O.P. Malhotra
class -12.
CHAPTER - 16
DEFINITE INTEGRALS

Exercise 16 (a)

Ans 1.
(i)

$$
\begin{aligned}
& \int_{\pi / 4}^{\pi / 2} \cot x d x=\log |\sin x| \int_{\pi / 4}^{\pi / 2} \\
& =\log \sin \frac{\pi}{2}-\log \sin \frac{\pi}{4} \\
& =\log 1-\log \frac{1}{\sqrt{2}} \\
& =0-\log 2^{-1 / 2}=\frac{1}{2} \log 2
\end{aligned}
$$

(ii) $\int_{\pi / 3}^{\pi / 3} \frac{d x}{\sin 2 x}$

$$
\begin{aligned}
& =\int_{\pi / 6}^{\pi / 3} \operatorname{cosec} 2 x d x i \\
& \quad \text { put } 2 x=t \Rightarrow 2 d x=d t
\end{aligned}
$$

when $x=\frac{\pi_{6}}{6} \Rightarrow t=\frac{\pi}{3}$

$$
\begin{aligned}
& x=\frac{\pi}{3} \Rightarrow t=\frac{2 \pi}{3} \\
= & \left.\frac{1}{2} \int_{\pi / 3}^{2 \pi / 3} \operatorname{cosec} t d t=\frac{1}{2} \log \left|\tan \frac{t}{2}\right|\right]_{\pi / 3}^{2 \pi / 3} \\
= & \frac{1}{2}\left[\log \left|\tan \frac{\pi}{3}\right|-\log \left|\tan \frac{\pi}{6}\right|\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[\log \sqrt{3}-\log \frac{1}{\sqrt{3}}\right] \\
& =\frac{1}{2}[\log \sqrt{3}-\log 1+\log \sqrt{3}]=\log \sqrt{3}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \int_{0}^{\pi}\left(2 \sec ^{2} x+x^{3}+2\right) d x \\
& =\frac{1}{2}\left[2 \tan x+\frac{x^{4}}{4}+2 x\right]_{0}^{x / 4} \\
& =\left(2 \tan \frac{\pi}{4}+\left(\frac{\pi}{4}\right)^{4} \frac{1}{4}+\frac{2 \pi}{4}\right)-(2 \times 0-0-0) \\
& =2+\frac{\pi^{4}}{1024}+\frac{\pi}{2} \\
& \text { (iv) } \int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) d x \\
& =\int_{0}^{\pi}-\cos \left(2 \frac{x}{2}\right) d x \\
& \text { [if } \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta \text {] } \\
& \left.=-\int_{0}^{\pi} \cos x d x=-\sin x\right]_{0}^{\pi} \\
& =-(0-0)=0
\end{aligned}
$$

Ans -2.
(i)

$$
\begin{aligned}
& \left.\int_{0}^{1} \frac{d x}{2 x-3}=\frac{\log |2 x-3|}{2}\right]_{0}^{1} \\
= & \frac{1}{2}[\log |2-3|-\log |-3|] \\
= & \frac{1}{2}[\log 1-\log 3]=-\frac{1}{2} \log 3
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \left.\int_{1}^{3} \frac{d x}{7-2 x}=\frac{\log |7-2 x|}{-2}\right]_{1}^{3} \\
& =-\frac{1}{2}[\log |7-6|-\log |7-2|] \\
& =-\frac{1}{2}[\log 1-\log 5]=\frac{1}{2} \log 5
\end{aligned}
$$

Ans - 3.
(i)

$$
\begin{aligned}
\int_{0}^{\pi / 4} \cos ^{2} 3 x d x & \\
& =\int_{0}^{\pi / 4} \frac{1+\cos 6 x}{2} d x \\
& \left.=\frac{1}{2} \int x+\frac{\sin 6 x}{6}\right]_{0}^{x / 4} \\
& =\frac{1}{2}\left[\frac{\pi}{4}+\frac{1}{6} \sin \frac{3 \pi}{2}-0-0\right] \\
& =\frac{1}{2}\left[\frac{\pi}{4}-\frac{1}{6}\right]
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \int_{0}^{\pi / 4} \tan ^{2} x d x \\
& \left.=\int_{0}^{\pi / 4}\left(\sec ^{2} x-1\right) d x=\tan x-x\right]_{0}^{\pi / 4} \\
& =\left(\tan \frac{\pi}{4}-\frac{\pi}{4}\right)-(\tan 0-0) \\
& =1-\frac{\pi}{4}
\end{aligned}
$$

