyst used is
1) $\mathrm{Zn}-\mathrm{Hg}+$ Conc. HCl
2) $\mathrm{NH}_{2} \mathrm{NH}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$
3) $\mathrm{PdCl}_{2} / \mathrm{H}_{2} \mathrm{O}$
4) $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$
55. Thefunctional group which is formed when Phenol is made to react with Chloroform in the presence of dilute Sodium hydroxide
1) $-\mathrm{CH}_{2} \mathrm{Cl}$
2) -COOH
3) $-\mathrm{CHCl}_{2}$
4) -CHO
56. The compound formed when Ethyl bromide is heated with dry Silver oxide is
1)dimethylether
2)diethylether
3)M ethylal cohol
4)ethylal cohol
57. One mole of Ethylamine when reacts with nitrous acid will produce dinitrogen gas (at $0^{0} \mathrm{C}$ and 1 atmospheric pressure) equal to
1) 22.4 L
2) IL
3) 11.2 L
4) 24.8 L
58. The correct statement about Orthoboric acid is
1) It is a strong monobasic acid
2) It is not a proton donor, but a weak Lewis acid
3) It is a tribasic acid
4) It is harmful for eyes
59. The energy required to remove an electron from the surface of sodium metal is 2.3 eV . What Is the longest wavelength of radiation with which it can show photoelectric effect?
1) $5.4 \times 10^{-17} \mathrm{~m}$
2) $5.4 \times 10^{-8} \mathrm{~m}$
3) $5.4 \times 10^{-7} \mathrm{~m}$
4) $5.4 \times 10^{-9} \mathrm{~m}$
60. If the dipole moment of Toluene and Nitro-benzene are 0.43 D and 3.93 D respectively, then what is the expected dipole moment of p-Nitrotoluene?
1)3.50 D
2) 2.18 D
3) 4.36 D
4) 5.30 D
61. Methanoic acid is heated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to form
1) CO
2) CO_{2}
3) CH_{4}
4) $(\mathrm{COOH})_{2}$
62. Glucose when treated with conc. HNO_{3} gives
1) A cetic acid
2)Saccharic acid
3)Gluconic acid
2) Sorbitol
63. Phenol associated in Benzene to a certain extent to form dimer. A solution containing $2.0 \times 10^{-2} \mathrm{~kg}$ of Phenol in 1.0 kg of benzene has its freezing point decreased by 0.69 K . The percentage of association of Phenol is (K_{f} for benzene $=5.12 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)
1) 73.4
2) 50.1
3) 42.3
4) 25.1

AAJ KA TOPPER

64. The increasing order of the first ionization enthalpies of the elements B, P, S and F is
1) $B<S<P<F$
2) $F<S<P<B$
3) $P<S<B<F$
4) $\mathrm{B}<\mathrm{P}<\mathrm{S}<\mathrm{F}$
65. When a NaCl is heated with sulphuric acid in the presence of MnO_{2} a greenish-yellow gas liberated. The gas is
1) Cl_{2}
2) NH_{3}
3) N_{2}
4) H_{2}
66. $\quad C_{5} H_{10} O$ is a carbonyl compound. The number of structural isomers possible for this molecular formula are
1) 5
2) 8
3) 6
4) 7
67. In the reaction $4 A+2 B+3 C \rightarrow A_{4} B_{2} C_{3}$, what will be the number moles of product formed, starting from one mole of $A, 0.6$ moles of B and 0.72 moles of C ?
1) 0.25
2) 0.3
3) 0.24
4) 2.32
68. The solubility of $\mathrm{AgCl}(\mathrm{s})$ with solubility product 1.6×10^{-10} in 0.1 M NaCl solution would be
1) $1.26 \times 10^{-5} \mathrm{M}$
2) $1.6 \times 10^{-9} \mathrm{M}$
3) $1.6 \times 10^{-11} \mathrm{M}$
4) $1.26 \times 10^{-15} \mathrm{M}$
69. A non-stoichiometric compound $\mathrm{Cu}_{1.8} S$ is formed due to the incorporation of Cu^{2+} ions in the Iattice. What is the mole percentage of Cu^{2+} present in the compound?
1) 88.88
2) 89.8
3) 63.5%
4) 11.11
70. At low pressure and high temperature, the V an der W aals equation is finally reduced (simplified) to
1) $\left(p+\frac{a}{V_{m}^{2}}\right)\left(V_{m}-b\right)=R T$
2) $p\left(V_{m}-b\right)=R T$
3) $\left(p+\frac{a}{V_{m}^{2}}\right) V_{m}=R T$
4) $p V_{m}=R T$
71. Zinc and hydrochloric acid react according to the following reaction:
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}($ aq. $) \rightarrow \mathrm{ZnCl}_{2}($ aq. $)+\mathrm{H}_{2}(\mathrm{~g})$
If 0.30 mole of Zn is added to 0.52 mole HCl , how many moles of H_{2} is produced?
1) 0.2
2) 0.62
3) 0.6
4) 0.26
72. In a reaction, $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ is reduced to Cr^{3+}. What will be concentration of $0.1 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in equivalent per litre?
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 e^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
1) 0.9 N
2) 0.6 N
3) 0.3 N
4) 0.2 N
73. A gaseous mixture of 2 moles of $A, 3$ moles of $B, 5$ moles of C and 10 moles of D is contained in a vessel. Assuming that gases are ideal and the partial pressure of C is 1.5 atm , total pressure is
1) 3 atm
2) 6 atm
3) 9 atm
4) 15 atm
74. In which of the following options chlorine will act as the best leaving group
1) $\mathrm{CH}_{3}-\mathrm{Cl}$
2) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl}$
3)

4)

75. A compound of variation chloride has spin only magnetic moment of 1.73 Bm . Its formula is

1) VCl_{2}
2) VCl_{5}
3) VCl_{4}
4) VCl_{3}

AAJ KA TOPPER

76. The following equilibrium constants are given;
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftarrows 2 \mathrm{NH}_{3} ; \mathrm{K}_{1}$
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftarrows 2 \mathrm{NO} ; \mathrm{K}_{2}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightleftarrows \mathrm{H}_{2} \mathrm{O} ; \mathrm{K}_{3}$
The equilibrium constant for the oxidation of 2 moleNH $_{3}$ by oxygen to give NO is
1) $\frac{K_{2} K_{3}^{2}}{K_{1}}$
2) $\frac{K_{2}^{2} K_{3}}{K_{3}}$
3) $\frac{K_{1} K_{2}}{K_{3}}$
4) $\frac{K_{2} K_{3}^{3}}{K_{1}}$
77. Which of thefollowing will not show geometrical isomerism?
1) $\left[\mathrm{Co}(\mathrm{ox})_{3}\right]^{3-}$
2) $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
3) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl} 2\right] \mathrm{Cl}$
4)both $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl} 2\right] \mathrm{Cl}$
78. For a reaction in which all reactants and products areliquids, which one of the following equations is most applicable?
1) $\Delta H<\Delta E$
2) $\Delta H=\Delta S$
3) $\Delta H \approx \Delta E$
4) Total $W=0$
79. The void space in a primitive unit cell is:
1) 48% void space
2) 24% void space
3) 96% void space
4) 50% void space
80. In chelate therapy, lead toxicity is removed by using the ligand
1) $\mathrm{CH}_{3} \mathrm{COO}^{-}$
COO^{-}
2)|
COO^{-}
2) AsO_{4}^{3-}
3)

81. The oxidation of SO_{2} to SO_{3} is an exothermic reaction. The yield of SO_{3} will be maximum if:

1) Temperature is increased and pressure is kept constant
2) Temperature is reduced and pressure is increased
3)Both temperature and pressure are increased
3) Both temperature and pressure are reduced
82. Aqueous solution of $0.004 \mathrm{M} \mathrm{Na} \mathrm{NO}_{4}$ and 0.01 M glucose are isotonic. The percentage degree of dissociation of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is
1) 85%
2) 75%
3) 60%
4) 25%
83. Which of the following statements regarding Nitrogen pentoxide is not correct?
1) Nitrogen pentoxide is a colourless, deliquescent liquid
2) Nitrogen pentoxide is the anhydride of nitric acid
3) Solid $\mathrm{N}_{2} \mathrm{O}_{5}$ is a covalent molecule
4) The molecule of $\mathrm{N}_{2} \mathrm{O}_{5}$ in planar
84. Two different electrolytic cells filled with molten $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ and molten $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ respectively are connected in series. When electricity is passed 2.7 g Al is deposited on electrode. Cal culate the weight of Cu deposited on cathode.
[$\mathrm{Cu}=63.5 ; \mathrm{Al}=27.0 \mathrm{~g} \mathrm{~mol}^{-1}$]
1) 190.5 g
2) 9.525 g
3) 63.5 g
4) 31.75 g

AAJ KA TOPPER

85. Phenyl magnesium bromide reacts with Methanol to give
1) A mixture of anisole and $\mathrm{Mg}(\mathrm{OH}) \mathrm{Br}$
2) A mixture of benzene and $\mathrm{Mg}(\mathrm{OMe}) \mathrm{Br}$
3) A mixture of toluene and $\mathrm{Mg}(\mathrm{OH}) \mathrm{Br}$
4) A mixture of phenol and $\mathrm{Mg}(\mathrm{Me}) \mathrm{Br}$
86. If $\Delta \mathrm{H}_{f}^{0}$ for $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ are $-188 \mathrm{~kJ} / \mathrm{mol}$ and $-286 \mathrm{~kJ} / \mathrm{mol}$, What will be the enthal py change of the reaction
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
1) -196 kJ
2) -494 kJ
3) 146 kJ
4) -98 kJ
87. Which of the following statements is/ are correct?
i. Melting point of alkane increases with increase in number of C atoms and with increase in branching.
ii. Boiling point of alkane increases with increase in number of C atoms but with decrease in branching.
iii. Cycloalkanes havelower boiling point than normal alkane with same number of C atoms. iv. Alkenes have lower boiling point than same number of C atoms in alkanes.
1) (I), (II)
2) (I), (II), (III)
3) (III), (IV)
4) (IV)
88. The binding energy of an element is 64 MeV . If Binding energy/ nucleon is 6.4, then the number of nucleons are
1) 10
2) 64
3) 16
4) 6
89. Consider the following reaction in aqueous solution
$5 \mathrm{Br}^{-}(\mathrm{aq})+\mathrm{BrO}_{3}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{Br}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
If the rate of appearance of Br_{2} at a particular time during the reaction is $0.025 \mathrm{M} \mathrm{sec}{ }^{-1}$, what is the rate of disappearance (in $M \mathrm{sec}^{-1}$) of Br^{-}at that time?
1) $0.025 \mathrm{M} \mathrm{sec}^{-1}$
2) $0.042 \mathrm{M} \mathrm{sec}^{-1}$
3) $0.075 \mathrm{M} \mathrm{sec}^{-1}$
4) $0.125 \mathrm{M} \mathrm{sec}^{-1}$
90. The rate constant $\left(k^{\prime}\right)$ of one reaction is double the rate constant $\left(k^{\prime \prime}\right)$ of another reaction. Then the relationship between the corresponding activation energies of the two reactions (E_{a}^{\prime} and $E_{b}^{\prime \prime}$) will be-

AAJ KA TOPPER

(Assume the pre-exponential factor \& temperature to be same)

1) $E_{a}^{\prime}>E_{a}^{*}$
2) $E_{a}^{\prime}=E_{a}^{*}$
3) $E_{a}^{\prime}<E_{a}^{\prime \prime}$
4) $E_{a}^{\prime}<4 E_{a}^{*}$

BIOLOGY

91. The plasma resembles in its composition to the filtrate produced by the glomerulus expect for the presence of
1) Glucose
2) Chloride
3) A mino acids
4) Protiens
92. Which of the following has the maximum water potential?
1) Pure water
2) 2% sucrose solution
3) 4% glucose solution
4) 10% sodium chloride solution

AAJ KA TOPPER

93. Introduction of food plants developed by genetic engineering is not desirable because
1) Economy of developing countries may suffer
2) These products are less tasty as compared to the already existing products
3) This method is costly
4) Transgenic food may cause toxicity and allergy in human beings, and the bacteria present in the alimentary canal may become resistant to antibiotics by taking up the antibiotic-resistant gene that is present in the GM food.
94. An institution where valuable plant material likely to become irretrievably lost in the wild or cultivation is preserved in a viable condition is known as
1) Genome
2) Herbarium
3) Gene library
4) Gene bank
95. Certain species of wasps are seen to frequently visit flowering fig trees. The interaction between them is:
1) Brood parasitism
2) Mutualism
3) Commensalism
4) Parasitism
96. Identify the IN CORRECT statement from the following with reference to lac operon.
1) It is a unit of gene expression and regulation for lactose sugar metabolism in E coil.
2) Lactose sugar enters the cell due to the activity of enzyme permease.
3) Operators are present between promoters and structural genes.
4) The structural gene ' Z ' code for b- gal actosidase, ' Y ' for transacetylase, and ; A ' for permease.
97. A sugary solution is changed to vinegar by the action of
1) A zotobacter
2) A cetobacter aceti
3) Bacillus subtilis
4) Mycoderma aceti
98. Which one engulfs pathogens rapidly?
1) Acidophils
2) Erythrocytes
3) Basophils
4) Neutrophils
99. The first event in photosynthesis is
1) Synthesis of ATP
2) Photoexcitation of chlorophyll and ejection of electron
3) Photolysis of water
4) Release of oxygen
100. Choose the correct statement from the following.
1) Dioecious (hermaphrodite) organisms are seen only in animals.
2) Dioecious organisms are seen only in plants.
3) Dioecious organisms are seen in both plants and animals.
4) Dioecious organisms are seen only in vertebrates.
101. A ntibodies are synthesized by
1) Eosinophil
2) Lymphocyte
3) M onocyte
4) Neutrophil
102. M yelinated nerve fibres are white coloured because of
1) Chromidial substance
2) Neurolemma
3) Myelin
4) N one of these
103. The capacity of an environment to pull on a limited number of individuals is known as
1) Bearing capacity
2) Limited capacity
3) Environmental resistance
4) Carrying capacity

AAJ KA TOPPER

104. A nabolism is a/ an
1) Endergonic process
2) Exergonic process
3) Bidireactional process
4) Destructive process
105. Seminal plasma in human males is rich in
1) Glucose and calcium
2) DNA and testosterone
3) Ribose and potassium
4) Fructose and calcium
106. What is correct about the mechanism of hormone action in humans?
1) Glucagon is secreted by b-cells of islets of Langerhans and stimulates glycogenolysis
2) Secretion of thymosin is stimulated with ageing
3) In females FSH first blinds with specific receptors on follicular cell membrane
4) FSH stimulates the secretion of estrogen and progesterone
107. Which one of the following is NOT plant-like protest?
1) Desmid
2) Dinoflagellate
3) Diatom
4) Slime mould
108. In order to obtain virus-free plants through tissue culture, the best method is
1) Embryo rescue
2) Anther culture
3) Meristem culture
4) Protoplast culture
109. The characteristics features that can be exclusively seen in angiosperms is
1) Seeds
2) Fruits
3) Endosperm
4) Syngamy
110. Eustachian canal connects
1) Middle ear with external ear
2) Middle ear with internal ear
3) external ear with internal ear
4) Middle ear with the pharynx
111. The ratio between 2-carbon and 3-carbon intermediates having - NH_{2} group formed in photosynthetic oxidation cycle is
1) $1: 1$
2) $2: 1$
3) $3: 2$
4) $3: 4$
112. Some common marine fishes are
1) Hilsa
2) Mackerel
3) Pomfrets
4) All of these
113. Smooth muscles are
1) Involuntary, fusiform, non-striated
2) Voluntary, multinucleate, cylindrical
3) Involuntary, cylindrical, striated
4) Voluntary, spindle-shaped, uninucleate
114. Enzymes that catal yse the transfer of molecules except H, O and electron are called as
1) Ligases
2) Isomerases
3) Lyases
4) Transferases
115. Parbhani kranti is a new variety of Abelanoschus esculentus having the resistance to:-
1) Shoot and fruit borer
2) Bacterial blight
3) Yellow mosaic virus
4) Tobacco mosaic virus
116. Study the mRNA segment given above, which is to be completely translated into a polypeptide chain. The codons for ' a ' and ' b ' are:

AAJ KA TOPPER

1) a-UAA
b-UGA
2) a-AUG b-UUU
3) a-AUG b-UAG
4) a-UAG b-UGA
117. Result(s) of light reaction is/ are
1) Only ATP
2) Only NADPH_{2}
3) ATP and NADPH2
4) Only FAD

AAJ KA TOPPER

118. A n extra-chromosomal, self-replicating part of the cell that has proven to be a boon to biotechnology is:
1) Virus
2) Mitochondria
3) Nucleus
4) Plasmid
119. The theory of N atural selection that explains the appearance of new forms of life on earth was given by:
1) Oparin and Haldane
2) H ardy-Weinberg
3) M endel
4) Darwin
120. Anxiety and eating spicy food together in an otherwise normal human may lead to
1) Indigestion
2) Jaundice
3) Diarrhoea
4) Vomiting
121. The action of the vaginal diaphragm is
1) To prevent the ova to come in the uterus
2) To prevent the sperm to come in contact with ova
3) Spermicidal
4) A nti-implantational
122. A colour-blind girl is rare because she will be born only when
1) Her mother and maternal grand father were colour blind
2) Her father and maternal grand father were colour blind
3) Her mother is colour blind and father has normal vision
4) Parents have normal vision but grand parents were colour blind
123. Bacillus thuringiensis is a good
1) Biofertilizer
2) Biopesticide
3) Biofuel
4) Single cell protein
124. The reason for the population explosion in the world is
1) Increase in birth rate
2) Decrease in death rate
3) Both (A) and (B)
4) N one of them
125. Which one of the following cell organelles are enclosed by a single membrane?
1) Mitochondria
2) Chloroplasts
3) Lysosomes
4) Nuclei
126. Which of the following cells is round and biconcave in shape?
1) WBCs
2) RBCs
3) Epithelial Cells
4) Nerve cells
127. Diabetes insipidus is caused due to deficiency of
1) Aldosterone
2) $A D H$
3) ACTH
4) TSH
128. Chipko movement was launched for the protection of
1) Forests
2) Livestock
3) Wetlands
4) Grasslands
129. All are features of entomophilous flowers except
1) Flower with aroma
2) Versatile stamens
3) Pollen grain with sticky surface
4) Flowers provide reward to pollinators in the form of nectar and pollen grains
130. Secondary sewage treatment is mainly a
1) Physical process
2) Mechanical process
3) Chemical process
4) Biological process
131. In which contraceptive method, the semen will be without sperms?
1) Condoms
2) Withdrawal coitus
3) Foams
4) Vasectomy

AAJ KA TOPPER

132. The total number of teeth which comes only once in a life span
1) 20
2) 8
3) 32
4) 12
133. When synapsis is complete all al ong the chromosome, the cell is said to have entered a stage called
1) Zygotene
2) Pachytene
3) Diplotene
4) Diakinesis
134. Which structure of the lungs is directly involved in $\mathrm{O}_{2} / \mathrm{CO}_{2}$ exchange between air and blood capillary?
1) Bronchi
2) Trachea
3) Alveoil
4) Secondary bronchi
135. The correct sequence of cytochromes in ETC is
1) Cyt a, b, c, as
2) Cyt b, c1, c , a , a a_{3}
3)Cyt b, a, a3, c
3) Cyt b, c, a3, a
136. Match column-I- with column-II-and choose the correct option.