(iii)

$$
\text { (iv) } \int_{0}^{\pi} \frac{d x}{1+\sin x}
$$

$$
\begin{aligned}
& \int_{\pi / 3}^{\pi / 4}(\tan x+\cot x)^{2} d x \\
& =\int_{\pi / 3}^{\pi / 4}\left(\tan ^{2} x+\cot ^{2} x+2\right) d x \\
& =\int_{\pi / 3}^{\pi / 4}\left(\sec ^{2} x-1+\operatorname{cosec}^{2} x-1+2\right) d x \\
& =\int_{\pi / B}^{\pi / 4}\left(\sec ^{2} x+\operatorname{cosec}^{2} x\right) d x \\
& =\tan x-\cot x] \frac{\pi / 4}{\pi / 3} \\
& =\left(\tan \frac{\pi}{4}-\cot \frac{\pi}{4}\right)-\left(\tan \frac{\pi}{3}-\cot \frac{\pi}{3}\right) \\
& =(1-1)-\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right) \\
& =-\left(\frac{3-1}{\sqrt{3}}\right)=\frac{-2}{\sqrt{3}} \\
& =\int_{0}^{\pi} \frac{1}{1+\sin x} \times \frac{1-\sin x}{1-\sin x} d x \\
& =\int_{0}^{x} \frac{1-\sin x}{\cos ^{2} x} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\pi}\left[\sec ^{2} x-\tan x \sec x\right] d x \\
& =\tan x-\sec x]_{0}^{\pi} \\
& =(\tan \pi-\sec \pi)-(\tan 0-\sec 0) \\
& =(0-(-1))-(0-1)=1+1=2 \\
& \int_{0}^{\pi / 4} \sin 3 x \sin 2 x d x \\
& =\frac{1}{2} \pi \int_{0}^{4}(2 \sin 3 x \sin 2 x) d x \\
& =\frac{1}{2} \int_{0}^{\pi / 4}[\cos x-\cos 5 x] d x \\
& =\frac{1}{2}\left[\sin x-\frac{\sin 5 x}{5}\right]_{0}^{\pi / 4} \\
& =\frac{1}{2}\left[\left(\left.\sin \frac{\pi}{4}-\frac{1}{5} \sin \frac{5 \pi}{4} \right\rvert\,-(0-0)\right]\right. \\
& =\frac{1}{2}\left[\sin \frac{\pi}{4}-\frac{1}{5} \sin \left(\pi+\frac{\pi}{4}\right)\right] \\
& =\frac{1}{2}\left[\frac{1}{\sqrt{2}}+\frac{1}{3 \sqrt{2}}\right. \\
& =\frac{1}{2}\left[\frac{5+1}{5 \sqrt{2}}\right]=\frac{3}{5 \sqrt{2}}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& \int_{0}^{\pi / 4} \sqrt{1-\sin 2 x d x} \\
= & \int_{0}^{\pi 14} \sqrt{\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x d x}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\pi} \sqrt[1]{(\cos x-\sin x)^{2}} d x \\
& =\int_{0}^{\pi / 4}|\cos x-\sin x| d x
\end{aligned}
$$

[when $0<x<\frac{\pi}{4} \Rightarrow \cos x>\sin x$

$$
\begin{aligned}
& \Rightarrow \cos x-\sin x>0] \\
& =\int_{0}^{\pi / 4}(\cos x-\sin x) d x \\
& =\sin x+\cos x]_{0}^{\pi / 4} \\
& =\left(\sin \frac{\pi}{4}+\cos \frac{\pi}{4} 1-(\sin 0-\cos 0)\right. \\
& =\left[\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)-(0+1)=\sqrt{2}-1
\end{aligned}
$$

Ans-4.

$$
\begin{aligned}
& I=\int_{0}^{\pi} \frac{d \phi}{5+3 \cos \phi} \\
& \tan \frac{\phi}{2}=t \Rightarrow \sec ^{2} \frac{\phi}{2} \frac{1}{2} d \phi=d t \Rightarrow d \phi=\frac{2 d t}{1+t^{2}} \\
& f \cos \phi
\end{aligned}=\frac{1-\tan ^{2} \frac{\phi}{2}}{1+\tan ^{2} \frac{d}{2}}=\frac{1-t^{2}}{1+t^{2}} .
$$

$$
\begin{aligned}
& =\int_{0}^{\infty} \frac{\frac{2 d t}{1+t^{2}}}{5+3\left(\frac{1-t^{2}}{1+t^{2}}\right)} \\
& =2 \int_{0}^{\infty} \frac{d t}{5+5 t^{2}+3-3 t^{2}}=2 \int_{0}^{\infty} \frac{d t}{2 t^{2}+8} \\
& \left.=\int_{0}^{\infty} \frac{d t}{t^{2}+2^{2}}=\frac{1}{2} \tan ^{-1} \frac{t}{2}\right]_{0}^{\infty} \\
& =\frac{1}{2}\left[\frac{\pi}{2}-0\right]=\frac{\pi}{4} \\
& I=\int_{0}^{\pi / 4} 2 \tan ^{3} x d x \\
& =\int_{0}^{\pi / 4} 2 \tan x \cdot \tan ^{2} x d x \\
& =2 \int_{0}^{\pi 14} \tan x\left(\sec ^{2} x-1\right) d x \\
& =2 \int_{0}^{\pi / 4} \tan x \cdot \sec ^{2} x d x-2 \int_{0}^{\pi 14} \tan x d x
\end{aligned}
$$

(ii)

Put $\tan x=t \Rightarrow \sec ^{2} x d x=d t$
when $x=0 \Rightarrow t=0$;

$$
\begin{aligned}
& x=\frac{\pi}{4} \Rightarrow t=1 \\
& =2 \int_{0}^{1} t \cdot d t-2 \int_{0}^{\pi / 4} \tan x d x
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.=2 \times \frac{t^{2}}{2}\right]_{0}^{1}+2 \log |\cos x|\right]_{0}^{\pi} 14 \\
& =(1-0)+2[\log (\cos \pi|4-\log | \cos 0 \mid] \\
& =1+2 \log \frac{1}{\sqrt{2}} \\
& =1+2 \log 2-112 \\
& =1-\log 2
\end{aligned}
$$

Ans - 5 .
(i)

$$
\begin{aligned}
I & =\int_{0}^{2} \frac{x^{4}+1}{x^{2}+1} d x \\
& =\int_{0}^{2} \frac{x^{4}-1+2}{x^{2}+1} d x \\
& =\int_{0}^{2} \frac{x^{4}-1}{x^{2}+1} d x+2 \int_{0}^{2} \frac{d x}{x^{2}+1} \\
& =\int_{0}^{2}\left(x^{2}-1\right) d x+2 \int_{0}^{2} \frac{d x}{x^{2}+1^{2}} \\
& \left.\left.=\frac{x^{3}}{3}-x\right]_{0}^{2}+2 \tan ^{-1} x\right]_{0}^{2} \\
& =\left(\frac{8}{3}-2\right]_{0}+2\left(\tan ^{-1} 2-\tan ^{-1} 0\right) \\
& =\frac{2}{3}+2 \tan ^{-1} 2
\end{aligned}
$$

: (ii)

$$
\begin{gathered}
\left.\int_{1}^{\sqrt{3}} \frac{d x}{1+x^{2}}=\tan ^{-1} x\right]_{1}^{3} \\
\left.=\tan ^{-1} \sqrt{3}-\tan ^{-1}\right] \\
=\frac{\pi}{3}-\frac{\pi}{4}=\frac{\pi}{12}
\end{gathered}
$$