	Culumn-I	Culumn-II
A. Phaeophyceae I.	Funaria, Polytrichum, Sphagnım	
B.	Rhodophyceae II.	Equisetum, Psilotum, Pteris
C.	Mosses	III
Ectocarpus, Dictyota, Laminaifa		
Pteridophytes	IV	Polysiphonia, Porphyra, Gracilaria

1) A-III; B - IV; C - I; D - II
2) $A-I V ; B-I I I ; C-I ; D-I I$
3) A-IV; B - III; C - II; D - I
4) $A-I V ; B-I ; C-I I I ; D-I I$
137. In the TCA cyde, FADH_{2} is formed during
1) Conversion of succinyl Co-A to succinate

AAJ KA TOPPER

2) Conversion of citrate to cis-aconitate
3) Conversion of succinate to fumarate
4) Conversion of fumarate to malate
138. Select the correct answer regarding the phase of meiosis and their respective events using the lists given below:

	List I (Phase of meiosis)	List II (Event over occurs)
(1)	Prophase I	Crossing over occurs
(2)	Metaphase II	Sister chromatids migrate to opposite
(3)	Anaphase I	Homologous line up at equator in part

1) 1,2 and 3 are correct
2) 1 and 2 are correct, 3 is false
3) 1 is correct, 2 and 3 are false
4) 1 and 3 are correct, 2 is false
139. Bryophytes differ from pteridophytes in
1) Swimming antherozoids
2) An independent gametophyte
3) Archegonia
4) Lack of vascular tissue
140. For the enzyme enolase, the substrate is
1) Succinic acid
2) 2- PGA
3) PEP
4) Fumaric acid

AAJ KA TOPPER

141. Which of the following statements is incorrect?
1) Shoot apices those modify themselves into flowering apices, cannot perceive photoperiods.
2) Sugarbeet, cabbage and carrots are monocarpic plants
3) To initiate flowering, LDP must be exposed to light for a period less than critical duration
4) Ethephon causes thinning of cotton, cheery \& walnut
142. When a neuron is in resting state i.e., not conducting any impulse, the axonal membrane is
1) Comparatively more permeable to Na^{+}ions and nearly impermeable to $\mathrm{K}+$ ions
2) Equally permeable to both Na^{+}and $\mathrm{K}+$ ions
3) Impermeable to both Na^{+}and $\mathrm{K}+$ ions
4) Comparatively more permeable to $\mathrm{K}+$ ions and nearly impermeable to Na^{+}ions
143. In gymnosperms like Pinus and Cycas, the endosperm is
1) Triploid
2) Haploid
3) Diploid
4) Tetraploid
144. Which of the following two out of four statements are incorrect?
(a) The first transgenic buffalo, Rosie produced milk which was human al pha-lactalbumin enriched
(b) Restriction enzymes are used in isolation of DNA from other macromolecules
(c) Downstream processing is one of the steps of rDNA technology
(d) Disarmed pathogen vectors are also used in the transfer of rDNA into the host.
1) Statement (a) and (c)
2) Statement (b) and (c)
3) Statement (c) and (d)
4) Statement (a) and (b)
145. Refer the following diagram and identify the labelled pairs of kidney as indicated.

1) A-cortex, B-nephron, C-Renal pelvis, D-medulla, E-ureter
2) A-cortex, B-medulla, C-nephron, D-Renal pelvis, E-ureter
3) A-nephron, B-cortex, C-medulla, D-ureter, E-Renal pelvis
4) A-nephron, B-cortex, C-medulla, D-Renal pelvis E-ureter
146. Which of the following is a naturally occurring growth inhibitor?
1) IAA
2) $A B A$
3) NAA
4) GA
147. Gel electrophoresis is used for
1) Cutting of DNA into fragments
2) Separation of DNA fragments according to their size
3) Construction of recombinant DNA by joining with doning vectors
4) Isolation of DN A molecule

AAJ KA TOPPER

148. A n ecosystem which can be easily damaged but can recover after some time if damaging effect stops will behaving
1) Low stability and high resilience
2) High stability and low resilience
3) Low stability and low resilience
4) High stability and high resilience
149. In bioluminescence stored changes into
1) Light energy
2) Radiant energy
3) Chemical energy
4) Mechanical energy
150. During isolation of DNA, addition of which of the following causes precipitation of purified DNA?
1) Chilled ethanol
2) Ribonuclease enzyme
3) DN A polymerase
4) Proteases
151. Protistan genome has
1) Nucleoprotein in direct contact with cell substance
2) Gene containing nucleoproteins condensed together in loose mass
3) Free nucleic acid aggregates
4) Membrane-bound nucleoproteins embedded in cytoplasm
152. Which of the following ecological pyramids can be inverted?
A. Pyramid of energy
B. Pyramid of number
C. Pyramid of biomass
1) Only (a) and (b)
2) Only (b)
3) Only (b) and (c)
4) All (a), (b) and (c)
153. During oxygen transport, the oxyhaemoglobin at the tissue level liberates oxygen to the cells because
1) O_{2} concentration is high and CO_{2} is low
2) O_{2} concentration is low and CO_{2} is high
3) O_{2} tension is low and CO_{2} tension is high
4) O_{2} tension is high and CO_{2} tension is low
154. In rainy season, door gets swelled due to
1) Imbibition
2) Diffusion
3) Transpiration
4) Respiration
155. The function of companion cells is to
1) Provide energy to sieve elements for active transport
2) Provide water to phloem
3) Load sucrose into sieve elements by passive transport
4) Load sucrose into sieve elements by active transport
156. A plant leaf is found to have bundle sheath cells having large-sized chloroplasts full of starch granules. Which of the following characteristics can be observed in this plant?
I. Stomata open at night
II. Presence of PEP carboxylase in mesophylls.
III. Presence of RubisCo in bundle sheath cells
IV. High photorespiration rate in hot summer days

V . Light reaction and carbon fixation as carbohydrates occur in different cell types
VI. The carbon assimilation rate is saturated in the early morning on summer days

1) Only I, III
2) Only II, IV
3) Only II, IV, V
4) Only II, III, V

AAJ KA TOPPER

157. Which of the following is not caused by the deficiency of minerals?
1) Chlorosis
2) Etiolation
3) Shortening of internodes
4) Necrosis
158. Genetic dwarfness in plants can be resolved by
1) Lower ABA contents
2) Higher endogenous auxin contents
3) Higher endogenous gibberellins contents
4) High ethylene content
159. Select the option with the correct identification of the structures labeled by alphabets (A-F) in the given diagram of the human skull

1) A-Temporal bone, B-Parietal bond, C-Occipital condyle
2) C-Occipital condyle, D-Zygomatic bone, E-M andible
3) A-Parietal bone, D-Vomer bone, F-M andible
4) B-Temporal bone, C-Hyoid bone, E-M andible
160. Concanavalin A is
1) Alkaloids
2) Chlorophyll
3) Terpenoids
4) Lectins
161. Which of the following is pollinated by water?
1) Viola
2) Yucca
3) Oxalis
4) Zostera
162. Which of the following tissue is absent in vascular bundles of monocot stem?
1) Cambium
2) Xylem
3) Phloem
4) All of these
163. In humans, placenta is derived from
1) Yolk sac
2) A mnion
3) Allantois
4) Chorion
164. Select the correct option for A, B, C and D given in the figure with respect to the relative contribution of various greenhouse gases to global warming

1) $\left(\mathrm{A}-\mathrm{CO}_{2}\right)$, $(\mathrm{B}-\mathrm{CFCs}),\left(\mathrm{C}-\mathrm{CH}_{4}\right),\left(\mathrm{D}-\mathrm{NO}_{2}\right)$
2) $\left(\mathrm{A}-\mathrm{NO}_{2}\right),(\mathrm{B}-\mathrm{CFCs}),\left(\mathrm{C}-\mathrm{CH}_{4}\right),\left(\mathrm{D}-\mathrm{CO}_{2}\right)$
3) $\left(\mathrm{A}-\mathrm{NO}_{2}\right),\left(\mathrm{B}-\mathrm{CH}_{4}\right),(\mathrm{C}-\mathrm{CFCs}),\left(\mathrm{D}-\mathrm{CO}_{2}\right)$
4) $\left(\mathrm{A}-\mathrm{CH}_{4}\right),(\mathrm{B}-\mathrm{CFCs}),\left(\mathrm{C}-\mathrm{NO}_{2}\right),\left(\mathrm{D}-\mathrm{CO}_{2}\right)$

AAJ KA TOPPER

165. Which one of the following is the correct match of events occurring during the menstrual cycle?
1) Menstruation: Breakdown of myometrium \& ovum not fertilized
2) Proliferative phase: Rapid generation of myometrium \& maturation of Graffian follicle
3) Devel opment of corpus luteum: Secretory phase \& increased secretion of progesterone
4) Ovulation: LH and FSH attain peak level \& sharp fall in the secretion of progesterone
166. You are given tissue with its potential for differentiation in artificial culture. Which of the following pairs of hormones would you add to the medium to secure shoots as well as roots?
1) IAA and gibberellin
2) A uxin and cytokinin
3) Auxin and abscisic acid
4) Gibberellin and abscisic acid
167. Germpore is the region where the exine is
1) Thick
2) Uniform
3) Thick and uniform
4) A bsent
168. Pentamerous actinomorphic flowers, bicarpellary ovary with oblique septa, and fruit capsule or berry are characteristic features of family
1) Liliaceae
2) A steraceae
3) Brassicaceae
4) Solanaceae
169. Out of 64 codons, 61 codons code for 20 types of amino acid. This characteristic is known as
1) Degeneracy of genetic code
2) Overlapping of gene
3) Wobbling of codon
4) Universality of codons
170. How many types of gametes will be produced by a plant having the genotype AABbCC?
1) Four
2) Nine
3) Two
4) Three
171. Smoking addiction is harmful because it produces polycylic aromatic hydrocarbons, which cause
1) Reduction in oxygen transport
2) Decrease in blood pressure
3) Cancer
4) Enhancement of growth of the foetus
172. The percentage of all gymnosperm species facing extinction is
1) 12
2) 23
3) 32
AAJ KA TOPPER
4) 31
173. Interspecific hybridization is the mating of
1) A nimals within same breed without having common ancestors
2)Two different related species
2) Superior males and females of different breeds
3) M ore closely related individuals within same breed for 4-6 generations
174. Variety of cow pea resistance to bacteria blight is
1) Pusa swarnim
2) Pusa Shubhra
3) Pusa Sadabahar
4) Pusa Komal
175. Which ion helps in opening and closing of stomata?
1) Mn^{+}
2) Mg^{2+}
3) Ca^{2+}
4) K^{+}
176. Tobacco M osaic Virus (TMV) genes are
1) Double stranded RNA
2) Single stranded RNA
3) Polyribonucleotides
4) Proteinaceous
177. Which of the following is not the application of PCR?
1) Detection of very low concentration of bacteria or virus
2) Detection of mutations in genes in suspected cancer patients
3) A mplification of desired DNA segment
4) Detection of antibodies synthesized against pathogens