(iii)

$$
\begin{aligned}
I & =\int_{3}^{5} \frac{x^{2} d x}{x^{2}-4} \\
& =\int_{3}^{5} \frac{x^{2}-4+4}{x^{2}-4} d x=\int_{3}^{5}\left[1+\frac{4}{x^{2}-4}\right] d x \\
& =\left[x-\frac{4}{2 \times 2} \log \left|\frac{x-2}{x+2}\right|\right]_{3}^{5} \\
& \left.=\left[x-\log \left|\frac{x-2}{x+2}\right|\right]_{3}^{5} \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \left|\frac{x-q}{x+a}\right|\right] \\
& =\left[5-\log \left|\frac{5-2}{5+2}\right|-3+\log \left|\frac{3-2}{3+2}\right|\right] \\
& =\left[-2-\log \left|\frac{3}{7}\right|+\log \left|\frac{1}{5}\right|\right] \\
& =2+\log \frac{\frac{1}{5}}{\frac{3}{7}}=2+\log \frac{7}{15}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
I & =\int_{0}^{a} \frac{d x}{\sqrt{a x-x^{2}}} \\
& \left.=\int_{0}^{a} \frac{d x}{\sqrt{-\left(x^{2}-a x+\frac{a^{2}}{4}\right.}}-\frac{a^{2}}{4}\right) \\
& =\int_{0}^{a} \frac{d x}{\sqrt{\left(\frac{a}{2}\right)^{2}-\left(x-\frac{a}{2}\right)^{2}}} \\
& =\sin ^{-1}\left(\left.\frac{x-a / 2}{a / 2} \right\rvert\,\right]_{0}^{a} \\
& =\sin ^{-1}\left(\left.\frac{2 x-a}{a}\right|_{0} ^{a}\right. \\
& =\sin ^{-1}(1)-\sin ^{a}(-1) \\
& =\sin ^{-1} 1+\sin ^{-1} 1 \\
a^{2}-x^{2} & \left.\sin ^{-1} \frac{x}{a}\right] \\
& \left.=2 \sin -1=2 \sin ^{-1}(-x)=-\sin ^{-1} x\right] \\
& =\frac{\pi}{2}=\pi
\end{aligned}
$$

Ans-6.

$$
\begin{equation*}
I=\int_{1}^{3} \frac{1}{x^{2}(x+1)} d x \tag{1}
\end{equation*}
$$

Let $\frac{1}{x^{2}(x+1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1}$
multiplying both sides of ean (1) by $x^{2}(x+1)$; we get

$$
1=A x(x+1)+B(x+1)+C x^{2}--(2)
$$

Putting $x=0$ in eqn (2): we have $1=B$
Putting $x=-1$ in eqn (2); we have $L=c$
coeff of $x^{2} ; 0=A+C$

$$
\Rightarrow A=-C=-1
$$

So from(1): we have.

$$
\begin{aligned}
& I=\int_{1}^{3-1} x d x+\int_{L}^{3} \frac{1}{x^{2}} d x+\int_{L}^{3} \frac{1}{x+1} d x \\
= & \left.\left.-\log |x|]_{1}^{3}-\frac{1}{x}\right]_{L}^{3}+\log |x+1|\right]_{L}^{3} \\
= & {[\log 3-\log 1]-\left[\left.\frac{1}{3}-1 \right\rvert\,+\log 4-\log 2\right.} \\
= & -\log 3+\frac{2}{3}+\log \frac{4}{2} \\
= & \log 2-\log 3+\frac{2}{3} \\
= & \log \frac{2}{3}+\frac{2}{3}
\end{aligned}
$$

(ii) Let $I=\int_{2}^{3} \frac{d x}{\sqrt{5 x-6-x^{2}}}$

$$
\begin{aligned}
& =\int_{2}^{3} \frac{d x}{\sqrt{-\left(x^{2}+6-5 x\right)}} \\
& =\int_{2}^{3} \frac{d x}{\sqrt{-\left\{x^{2}-5 x+\frac{25}{4}-\frac{25}{4}+6\right\}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{2}^{3} \frac{d x}{\sqrt{-\left\{\left(x-\frac{5}{2}\right)^{2}-\frac{1}{4}\right.}} \\
& =\int_{2}^{3} \frac{d x}{\sqrt{\left(\frac{1}{2}\right)^{2}-\left(x-\frac{5}{2}\right)^{2}}} \\
& =\sin ^{-1}\left[\frac{x-51^{2}}{1)^{2}}\right]_{2}^{3} \\
& =\sin ^{-1}(2 x-51]_{2}^{3} \\
& =\sin ^{-1} 1+\sin ^{-1} 1 \\
& =2 \sin ^{-1} 1=2 \times \frac{\pi}{2}=\pi
\end{aligned}
$$