AAJ KA TOPPER

178. Pneumatic bones are expected to be found in
1) Pigeon
2) House lizard
3) Frog's tadpole
4) Flying fish
179. The tendency of the body to manifest a characteristic and unpleasant withdrawal syndrome if a regular dose of drugs/ alcohol is abruptly discontinued is called as
1) Habituation
2) Dependence
3) Psychotherapy
4) Tolerance
180. Which among the following can be seen in the ultrastructure of both eukaryotic and prokaryotic cell?
1) Ribosome
2) Nucleoproteins
3) Chloroplast
4) Leucoplast

NTA NEET MOCK TEST - 4

PHYSICS KEY

$1-10$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{3}$
$11-20$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{2}$
$21-30$	4	1	3	3	3	3	3	1	1	2
$31-40$	3	3	4	1	3	3	$\mathbf{1}$	1	$\mathbf{1}$	$\mathbf{1}$
$41-45$	2	4	4	1	2					

CHEMISTRY KEY

$46-55$	1	4	3	2	3	3	1	1	1	4
$56-65$	2	1	2	3	3	1	2	1	1	1
$66-75$	4	3	2	4	4	4	2	2	4	3
$76-85$	4	1	3	1	4	2	2	3	2	2
$86-90$	1	1	1	2	3					

BIOLOGYKEY AAJ KA TOPPER

$91-100$	4	1	4	4	2	4	2	4	2	3
$101-110$	2	3	4	1	4	3	4	3	2	4
$111-120$	2	4	1	4	3	3	3	4	4	1
$121-130$	2	2	2	3	3	2	2	1	2	4
$131-140$	4	4	2	3	2	1	3	3	4	2
$141-150$	3	4	2	4	1	2	2	1	1	1
$151-160$	4	3	3	1	4	4	2	3	2	4
$161-170$	4	1	4	2	3	2	4	4	1	3
$171-180$	$1 \& 3$	4	2	4	4	2	4	1	2	1

PHYSICS SOLUTIONS

1. Let the total height $=\mathrm{H}$

Total time of ascent $=T$
So, $H=u t-\frac{1}{2} g T^{2}$

Distance covered by ball in time (t-t)sec is $y=u(t-t)-\frac{1}{2} g(T-t)^{2}$
So, distance covered by ball in test tsec
$h=H-y=\left[u T-\frac{1}{2} g T^{2}\right]-\left[u(T-t)-\frac{1}{2} g(T-t)^{2}\right]$
By solving and putting $T=\frac{u}{g}$ we will get, $h=\frac{1}{2} g t^{2}$

AAJ KA TOPPER

2. $T V^{\gamma-1}=$ constant
(300) $V^{\frac{5}{3}-1}=T_{2}\left(\frac{8 V}{27}\right)^{\frac{5}{3}-1}$
$300=T_{2}\left(\frac{8}{27}\right)^{\frac{2}{3}}$
$300=T_{2}\left(\frac{4}{9}\right)$
$\Rightarrow T_{2}=675 \mathrm{~K}$
Rise in temperature $=(675-300) \mathrm{K}=375 \mathrm{~K}$
3. Heat lost by (Water + Pitcher)
$Q_{1}=(m+M) \times s \times \Delta T$
$=9.5+0.5) \times 10^{3} \times(30-28)$
$=20 \times 10^{3} \mathrm{cal}$
Heat gained for the water to evaporate: (let t be time in min)
$Q_{2}=m \times L$
$=\left(\frac{d m}{d t} \times t\right) L=(1 \times t) \times 580=580 t \mathrm{cal}$
So, $Q_{1}=Q_{2}$
$580 t=20 \times 10^{3}$
$t=\frac{20000}{580}=34.5 \mathrm{~min}$
4. $x=a e^{-\alpha t}+b e^{\beta t}$
$\frac{d x}{d t}=-a \alpha e^{-\alpha t}+b \beta e^{\beta t}$
$\Rightarrow v=b \beta^{\beta t}-a \alpha e^{-\alpha t}$
Ast increases, $e^{-\alpha t}$ decreases and $e^{\beta t}$ increases. So v will increase with time.
5. Energy of a charged capacitor, $E=\frac{1}{2} \frac{Q^{2}}{C}$

For a cylindrical capacitor, $V=\frac{2 \pi \varepsilon_{0} L}{\log _{e}\left(\frac{b}{a}\right)}$
$E=\frac{1}{2} \frac{Q^{2}}{2 \pi \varepsilon_{0} L} \log _{e}\left(\frac{b}{a}\right)$.
Where $L=$ length of the cylinder a and $b=$ radii of two concentric cylinder.
$C^{\prime}=\frac{2 \pi \varepsilon_{0}(2 L)}{\log _{e}\left(\frac{b}{a}\right)}$
$=\frac{1}{2} \frac{(2 Q)^{2}}{2 \pi \varepsilon_{0}(2 L)} \log _{e}\left(\frac{b}{a}\right) \ldots$
From equations (i) and (ii), we get $E^{\prime}=2 E$
6. According to Kirchhoff's law ideal black body absorb all the heat at low temperature and emits it all at high temperature $\mathrm{a}=\mathrm{e}=1$ and $\mathrm{r}=0$.

AAJ KA TOPPER

7. Diamagnetic substance creates and induced magnetic field which is opposite to the applied magnetic field and thus there is repulsion on both north and south pole.
8.

Range of incline plane,
$R=\frac{2 u^{2} \sin (\alpha-\beta) \cos \alpha}{g \cos ^{2} \beta}$
Here, $\beta=30^{\circ}$ and $\alpha=30^{\circ}+30^{\circ}=60^{\circ}$
$R=\frac{2(30)^{2} \sin \left(30^{\circ}\right) \cos \left(60^{\circ}\right)}{10 \cos ^{2}\left(30^{\circ}\right)}=\frac{2(30)^{2}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}{10\left(\frac{3}{4}\right)}=60 \mathrm{~m}$
9. Since escape velocity from the surface of a planet can be written as
$v_{c}=\sqrt{2 g R}$
Ratio $\frac{v_{e p_{1}}}{v_{e p_{2}}}=\sqrt{\frac{2 g_{p_{1}} R_{p_{1}}}{2_{g p_{2}} R_{p_{2}}}}=\sqrt{K_{1} K_{2}}$
10. Translation kinetic energy $=\frac{1}{2} m v^{2}$

Rotational kinetic energy $=\frac{1}{2} I w^{2}$ AAJ KA TOPPER
Translation kinetic energy = Rotational kinetic energy
$\frac{1}{2} m v^{2}=\frac{1}{2} I w^{2}$
Put $v=r w$, you will gwt
$I=M R^{2}$ which is inertia of ring.
11. Phase difference, $\phi=\frac{2 \pi x}{\lambda} \operatorname{or} \lambda=\frac{2 \pi x}{\phi}$
$=2 \times \pi \times \frac{2.1 \times 10^{-6}}{7.629 \pi}=5460 \times 10^{-10} \mathrm{~m}$

Apply Kirchhoff's Voltage law, Along wireACDB
$V_{A}-2-6+4=V_{B}$
$V_{A}-V_{B}=4 V$
13. Let, $|\vec{A}|=|\vec{B}|=x$

AAJ KA TOPPER

Then $|\vec{C}|=\sqrt{2} x$.
Now, $\vec{A}+\vec{B}=-\vec{C}$
$(\vec{A}+\vec{B}) \cdot(\vec{A}+\vec{B})=(-\vec{C}) \cdot(-\vec{C})$
$2(A \cdot B)+A^{2}+B^{2}=C^{2}$
$2 A B \cos \theta+x^{2}+x^{2}=2 x^{2}$
$\cos \theta=0$
$\theta=90^{\circ}$
\Rightarrow Anglebetween A and Bis 90°
Again $\vec{A}+=-\vec{B}$
$(\vec{A}+\vec{C}) \cdot(\vec{A}+\vec{C})=(-\vec{B})(-\vec{B})$
$A^{2}+C^{2}+2 A \cos \theta=B^{2}$
$3 x^{2}+2 \cdot x \sqrt{2} x \cos \theta=x^{2}$
$\cos \theta=\frac{-2}{2 \sqrt{2}}=\frac{-1}{\sqrt{2}}$
$\theta=135^{\circ}$
i.e, angle between A and C is 135°

Similarly, angel between B and C is θ_{2}
$\vec{B}+\vec{C}=-\vec{A}$
$B h 2+C^{2}+2 B \cos \theta=A^{2}$
$\cos \theta=\frac{-2}{2 \sqrt{2}}=\left(\frac{-1}{\sqrt{2}}\right)$
$\theta_{2}=135^{\circ}$
14. Electric field between plates is uniform hence electrostatic force due to the field constant. A ngular frequency does not change by constant force equilibrium position will be at the point where

$$
2 k x_{0}=q \times \frac{\sigma}{\epsilon_{0}} ; x_{0}=\frac{\sigma q}{2 k \epsilon_{0}}
$$

AAJ KA TOPPER
x_{0} is also the amplitude of oscillation.
15. As north pole approaches the ring, flux through ring increases. From Lenz's law magnetic field produced by ring should oppose this change. This happens when current in flows anti-clockwise direction.
16.