(iii)

$$
\begin{aligned}
I & =\int_{1}^{3} \frac{\log x d x}{(1+x)^{2}}=\int_{1}^{3} \log x \frac{1}{(1+x)^{2}} d x \\
& \left.=\log x \frac{(1+x)^{-2+1}}{-2+1}\right]_{1}^{3}+\int_{1}^{3} \frac{1}{x} \frac{(1+x)^{-2+1}}{(-2+1)} d x \\
& \left.=-\frac{\log x}{x+1}\right]_{1}^{3}+\int_{1}^{3} \frac{1}{x \mid 1+x)} d x \\
& \left.=-\left[\frac{\log 3}{4}-\frac{\log 1}{2}\right]+\int_{1}^{3} \frac{1}{x}-\frac{1}{1+x}\right] d x \\
& =-\frac{\log 3}{4}\left[\log (x)-\log (1+x]_{1}^{3}\right. \\
& =-\frac{1}{4} \log 3+\log 3-\log 4-\log 1+\log 2 \\
& =\frac{3}{4} \log 3-\log 2^{2}+\log 2
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3}{4} \log 3-2 \log 2+\log 2 \\
& =\frac{3}{4} \log 3-\log 2
\end{aligned}
$$

Ane -7.

$$
\begin{aligned}
& 111 \int_{0}^{1} x e^{(1)} x d x \\
& \left.=x e^{x}\right]_{0}^{1}-\int_{0}^{1} 1 \cdot e^{x} d x=\left[x e^{x}-e^{x}\right]_{0}^{1} \\
& \left.=(x-1) e^{x}\right]_{0}^{1}=(1-1) e^{1}-(0-1) e^{0}=1
\end{aligned}
$$

(ii) $\int_{e}^{e^{2}} \frac{d x}{x \log x}$

Put $\log x=t \Rightarrow \frac{1}{x} d x=d t$
when $x=e \Rightarrow t=\log e=1$
when $x=e^{2} \Rightarrow t=\log e^{2}=2 \log e=2$

$$
\begin{aligned}
& \left.=\int_{1}^{2} \frac{d t}{t}=\log (t)\right]_{1}^{2}=\log 2-\log 1 \\
& =\log 2-0=\log 2
\end{aligned}
$$

(iii)

$$
\begin{aligned}
I & =\int_{L}^{2}\left(\frac{1}{x}-\frac{1}{2 x^{2}} \int^{2 x} d x\right. \\
& =\int_{L}^{2} \frac{1}{x} e^{2 x} d x-\int_{L}^{2} \frac{1}{2 x^{2}} e^{2 x} d x \\
& \left.=\frac{1}{x} \frac{e^{2 x}}{2}\right]_{L}^{2}-\int_{L}^{2}-\frac{1}{x^{2}} \frac{e^{2 x}}{2} d x-\int_{L}^{2} \frac{1}{2 x^{2}} d x
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{1}{2 x} e^{2 x}\right]_{1}^{2}+\int_{1}^{2} \frac{e^{2 x}}{2 x^{2}} d x-\int_{1}^{2} \frac{1}{2 x^{2}} e^{2 x} d x \\
& \quad=\frac{1}{4} e^{4}-\frac{1}{2} e^{2}
\end{aligned}
$$

Ans-8.
(i)

$$
\begin{aligned}
I & =\int_{0}^{\pi / 2} x^{2} \sin x d x \\
& \left.=x^{2}(-\cos x)\right]_{0}^{\pi / 2}+\int_{0}^{\pi / 2(1)} 2 x \cos x d x \\
& =-\left[\left(\frac{\pi}{2}\right)^{2} \cos \frac{\pi}{2}-0^{2} \cos 0\right]+2[x \sin x+\cos x]_{0}^{\pi / 2} \\
& =-(0-0)+2\left[\frac{\pi}{2} \sin \frac{\pi}{2}+\cos \frac{\pi}{2}-0-1\right] \\
& =2\left[\frac{\pi}{2} \times 1+0-1\right]=\pi-2
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& =-\frac{1}{12}\left[-3 \cos \pi+\frac{\cos 3 \pi}{3}+3 \cos \theta-\frac{\cos 0}{3}\right] \\
& =-\frac{1}{12}\left[-3(-1)-\frac{1}{3}+3-\frac{1}{3}\right] \\
& =-\frac{1}{12}\left[6-\frac{2}{3}\right]=-\frac{16}{36}=-\frac{4}{9}
\end{aligned}
$$

Ans-9.
(l)

$$
\begin{aligned}
& I= \int_{0}^{1} \sin ^{-1} \sqrt{x}{ }^{(2)} 1 d x \\
&=\left(\sin ^{-1} \sqrt{x} \mid x\right]_{0}^{1}-\int_{0}^{1} \frac{1}{\sqrt{1-(\sqrt{x})^{2}}} \cdot \frac{1}{2 \sqrt{x}} \cdot x d x \\
&=\left(\sin ^{-1} 1-\sin ^{-1} 0\right)^{-\frac{1}{2}} \int_{0}^{1} \frac{x d x}{x-x^{2}} \\
&= \frac{\pi}{2}+\frac{1}{4} \int_{0}^{1} \frac{(-2 x+1-1) d x}{\sqrt{x-x^{2}}} \\
&= \frac{\pi}{2}+\frac{1}{4} \int_{0}^{1}\left(x-x^{2}\right)^{-\frac{1}{2}}(-2 x+1) d x \\
&-\frac{1}{4} \int_{0}^{1} \frac{d x}{\sqrt{-\left(x^{2}-x+\frac{1}{4}-\frac{1}{4}\right)}} \\
&\left.=\frac{\pi}{2}+\frac{1}{4} \frac{\left(x-x^{2}\right)^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}\right]_{0}^{1}-\frac{1}{4} \int_{0}^{1} \frac{d x}{\left.\sqrt{\left(\frac{1}{2}\right)^{2}-\left(x-\frac{1}{2}\right.}\right|^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{\pi}{2}+\frac{1}{4}(0-0)-\frac{1}{4} \sin ^{-1}(2 x-1)\right]_{0}^{1} \\
& =\frac{\pi}{2}-\frac{1}{4}\left(2 \sin ^{-1} 1\right)=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}
\end{aligned}
$$

(ii)

$$
I=\int_{0}^{1} x^{(2)} x^{(1)} \sin ^{-1} x d x
$$

Put $\sin ^{-1} x=0 \Rightarrow x=\sin \theta$

$$
\Rightarrow d x=\cos \theta d \theta
$$

when $x=0 \Rightarrow 0=0$;
when $x=1 \Rightarrow \theta=\frac{\pi}{2}$
So $I=\int_{0}^{\pi / 2} \sin ^{2} \theta \cdot \theta \cos \theta d \theta$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} \theta \cdot\left(\sin ^{2} \theta \cos \theta\right) d \theta \\
& \left.=0 \frac{\sin ^{3} \theta}{3}\right\}_{0}^{\pi / 2}-\int_{0}^{\pi / 2} \frac{\sin ^{3} \theta}{3} d \theta \\
& =\left\{\frac{\pi}{6}(L)^{3}-0\right\}-\frac{1}{3} \int_{0}^{\pi / 2} \frac{3 \sin \theta-\sin 3 \theta}{4} d \theta \\
& =\frac{\pi}{6}-\frac{1}{12}\left[-3 \cos \theta+\frac{\cos 30}{3}\right]_{0}^{\pi / 2} \\
& =\frac{\pi}{6}-\frac{1}{12}\left[0+0+3-\frac{1}{3}\right]=\frac{\pi}{6}-\frac{2}{9}
\end{aligned}
$$