After resolving forces in $x y$ - direction,
We get
Along x direction, net force;

$$
\begin{aligned}
& F_{x}=10\left[\cos 30^{0}+\left(-\cos 45^{\circ}\right)\right] \\
& =10\left(\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\right)=1.59 \mathrm{~N}
\end{aligned}
$$

Along y direction, net force;
$F_{y}=10\left(\sin 30^{\circ}+10 \sin 45^{\circ}\right)$
$F_{y}=10\left(\frac{1}{2}+\frac{1}{\sqrt{2}}\right)=12.07 \mathrm{~N}$
Thus force in x and y direction are 1.59 N and 12.07 N respectively.
17. For an adiabatic process, $P V^{\gamma}=$ constant
$T V^{\gamma-1}=$ constant
And $T^{\gamma} P^{1-\gamma}=$ constant
Putting, $\gamma=5 / 3$, (Argon is a monoatomic gas).
Now equation becomes;
$P V^{5 / 3}=$ cons $\tan t$
$T V^{-2 / 3}=$ cons $\tan t$
$T^{5 / 3} P^{-2 / 3}=$ cons $\tan t$
$\Rightarrow T P^{-2 / 5}=$ cons $\tan t$
18. We know magnetic field due to coil $=\frac{\mu_{0} N i}{2 r}$
$B_{H} \tan \theta=\frac{\mu_{0} N i}{2 r}$
$i=\frac{0.34 \times 10^{-4} \times 2 \times 0.2}{4 \pi \times 10^{-7} \times 20}=\frac{17}{10 \pi} \mathrm{~A}$
19. Ideal gas equation is given by $\mathrm{PV}=\mathrm{nRT}$...(i)

For oxygen, $\mathrm{P}=1 \mathrm{~atm}, \mathrm{~V}=1 \mathrm{~L}, \mathrm{n}=n_{O_{2}}$
Therefore, Eq. (i) becomes
$\therefore 1 \times 1=n_{O_{2}} R T$
$n_{O_{2}}=\frac{1}{R T}$
For nitrogen $\mathrm{P}=0.5 \mathrm{~atm}, \mathrm{~V}=2 \mathrm{~L}, \mathrm{n}=n_{N_{2}}$
$\therefore 0.5 \times 2=n_{N_{2}} R T$
$\Rightarrow n_{N_{2}}=\frac{1}{R T}$
For mixture of gas $P_{\text {mix }} V_{\text {mix }}=n_{\text {mix }} R T$
Here, $n_{\text {mix }}=n_{O_{2}}+n_{N_{2}}$
$\therefore \frac{P_{\text {mix }} V_{\text {mix }}}{R T}=\frac{1}{R T}+\frac{1}{R T}$
$P_{\text {mix }} V_{\text {mix }}=2\left(V_{\text {mix }}=1\right)$
20. The coil of a moving coil galvanometer is wound over a metal frame in order to provide electromagnetic damping by which the galvanometer becomes dead beat.
21. According to Newton's law of cooling, rate of cooling is
$\frac{\Delta \theta}{\Delta t}=k\left(\theta_{o}-\theta\right)$
Now from equation,
$\therefore(\Delta \theta)^{n}=(\Delta \theta)$ or $n=1$
22. P_{1} is at central maxima so $I_{1}=4 I_{0}$

For P_{2},
$\phi=\left(\frac{2 \pi}{\beta}\right)\left(\frac{\beta}{4}\right)=\frac{\pi}{2}$
$I_{2}=I_{0}+I_{0}+2 \sqrt{I_{0} I_{0}} \cos \left(\frac{\pi}{2}\right)=2 I_{0}$
$\frac{I_{1}}{I_{2}}=2$
23.

By conservation of energy, $\frac{1}{2} m v^{2}=m g h$
$v=\sqrt{2 g h} \ldots(i)$
For looping the loop, the lower velocity must be greater than $\sqrt{5 g r}$
$v_{\text {min }}=\sqrt{5 g r}=\sqrt{\frac{5 g D}{2}} \ldots$
From equation (i) and (ii),
$2 g h=\frac{5 g D}{2}$
$h=\frac{5 D}{4}$

24. $\because \frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}$
$\mathrm{N}=$ no. of un-decayed nuclei
$N_{0}=$ initial no. of nuclei
Also $t=n \times T_{1 / 2}$
$\Rightarrow N=N_{0}\left(\frac{1}{2}\right)^{\frac{7.5}{15}}$
$\Rightarrow N=N_{0}\left(\frac{1}{2}\right)^{\frac{1}{2}} \Rightarrow N=\frac{N_{0}}{\sqrt{2}}$
\therefore No. of nuclei decayed
$=\left(N_{0}-\frac{N_{0}}{\sqrt{2}}\right)=N_{0}\left(\frac{\sqrt{2}-1}{\sqrt{2}}\right)$
$=\frac{0.414}{1.414} N_{0}$
$=0.29 N_{0}$
\Rightarrow No. of nuclei decayed
$=0.29 \times \frac{1}{24} \times 6.023 \times 10^{23}=0.0727 \times 10^{23}=7.5 \times 10^{21}$

AAJ KA TOPPER

25. ${ }_{1}^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{4} \mathrm{He}+$ energy

Energy released $=$ B.E. of ${ }_{2}^{4} \mathrm{He}-2\left(\right.$ B.E.of $\left.{ }_{1}^{2} \mathrm{H}\right)$
$=28-2(2.2)=28-4.4=23.6 \mathrm{MeV}$
26. Using A mpere's law, we have
$\oint \vec{B} \cdot \overrightarrow{d l}=\mu_{0} i_{i n}$

or $B \times 2 \pi r=\mu_{0} \frac{i}{\pi R^{2}} \pi r^{2}$
$\therefore B=\frac{\mu_{0}}{2 \pi} \cdot \frac{i r}{R^{2}}$
27. From capillary tube experiment, we know that
$h=\frac{2 S \cos \theta}{r \rho g} i . e, h \alpha \frac{1}{r}$
$\therefore \frac{h^{\prime}}{h}=\frac{r}{r / 2}=2$ or $h^{\prime}=2 h$
28. The tolerance level of resistance is given by $4^{\text {th }}$ colour

Gold represent $\pm 5 \%$ tolerance.
29. According to thequestion

Muscle \times Speed $=$ Power AAJ KA TOPPER
Muscle $=\frac{\text { Power }}{\text { Speed }}=M L T^{-2}$
30. Spring balancing reading is equal to $2 T$. Tension in the string

$$
=\frac{2 m_{1} m_{2}}{m_{1}+m_{2}}=\frac{2 \times 5 \times 1}{6}=\frac{5}{3} \mathrm{Kgf}
$$

Reading of spring balance $=2 T=2 \times \frac{5}{3}=\frac{10}{3} \mathrm{Kgf}$
31. Change in potential energy is independent of reference

$\therefore U_{2}-U_{1}=\frac{1}{2} k\left(\frac{x_{0}}{2}\right)^{2}-\frac{1}{2} k x_{0}^{2}=-\frac{3}{8} k x_{0}^{2}$
32. Let, mass of car $=m$

Force applied by engine $=6 \mathrm{~m}$
When two cars are pulled, $(m+m) a=6 m$
Or $2 \mathrm{ma}=6 \mathrm{~m}$ or $\mathrm{a}=3 \mathrm{~ms}^{-2}$

AAJ KA TOPPER

33. After $10 \mathrm{sec}, \frac{1}{2} m v^{2}=\frac{1}{8} m v_{0}^{2}$
$\Rightarrow v=\frac{v_{0}}{2}=5 \mathrm{~m} / \mathrm{sec}$
$a=-\frac{k v^{2}}{m}$
$\Rightarrow \frac{d v}{d t}=-\frac{k v^{2}}{m}$
$\Rightarrow \int_{10}^{5} \frac{d v}{v^{2}}=-\frac{k}{m} \int_{0}^{10} d t$
$-\frac{1}{5}+\frac{1}{10}=\frac{-k}{10^{-2}} \times 10$
$k=10^{-4} \mathrm{kgm}^{-1}$
34. Modified equation of de-Broglie wavelength $\lambda=\frac{h}{\sqrt{2 m e V}}$
$\lambda=\frac{12.27 A^{0}}{\sqrt{V}}=\frac{12.27}{\sqrt{64}}=1.534 A^{0}$
35. The Boolean expression for the given combination is output $Y=(A+B) . C$

Hence, $A=1, B=0, C=1$
Or other combination can be $A=1, B=1, C=1$
36. Since initial phase is $\frac{\pi}{2}$ as per the given graph.

Using the equation of position of SHM
$x=A \sin \left(\omega t+\frac{\pi}{2}\right)$

AAJ KA TOPPER

$\Rightarrow c=A \cos \omega t$
\Rightarrow acceleration
$f=\frac{d^{2} x}{d t^{2}}=-A \omega^{2} \cos \omega t$
Which is represented in option third.
37. $\frac{w_{1}}{w_{2}}-\frac{1}{2}$

Now, $\frac{f_{1}}{f_{2}}=-\frac{w_{1}}{w_{2}}=-\frac{1}{2}$
Or $f_{2}=2 f_{1}$
Now, $\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}$
$\frac{1}{50}=\frac{1}{f_{1}}+\frac{1}{-2 f_{1}}$
Or $50 f=\frac{-2+1}{-2 f_{1}}=\frac{1}{2 f_{1}}$
Or $2 f_{1}=50$ or $f_{1}=25 \mathrm{~cm}$
Again $f_{2}=-2 \times 25 \mathrm{~cm}$
$f_{2}=-50 \mathrm{~cm}$

$\mathrm{n}_{1}=\mathrm{n}_{0}\left\{\frac{\mathrm{v}-\mathrm{v}_{0}}{\mathrm{v}-\mathrm{v}_{s}}\right\}=800\left\{\frac{320-2}{320}\right\}$
38. $=\frac{800 \times 318}{320} \mathrm{~Hz}$
$\mathrm{n}_{2}=\mathrm{n}_{0}\left\{\frac{\mathrm{v}-\mathrm{v}_{0}}{\mathrm{v}-\mathrm{v}_{s}}\right\}=800\left\{\frac{320+2}{320}\right\}$
$=\frac{800 \times 322}{320} \mathrm{~Hz}$
\therefore Beat frequency $=n_{2}-n_{1}$
$=\frac{800(322-318)}{320}=\frac{800 \times 4}{320}=10 \mathrm{~Hz}$
39. $\frac{1}{2} m v^{2}=h f-\phi_{0}=h f-h f_{0}$