Ans -10,

$$
\begin{aligned}
& \text { (i) } \int_{0}^{a} 3 x^{2} d x=8 \\
& \left.\Rightarrow 3 \frac{x^{2}}{3}\right]_{0}^{a}=8 \Rightarrow a^{3}=8 \\
& \Rightarrow(a-2)\left(a^{2}+2 a+4\right)=0 \\
& \Rightarrow a-2=0 \Rightarrow a=2
\end{aligned}
$$

since $a^{2}+2 a+4=0$ does not given any real values of a.
(ii)

$$
\begin{align*}
& \int_{a}^{b} x^{3} d x=0 \\
\Rightarrow & \left.\frac{x^{4}}{4}\right]_{a}^{b}=0 \Rightarrow \frac{1}{4}\left(b^{4}-a^{4}\right)=0 \\
\Rightarrow & b^{4}-a^{4}=0 \\
\Rightarrow & (b-a)(b+a)\left(b^{2}-a^{2}\right)=0 \tag{1}
\end{align*}
$$

\& $\quad \int_{a}^{b} x^{2} d x=\frac{2}{3}$

$$
\begin{aligned}
& \left.\Rightarrow \frac{x^{3}}{3}\right]_{a}^{b}=\frac{2}{3} \Rightarrow \frac{1}{3}\left(b^{3}-a^{3}\right)=\frac{2}{3} \\
& \Rightarrow b^{3}-a^{3}=2 \\
& \Rightarrow(b-a)\left(b^{2}+a b+a^{2}\right)=2-(2) \\
& \quad \text { from (1);b-a=0 } \Rightarrow b=9
\end{aligned}
$$

So from (2) i $0=2$, which us false.
when $b+a=0 \Rightarrow b=-a$
So from (2); $(-2 a)\left(a^{2}-a^{2}+a^{2}\right)=2$

$$
\begin{aligned}
& \Rightarrow-2 a^{3}=2 \\
& \Rightarrow a^{3}=-1 \Rightarrow a=-1
\end{aligned}
$$

So

$$
b=1
$$

Also $b^{2}+2=0 \&(b-a)\left(b^{2}+a b+a^{2}\right)=2$ does not given any real values of a and b.
(iii) Given $f(x)=a+b x+c x^{2}-$-ii)

$$
\begin{aligned}
& \text { LHS }=\int_{0}^{1} \int(x) d x=\int_{0}^{1}\left(a+b x+c x^{2}\right) d x=\left[a x+\frac{b x^{2}}{2}+\right. \\
& =a+\frac{b}{2}+\frac{c}{3}
\end{aligned}
$$

Putting $x=0$ in eq (1) if $(0)=a$
Putting $x=\frac{1}{2}$ in an (1):

$$
\int\left(\frac{1}{2}\right)=a+\frac{b}{2}+\frac{c}{4}
$$

Putting $x=1$ in gan (1):

$$
\begin{aligned}
& f(1)=a+b+c \\
& \text { R.H.S. } \\
&=\frac{1}{6}\left[f(0)+4 f\left(\frac{1}{2}\right)+f(1)\right] \\
&= \frac{1}{6}\left[a+4\left(\left.a+\frac{b}{2}+\frac{c}{4} \right\rvert\,+a+b+c\right]\right. \\
&=+6+3 b+c]=a+\frac{b}{2}+\frac{c}{4}
\end{aligned}
$$

That L.H.S $=$ R.H.S

Hence, $\int_{0}^{1} f(x) d x=\frac{1}{6}\left[f(0)+4 f\left(\frac{1}{2}\right)+f(1)\right]$
(iv)

$$
\begin{aligned}
& \int_{0}^{k} \frac{d x}{2+8 x^{2}}=\frac{\pi}{16} \\
\Rightarrow & \frac{1}{8} \int_{0}^{k} \frac{d x}{x^{2}+\left(\frac{1}{2}\right)^{2}}=\frac{\pi}{16} \\
\Rightarrow & \frac{1}{8} \times \frac{1}{\frac{1}{2}} \tan ^{-1}\left(\left.\frac{x}{11^{2}}\right|_{0} ^{k}=\frac{\pi}{16}\right. \\
= & \frac{1}{4}\left[\tan ^{-1}(2 k)-\tan ^{-1} 0\right]=\frac{\pi}{16} \\
\Rightarrow & \tan ^{-1} 2 k=\frac{\pi}{4} \Rightarrow 2 k=\tan \frac{\pi}{4}=1
\end{aligned}
$$