The kinetic energy of the emitted photoelectrons is distributed from zero to the maximum value. Minimum kinetic energy of emitted photoelectron is zero.
40. $f=10^{14} \mathrm{HZ}$ AAJ KA TOPPER
$E_{0}=4 \mathrm{~V} / \mathrm{m}$
$\epsilon_{0}=8.8 \times 10^{-12} \frac{C^{2}}{N-m^{2}}$
Energy density of electric field
$=\frac{1}{2}$ (Total energy density)
$=\frac{1}{2} \cdot \frac{1}{2} \epsilon_{0} E^{2}$
$=\frac{1}{2} \cdot \frac{1}{2}\left\{8.8 \times 10^{-12} \times 4^{2}\right\}$
$=\frac{1}{2} \cdot \frac{1}{2} \times 16 \times 8.8 \times 10^{-12} \mathrm{~J} / \mathrm{m}^{3}$
$=35.2 \times 10^{-12} \mathrm{~J} / \mathrm{m}^{3}$
41. $t=\sqrt{\frac{2 H}{g}}+2 \sqrt{\frac{2 H_{1}}{g}}+2 \sqrt{\frac{2 H_{2}}{g}}+\ldots . . \infty$
$t=\sqrt{\frac{2 H}{g}}\left(1+2 e+2 e^{2}+\right.$
$t=\sqrt{\frac{2 H}{g}}\left(\frac{1+e}{1-e}\right)$
42. Resistance of a conductor $R=\frac{\rho l}{A}$

As ρ depends on the material,
So R depends on the material,
According to the given formula in Eq. (i). It depends on the length. M oreover resistance α temperature. If $R_{0}=$ resistance of conductor at $0^{\circ} \mathrm{C}$.
$R_{t}=$ resistance of conductor at $t^{\circ} \mathrm{C}$

AAJ KA TOPPER

A nd a, β temperature coefficient of resistance, then

$$
R_{t}=R_{0}\left(1+\alpha t+\beta t^{2}\right)
$$

The resistance of a straight conductor does not depend on shape or cross section.
43. Range of projectile $R=\frac{u^{2} \sin 2 \theta}{g}$

For $\theta=60^{\circ}, R=\frac{20^{2} \sin 120^{\circ}}{g}=20 \sqrt{3}=34.64 \mathrm{~m}$
For \% error $\frac{\Delta R}{R}=\frac{2 \Delta u}{u}$
$\Delta R=\frac{2 \times 5}{100} \times 20 \sqrt{3}=2 \sqrt{3}=3.464 \mathrm{~m}$
So, range $R=34.64 \pm 3.46 \mathrm{~m}$
$R_{\text {min }}=31.1 \mathrm{~m}$ and $R_{\text {max }}=38.1 \mathrm{~m}$
44. WE have to consider sign convention as only magnitude of focal length is given. If f_{1} is focal length of convex (converging) lens and f_{2} is focal length of concave (diverging) lens. Then their equivalent focal length F would be
$\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{-f_{2}}$
$=\frac{f_{2}-f_{1}}{f_{1} f_{2}}\left[\because \frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}\right]$
$\therefore F=\frac{f_{1} f_{2}}{f_{2}-f_{1}}$
45. Torque and work have same dimensional formula $=M L^{2} T^{-2}$

AAJ KA TOPPER

CHEMISTRY SOLUTIONS
46. Hydrolysis of salt of weak acid and weak base
$p H=\frac{1}{2}\left(p K_{w}+p K_{a}-p K_{b}\right)$
$=\frac{1}{2}(14+3.2-3.4)=6.9$
47.

IUPAC name of acetonitrile is Ethanenitrile.
48. Negative colloid is coagulated by positive ion or vice-versa. Greater the valency of coagulating ion, greater will be coagulating power according to Hardy-Schulze rule.
(a) $\mathrm{ZnSO}_{4} \rightarrow \mathrm{Zn}^{2+}+\mathrm{SO}_{4}^{2-}$
(b) $\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow 3 \mathrm{Na}^{+}+\mathrm{PO}_{4}^{3-}$
(c) $\mathrm{AlCl}_{3} \rightarrow \mathrm{Al}^{3+}+3 \mathrm{Cl}^{-}$
(d) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightarrow 4 \mathrm{~K}^{+}$
$+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$

AAJ KA TOPPER

Since, in AlCl_{3}, the valency of positive ion (coagulation ion) is highest, it is the most powerful coagulating agent among thegiven to coagulate the negative colloid.
49. A ccording to the electrochemical series, the electrode with high reduction potential will act as a cathode, and the electrode with more negative reduction potential acts as the anode.
50. Zn is above Cu in electrochemical series. So, Zn will reduce Cu^{2+} to Cu .
$\mathrm{Cu}+\mathrm{Zn}^{2+} \rightarrow$ No reaction
Displacement reaction which is feasible is
$\mathrm{Cu}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Cu} \downarrow$
51. Because N a is very reactive and cannot be extracted by means of the reduction by C, CO. etc. So, it is extracted by electrolysis of molten NaCl .
52. Longest chain of $10-\mathrm{C}$ including both double bonds.

7-Ethyl-2,4,5,6-tetramethydeca-1,8-diene
53. BeSO_{4} is most soluble because hydration energy is more than lattice energy.
$\mathrm{BeSO}_{4}>\mathrm{MgSO}_{4}>\mathrm{CaSO}_{4}>\mathrm{SrSO}_{4}>\mathrm{BaSO}_{4}$
Hydration energy decreases, hence solubility decreases.
54. Zinc amalgam ($\mathrm{Zn}-\mathrm{Hg}$) and conc. HCl is used as a catalyst for Clemmensen's reduction. This reagent coverts $>\mathrm{C}=\mathrm{O}$ group to $>\mathrm{CH}_{2}$ group.
55. Reimer Tieman reaction

$2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{Ag}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}+2 \mathrm{AgBr}$
Dry
If we take moist $\mathrm{Ag}_{2} \mathrm{O}$ then alcohol is formed

$$
\begin{aligned}
& \mathrm{Ag}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{AgOH} \\
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{AgOH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{AgBr} \\
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{HONO} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

57.

1 mole

1 mole
(22.4 L at STP)
58. Orthoboric acid is a weak mono basic acid with $K_{a}=1.0 \times 10^{-9}$. It does not act as protic acid (i.e., proton donor) but behaves as Lewis acid by accepting a pair of electrons from OH^{-}ion.

$$
\mathrm{B}(\mathrm{OH})_{3}+2 \mathrm{H}-\mathrm{O}-\mathrm{H} \rightarrow\left[\mathrm{~B}(\mathrm{OH})_{4}\right]^{-}+\mathrm{H}_{2} \mathrm{O}^{+}
$$

59. Energy required to show photo emission $=2.3 \mathrm{eV}$
$=2.3 \times 1.6 \times 10^{-10} \mathrm{~J}$
Thus $E=\frac{h c}{\lambda}$ or $\lambda=\frac{h c}{E}=\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{2.3 \times 1.6 \times 10^{-19}}=5.4 \times 10^{-7} \mathrm{~m}$
Thus, longest wavelength to show photoelectric effect $=5.4 \times 10^{-7} \mathrm{~m}$

AAJ KA TOPPER

60. Methyl group has +H effect and $-\mathrm{NO}_{2}$ group has $-I$ effect. Therefore, in p-nitro toluene the dipole moments of $-\mathrm{CH}_{3}$ and $-\mathrm{NO}_{2}$ groups acts in the same direction. So, the resultant dipole moment is additive.
i.e, $3.93+0.43=4.36$ debye

($\mu=0.43 \mathrm{D})$

($\mu=3.93 \mathrm{D}$)

$\mu=4.36 \mathrm{D}$
61. $\mathrm{HCOOH} \xrightarrow{\text { conc. } \mathrm{H}_{2} \mathrm{SO}_{4} \text {,heat }} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$
62.

63. Weight of phenol
$\left(W_{A}\right)=2.0 \times 10^{-2} \mathrm{~kg}=20 \mathrm{~g}$
Weight of Benzene (W_{B}) $=1.0 \mathrm{~kg}$
$\Delta T_{i}=0.69 \mathrm{~K} \quad K_{f} \quad$ AAJ KA TOPPER
$=5.12 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
$\Delta T_{f}=i K_{f} m$
$i=\frac{\Delta T_{f}}{K_{f} m}=\frac{0.69}{5.12 \times \frac{20}{94}}=\frac{0.69 \times 94}{5.12 \times 20}, i=0.63$
$2 A \rightleftarrows(A)_{2}$
$1-x \quad x / 2$
Particle after association
$i=1-x+x / 2=1-x / 2$
$i=1-x / 2$
$0.63=1-\frac{x}{2} \quad x \Rightarrow 0.734$ i.e. 73.4%
64. In general:
(i) First ionization energy ($I E_{1}$) or enthalpy, increases along the period from left to right, but due to halffield configuration of P-atom, it has higher $I E_{1}$ than of S-atom.
(ii) $I E_{1}$ decreases as we move down the group from top to bottom.
(iii) M ore be the size of atom, less be the $I E_{1}$.

Hence, correct order of $I E_{1}$ is $\mathrm{B}<\mathrm{S}<\mathrm{P}<\mathrm{F}$.
$I E_{1}$ for (in kJ mol^{-1})

AAJ KA TOPPER

$$
B=800, S=999.4, P=1012, F=1680.8
$$

65. Yellowish-green gas of chlorine is evolved when the sodium chloride is heated with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ in presence of MnO_{2}.
$\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{HCl}$
$\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
66.

(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CHO}$
(2)

(3)

(4)

(5) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
(6) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(7)

67. Stoiciometric mole ratio
$A \quad B \quad C$
$=\frac{1}{4}, \frac{0.6}{2}, \frac{0.72}{3}$
$=0.25,0.30,0.24$
C is Limiting Reagent
So, according to Stoichiometry of reaction
3 mol C gives $=1 \mathrm{~mol} A_{4} B_{2}, C_{3}$.
$\therefore 0.72 \mathrm{~mol}$ of C gives $=\frac{1}{2} \times 0.72=0.24$

$$
\mathrm{AgCl}(\mathrm{~s}) \rightleftharpoons \mathrm{Ag}^{(+)}(\mathrm{aq})+\mathrm{Cl}^{(-)}(\mathrm{aq})
$$

68.

S
S
S
$\mathrm{NaCl} \rightleftharpoons \mathrm{Na}^{(+)}(\mathrm{aq})+\mathrm{Cl}^{(-)}(\mathrm{aq})$
$0.1 \mathrm{M} \quad 0.1 \mathrm{M}$
$\therefore K_{s p}(\mathrm{AgCl})=S(S+0.1)$
$\therefore S \ll 0.1$
$\therefore S+0.1 \approx 0.1$
$\therefore 1.6 \times 10^{-10}=S \times 0.1$
$\therefore S=1.6 \times 10^{-9} \mathrm{M}$
69. In one mole, Let there be $\mathrm{Cu}^{+2}=$ xmoles
$\therefore C u^{+}=1.8-x$ moles

AAJ KA TOPPER

$\because 2 x+(1.8-x) 1=+2$
$x=0.2$
$\% C u^{2+}=\frac{0.2}{1.8} \times 100=11.11 \%$
70. At low pressure and high temperature, real gases behave like ideal gases. According, Van der Waals equation is modified as:
$p V_{m}=R T$ (for 1 mole)
\therefore At low pressure and high temperature, the terms $\frac{a}{V^{2}}$ and b becomes very small as compared to p and V.

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

71. Initial moles $0.30 \quad 0.52 \quad 0 \quad 0$
$\begin{array}{lllll}\text { Final moles } & 0.04 & 0 & 0 & 0.26\end{array}$
\because Mole ratio of $\mathrm{Zn}: \mathrm{HCl}: \mathrm{H}_{2}$ is $1: 2: 1$
2 mole HCl gives $=\frac{1 \times 0.52}{2}=0.26$ mole
N ote that HCl is used completely and thus it is limiting reagent.
72. $N=M \times$ Valence factor
$\because N=0.1 \times 6\left(2 \mathrm{Cr}^{6+}+6 e^{-} \rightarrow 2 \mathrm{Cr}^{3+}\right)$
$K_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=0.6 \mathrm{~N}$
73. Partial pressure $=\frac{\text { no.of moles of gas } \times p_{\text {total }}}{\text { total no.of moles }}$

$$
\begin{aligned}
& 1.5=\frac{5 \times p_{\text {total }}}{2+3+5+10} \\
& \frac{1.5 \times 20}{5}=p_{\text {total }} \\
& p_{\text {total }}=6 \mathrm{~atm}
\end{aligned}
$$

AAJ KA TOPPER
74. The chlorine atom that leaves to give us the most stable carbocation will act as the best leaving group. Among the given options, the Cl attached to a 3° carbon will act as the best leaving group as this would give a stable 3° carbocation (Stable due to highest extent of hyperconjucation)
75. Spin only M agnetic moment
$\mu=\sqrt{n(n+2)} B M=1.73=\sqrt{3}$
$\therefore n=1$ (unpaired e^{-})
Electronic configuration of
$V=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{4} 4 s^{2}$

To get 1 unpaired electron V has to lose 4 electron to form V^{4+}.
So, formula of chloride is VCl_{4}
76. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
$K_{1}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO} ; \mathrm{K}_{2}$
$=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]}$.
$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightleftharpoons \mathrm{H}_{2} \mathrm{O} ; \mathrm{K}_{3}$
$=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{H}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}} \ldots$
For the reaction,

$$
\begin{aligned}
& 2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O} \\
& K=\frac{[\mathrm{NO}]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{3}}{\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]^{5 / 2}} \\
& =\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]} \times \frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{3}}{\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{O}_{2}\right]^{3 / 2}} \times \frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}{\left[\mathrm{NH}_{3}\right]^{2}}=\frac{K_{2} \times K_{3}^{3}}{K_{1}}
\end{aligned}
$$

77. $\left[\operatorname{Co}(o x)_{3}\right]^{3-}$ does not show geometrical isomerism.

As all threesymmetrical bidentate ligands bonded to central CO^{3+} cation.
78. As all reactant and product are liquid
$\Delta n_{(g)}=0$
AAJ KA TOPPER
$\Delta H=\Delta E-\Delta n_{g} R T$
$\Delta H=\Delta E\left(\because \Delta n_{g}=0\right)$
79. $a=2 r$

Volume of the cube $=a^{3}=(2 r)^{3}=8 r^{3}$
Packing fraction $=\frac{\text { Volume of one atom }}{\text { Volume of the cube }}$
$=\frac{\left(\frac{4}{3} \pi r^{3}\right)}{8 r^{3}}=\frac{\pi}{6}=0.52$
Void fraction $=1-0.52=0.48$
Void space $=48 \%$
80. The toxic effect of Pb in the body is removed by forming its complex (chelate) with EDTA
81.
$\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightleftarrows \mathrm{SO}_{3} ; \Delta \mathrm{H}=-\mathrm{ve} ;$

Apply LeChatelier principle.

82. For two solutions to be isotonic

$$
\begin{aligned}
& i \times \pi \mathrm{Na}_{2} \mathrm{SO}_{4}=\pi_{\text {Glucose }} \\
& (1+2 \alpha) C_{1} R T=C_{2} R T \\
& (1+2 \alpha) \times 0.004=0.01 \\
& \alpha=0.75 \text { or } 75 \%
\end{aligned}
$$

83. Solid $\mathrm{N}_{2} \mathrm{O}_{2}$ exist as $\left[\mathrm{NO}_{2}\right]^{+}\left[\mathrm{NO}_{3}\right]^{-}$

AAJ KA TOPPER

84. $\frac{\text { wt.of Al deposited }}{\text { wt.of } C u \text { deposited }}=\frac{e q . w t . o f ~}{\mathrm{Al}}$
$\frac{2.7}{\text { wt.of } C u}=\frac{27 / 3}{63.5 / 2}$
Wt. of $\mathrm{Cu}=9.525 \mathrm{~g}$
85. PhMgBr can be protonated by any of the protic solvent e.g., $\mathrm{CH}_{3} \mathrm{OH}$
$\mathrm{PhMgBr}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{PhH}+\mathrm{Mg}\left(\mathrm{OCH}_{3}\right) \mathrm{Br}$
86. Given reaction is $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
$\Delta H_{\text {Reaction }}^{o}=\Delta H_{f}^{o}(\operatorname{Pr}$ oducts $)-\Delta H_{f}^{o}(\operatorname{Re} a c \tan t s)$
Enthalpy change $=2 \times(-286)-(2 \times-188)=-196 k J$
87. Higher the intermolecular forces higher is the melting point and boiling point. The melting point order is alkynes >trans - alkene >cis - akene>cycloalkane >branched - chain hydrocarbon >straight - chain hydrocarbon.
88. Binding energy $=64 \mathrm{MeV}$

Binding energy / nudeon $=6.4$
\therefore N umber of nucleon $=\frac{64}{6.4}=10$
89. The two rates are related as
$-\frac{1}{5} \frac{d\left[B r^{-}\right]}{d t}=\frac{1}{3} \frac{d\left[B r_{2}\right]}{d t}$
$-\frac{d\left[B r^{-}\right]}{d t}=\frac{5}{3} \frac{d\left[B r_{2}\right]}{d t}=\frac{5}{3} \times 0.025=0.042 \mathrm{M} \mathrm{sec}^{-1}$

AAJ KA TOPPER

90. When activation energy decreases, rate constant increases. As $k^{\prime}>k^{\prime \prime}$ hence $E_{a}^{\prime}<E_{a}^{\prime \prime}$

BIOLOGY SOLUTIONS

91. Due to large size, protein can't be filtered through the filtration slits. So they are absent in glomerular filtrate.
92. Water potential is the difference in free energy or chemical potential per unit molal volume of water in a system and that of pure water at the same temperature and pressure. The water potential of pure water is zero and it decreases on the addition of solutes.
93. GM food may cause toxicity or produce allergies. The enzyme produced by the antibiotic resistance gene can cause allergies, as it is a foreign protein. The antibiotic resistance gene present in the GM food can be taken up by the bacteria present in the alimentary canal and thus the bacteria can become resistant to the concerned antibiotic.
94. A n institution where valuable plant material likely to become irretrievably lost in the wild or cultivation is preserved in a viable condition is known as gene bank.
95. Mutualism is the way two organism of different species exist in a relationship in which each individual benefits. Similar interactions with a species are known as co-operation. The associations between tree roots and certain fungi Mycorrhiza is usually of mutual benefit (symbiotic): a delicate balance between the host plant and symbiont relations results in enhanced nutritional support for each member.
96. Y - codes for permease and A - codes for transacetylase.

AAJ KA TOPPER

97. During the production of vinegar, sugar is first fermented to alcohol and the alcohol is fermented further to acetic acid. A cetobacter aceti is used for the preparation of vinegar from the fermented sugar solution.
98. Neutrophils rapidly engulf pathogens.
99. Photo excitation of chlorophyll and ejection of the electron is the pilot event of the photosynthetic process. When a photon of light energy falls on a chlorophyll molecule, one of the electron pairs from the ground or singlet state passes into a higher energy level called excited singlet state.
100. Having the male and femal e reproductive organs in separate individuals are called dioecious. Dioecious organisms are seen in both plants (like papaya) and animals (like a cockroach)
101. A ntibodies are produced by B-lymphocytes.
102. Myclinated nerve fibres are white in col our due to the presence of Fat M yolin.
103. Carrying capacity refers to the size of population that can be maintained indefinitely. Carrying capacity is the maximum number of individuals of a given species that an area's resources can sustain indefinitely without significantly depleting or degrading those resources.
104. A nabolism or biosynthesis are endergonic reactions in which the product has more energy than the reactants. Thus, they require an input of energy.
105. Seminal plasma in human is rich with Fructose and Calcium.
106. FSH hormone has follicular cells as target cells and hence, first bind with the receptors.
107. Desmid, Dinoflagellate and Diatom are the plant like protists. Slime mould is a fungi-like protist.
108. Meristem culture is done for the development of virus-free plants. Meristematic tissue can be taken either from a shoot or root tip.
109. Fruit formation is the characteristic feature of angiosperms. There is no fruit formation in gymnosperms because there is no ovary.
110. Eustachian canal connect Middle ear with Niso-pharynx.
111. During photorespiration in Perioxisome, two molecules of glycine ($2 \mathrm{H}_{2} \mathrm{NCH}_{2}-\mathrm{CO}_{2}$) are transferred into mitochondrion where they are converted into one molecule of serine $\left(\mathrm{HOCH}_{2}-\mathrm{H}_{2} \mathrm{NCH}-\mathrm{CO}_{2}\right)$. Thus, the ratio between 2 C and 3 C intermediates having $-\mathrm{NH}_{2}$ group is 2:1.
112. Hilsa, Mercenarl, pornfrets, all these are marine fishes.
113. Smooth muscles re involuntary, smooth fusiform without striations.
114. Enzymes that catal yse the transfer of HN OR oxidoreductases.
115. Parbhani kranti is made by hybridization.
116. AUG is a start codon and UAG is a stop codon.
117. During light reaction, energy from sunlight is absorbed and converted to chemical energy which is stored in ATP and NADPH $+\mathrm{H}^{+}$.
118. Plasmids are a boon in biotechnology because they are used as vectos.
119. Natural selection theory was proposed by Charles Darwin.
120. Anxiety, eating spicy food cause indigestion.
121. Diaphragms cover cervix and prevent the entry of sperms in to Vagina.

AAJ KA TOPPER

122. A colourblind girl is born rarely because it is possible only when her father is col ourlind and her mother should be either colourblind or carrier.
123. Bacillus thuringinesis is a Gram-positive, soil bacterium commonly used as a biopesticide. The bacteria produce a proteinaceous toxin called thurioside, which is insecticidal in nature. The bacterial spores are sprayed to control insect pests flies, moths, mosquitoes, etc.
124. Population explosion in the world in due to increase in birth rate and decrease in death rate.
125. Lysosomes are the unit membrane bound vesicular structures formed by the process of packaging in the Golgi apparatus rich in hydrolytic enzymes like hydrolases, lipases, proteases and carbohydrases, which are optimally active at the acidic pH . These enzymes are capable of digesting carbohydrates, proteins, lipids and nucleic acids.
126. RBCs are Round Biconcave in shape.
127. Diabetes insepidus is caused due to the deficiency of ADH hormone.
128. Chipko movement is launched for the protection of forests.
129. Versatile stamens is a characteristic feature of anaemophily. Wind pollinated flowers are usually well above the ground, the stamens are exserted and often with versatile anthers so that pollen is effectively dispersed.
130. Secondary treatment of effluent is a biological process where the primary effluent is passed into large aeration tanks and allowed for the vigorous growth of useful aerobic microbes like bacteria and fungi to form flocs.
131. Semen will be without sperms in the Vasectamised person.
132. The number of teeth in human formed only are 12.
133. Synapsis is the pairing of homologous chromosomes during the zygotene stage of meiosis. Each pair is called bivalent.
134. Through Alveoli of lungs, gases takes place between the lungs and blood.
135. Cytochromes are proteins with characteristic strong absorption of visiblelight due to their iron-containing heme prosthetic groups.
136. Examples of mosses are funaria, polytrichum and sphagnum.
137.

AAJ KA TOPPER
138. Crossing over is the exchange of genetic material between homologous chromosomes, which occurs during prophase I of meiosis and is called synapsis. The homologous chromosomes line at equator in pairs during metaphase I and the sister chromatids migrate towards opposite poles during anaphase I.
139. In bryophytes, the vascular tissues (xylem and phloem) are absent. Water and nutrients enter the cell by diffusion, whereas in pteridophytes, the vascular tissue is present consisting of xylem (without true vessels) and phloem (without companion cells).
140. 2-PGA in the presence of enzyme enolase releases a molecule of water and from PEP.

AAJ KA TOPPER

141. Long Day plants (LDP) requires exposure to light for a period exceeding critical duration to induce flowering. Ethephon hastens fruit ripening in tomatoes and apples and accelerates abscission in flowers and fruits (thinning of cotton, cherry, walnut).
142. In a resting neuron, axonal membrane is relatively more permeable to $\mathrm{K}+$ ions than Na^{+}ions.
143. In gymnosperms like cycas/ Pinus, endosperms of female gametophyte are haploid and are formed before fertilization. In angiosperms, the endosperm is triploid and develops after fertilization.
144. Transgenic animal Rosie is actually a cow and restriction enzymes cut the DNA at specific sites.
145. Diagram as per NCERT.
146. A bscisic acid (ABA) is a growth inhibitor and are produced in plants during abdcission. IAA, NAA and GA aregrowth promoters inducing cell division.
147. Gel eel ctrophoresis is a technique for separation of DNA fragments according to their size. DNA is negatively charged so in gel tank when electric current is passed, DNA movetowards positive electrode. Larger the size of the fragment lesser the separation and vice-versa.
148. En Ecosystem which is easily damaged and recovered fast is less stable, but more resilient.
149. Bioluminescence is the emission of light by an organism through the biochemical system, like the glow of bacteria on decaying meat, the shimmering radiance of protozoans in tropical seas, or the flickering signals of fireflies.
150. DNA is obtained by treating the bacterial cells/ plant or animal tissue with enzymes such as lysozyme (bacterial), cellulase (plant cells), chitinase (fungus).
151. Protistans are eukaryotes with true nucleus and genetic material is embedded inside the nucleus. DNA is not naked and is found to be associated with histone protein.
152. The Ecological pyramids that may be upright or inverted are number and Bio-mass pyramids.
153. At the tissues, oxy-haemoglobin liberates oxygen due to low PO_{2} and high PCO_{2}.
154. In rainy season, door gets swelled due to the phenomenon of imbibition. It is the process of absorption of water without forming a solution.
155. Companion cells move sugar and amino acids into and out of the sieve elements. In "source" tissue such as the leaf, companion cells use transmembrane proteins to take sugar and amino acids by active transport.
156. C_{4} plant has bundles sheet cell with large chloroplast. In C_{4} plants carbon fixation occur twice i.e., first in mesophyll cell with the help of enzymePEP carboxylase and second in bundle sheet with the help of enzyme RUBNISCO. Bundle sheath cell has all the enzymes for the Calvin cycle.
157. Etiolation is the symptom developed in plants when grown the dark.
158. One of the most striking effects of gibberellins is the elongation of genetic dwarf (mutant) varieties of plants like corn and pea.
159. Diagram as per NCERT.
160. Concanavalin A is a lectin (carbohydrate-binding protein) originally extracted from the jackbean, Canavalia ensiformis. It is a member of the legume lectin family.
161. Viola and oxalis have cristogamy where as Yucca is pollinated by insects.

AAJ KA TOPPER

Monocot vascular
bund le

M onocot stems have most their vascular bundles near the outside edge of the stem. The bundles are surrounded by large parenchyma in the cortex region. There is no pith region in monocots. In dicot stems, bundles are present in a ring surrounding parenchyma cells in a pith region.
163. In human, placenta is derived from Chorion and then attention fuses with it.
164. Diagram as per NCERT.
165. Corpus luteum is formed during the secretary phase and progesterone hormone level increases.
166. Auxins and cytokinins are used in the development of root and shoot in a culture medium (respectively).
167. A germ pole is a small pore in the outer wall of a fungal spore through which the germ tube exits upon germination. It can be apical or eccentric in its location, and, on light microscopy, may be visualized as a lighter colored area on the cell wall.
168. A pentamerous actinomorphic flower is one where the floral parts are in multiples of five and the flower can be divided into two equal halves in more than one plane.
169. Out of 64 codons, only 3 signify stop codons. There is more than one codon for most of the amino acids, the genetic code is non-over lapping. Three successive nucleotides or bases code for only one amino acid wobbling refers to the third base degeneracy.
170. It would make only two types of gametes, which are $A B C \& A b C$.

171 Polycylcic hydrocarbons released during smoking cause cancer.
172. M ore than 15,500 species worldwide are facing the threat of extinction.
173. Interspecific hybridization, occur between two different related species.
174.

Crop	Variety	Resistant to diseases
Brassica	Pusa swarnim (Karan rai)	White rust
Cauliflower	Pusa Shubhra	Black rot and curl blight black rot
Chilli	Pusa Sadabahar	Chilly mosaic virus, Tobacco mosaic virus and leaf curl
Cowpea	Pusa Komal	Bacterial blight

AAJ KA TOPPER

AAJ KA TOPPER

175. A ccording to active K + theory of Levitt, opening of stomata occurs due to influx of K+into guard cells. The source of $\mathrm{K}+$ ions are nearby subsidiary and epidermal cells.
176. All viruses are nucleoprotein (N ucleic acid + protein) in the structure. The nucleic acid (DNA and RNA) is the genetic material. In a particular virus either DNA or RNA is genetic material; never both are present in a virus.
177. Polymerase chain reaction, is an efficient and cost-effective way to copy or amplify small segments of DNA. PCR tests to detect cancer cells PCR is not used for detection of antibodies synthesized against pathogens.
178. Pneumatic bones exist in birds. Eg. Pigeon.
179. Thetendency of the body manifest withdrawal system is Dependency.
180. The ribosomes are the smallest known electron microscopic without membrane, ribonucel oprotein particles attached either on RER or floating freely in the cytoplasm and are the sites of protein synthesis. Presence of ribosomes (size 23 nm in diameter) is revealed with the help of an electron microscope.
