

EXERCISE 2A PAGE: 21

1. Compare the fraction:

i. (5/8)and (7/12)

Solution:-

By cross multiplication, we have:

$$5 \times 12 = 60$$
 and $8 \times 7 = 56$

But,

ii. (5/9)and (11/15)

Solution:-

By cross multiplication, we have:

$$5 \times 15 = 75$$
 and $9 \times 11 = 99$

But,

iii. (11/12) and (15/16)

Solution:-

By cross multiplication, we have:

$$11 \times 16 = 176$$
 and $12 \times 15 = 180$

But,

2. Arrange the following fraction in ascending order:

i. (3/4), (5/6), (7/9), (11/12)

Solution:-

LCM of 4, 6, 9,
$$12 = 2 \times 2 \times 3 \times 3 = 36$$

Now, let us change each of the given fraction into an equivalent fraction having 36 as the denominator.

$$[(3/4) \times (9/9)] = (27/36)$$

$$[(5/6) \times (6/6)] = (30/36)$$

$$[(7/9) \times (4/4)] = (28/360)$$

$$[(11/12) \times (3/3)] = (33/36)$$

Clearly,

Hence,

Hence, the given fractions in ascending order are (3/4), (7/9), (5/6), (11/12)

EXERCISE 2A PAGE: 21

1. Compare the fraction:

i. (5/8)and (7/12)

Solution:-

By cross multiplication, we have:

$$5 \times 12 = 60$$
 and $8 \times 7 = 56$

But,

ii. (5/9)and (11/15)

Solution:-

By cross multiplication, we have:

$$5 \times 15 = 75$$
 and $9 \times 11 = 99$

But,

iii. (11/12) and (15/16)

Solution:-

By cross multiplication, we have:

$$11 \times 16 = 176$$
 and $12 \times 15 = 180$

But,

2. Arrange the following fraction in ascending order:

i. (3/4), (5/6), (7/9), (11/12)

Solution:-

LCM of 4, 6, 9,
$$12 = 2 \times 2 \times 3 \times 3 = 36$$

Now, let us change each of the given fraction into an equivalent fraction having 36 as the denominator.

$$[(3/4) \times (9/9)] = (27/36)$$

$$[(5/6) \times (6/6)] = (30/36)$$

$$[(7/9) \times (4/4)] = (28/360)$$

$$[(11/12) \times (3/3)] = (33/36)$$

Clearly,

Hence,

Hence, the given fractions in ascending order are (3/4), (7/9), (5/6), (11/12)

=-1738

iv. -489 and -324

Solution:-

We know that,

The above question can be written as,

$$= [(-489) + (-324)]$$

Then,

Using the rule for addition of integers with same signs, we have to do addition:

=-489-324

=-(489+324)

(Take out the -ve sign as common and do the addition)

=-813

v. -1000 and 438

Solution:-

We know that,

The above question can be written as,

Then,

Using the rule for addition of integers with unlike signs, we have to do subtraction:

(Take out the -ve sign outside and do subtract smaller from bigger number)

=-562

vi. -238 and 500

Solution:-

We know that,

The above question can be written as,

Then,

Using the rule for addition of integers with unlike signs, we have to do subtraction:

(Take out the -ve sign outside and do subtract smaller from bigger number)

=262

3. Find the additive inverse of:

i. -83

Solution:-

=83

(\because Additive inverse of the integer is the change of sign i.e. positive to negative and negative to positive with the same number)

ii. 256

Solution:-

=-1738

iv. -489 and -324

Solution:-

We know that,

The above question can be written as,

$$= [(-489) + (-324)]$$

Then,

Using the rule for addition of integers with same signs, we have to do addition:

=-489-324

=-(489+324)

(Take out the -ve sign as common and do the addition)

=-813

v. -1000 and 438

Solution:-

We know that,

The above question can be written as,

Then,

Using the rule for addition of integers with unlike signs, we have to do subtraction:

(Take out the -ve sign outside and do subtract smaller from bigger number)

=-562

vi. -238 and 500

Solution:-

We know that,

The above question can be written as,

Then,

Using the rule for addition of integers with unlike signs, we have to do subtraction:

(Take out the -ve sign outside and do subtract smaller from bigger number)

=262

3. Find the additive inverse of:

i. -83

Solution:-

=83

(\because Additive inverse of the integer is the change of sign i.e. positive to negative and negative to positive with the same number)

ii. 256

Solution:-

=-1738

iv. -489 and -324

Solution:-

We know that,

The above question can be written as,

Then,

Using the rule for addition of integers with same signs, we have to do addition:

=-489-324

=-(489+324)

(Take out the -ve sign as common and do the addition)

=-813

v. -1000 and 438

Solution:-

We know that,

The above question can be written as,

Then,

Using the rule for addition of integers with unlike signs, we have to do subtraction:

=-(1000-438)

(Take out the -ve sign outside and do subtract smaller from bigger number)

=-562

vi. -238 and 500

Solution:-

We know that,

The above question can be written as,

Then,

Using the rule for addition of integers with unlike signs, we have to do subtraction:

=-(238-500)

(Take out the -ve sign outside and do subtract smaller from bigger number)

=262

3. Find the additive inverse of:

i. -83

Solution:-

=83

(\because Additive inverse of the integer is the change of sign i.e. positive to negative and negative to positive with the same number)

ii. 256

Solution:-

=-1738

iv. -489 and -324

Solution:-

We know that,

The above question can be written as,

Then,

Using the rule for addition of integers with same signs, we have to do addition:

=-489-324

=-(489+324)

(Take out the -ve sign as common and do the addition)

=-813

v. -1000 and 438

Solution:-

We know that,

The above question can be written as,

Then,

Using the rule for addition of integers with unlike signs, we have to do subtraction:

=-(1000-438)

(Take out the -ve sign outside and do subtract smaller from bigger number)

=-562

vi. -238 and 500

Solution:-

We know that,

The above question can be written as,

Then,

Using the rule for addition of integers with unlike signs, we have to do subtraction:

=-(238-500)

(Take out the -ve sign outside and do subtract smaller from bigger number)

=262

3. Find the additive inverse of:

i. -83

Solution:-

=83

(\because Additive inverse of the integer is the change of sign i.e. positive to negative and negative to positive with the same number)

ii. 256

Solution:-

$$= [3(4/5)] = (18/5)$$

$$= [2(3/10)] = (23/10)$$

$$= [1(1/15)] = (16/15)$$
Then,
$$(19/5) + (23/10) + (16/15)$$
LCM of 5, 10, 15 = 30

Now, let us change each of the given fraction into an equivalent fraction having 30 as the denominator.

$$= [(19/5) \times (6/6)] = (114/30)$$

$$= [(23/10) \times (3/3)] = (69/30)$$

$$= [(16/15) \times (2/2)] = (32/30)$$
Now,
$$= (114/30) + (69/30) + (32/30)$$

$$= [(114+69+32)/30]$$

$$= (215/30)$$

$$= [7 (5/30)]$$

$$= [7 (1/5)]$$

6. Find the difference:

Solution:-

The subtraction of fraction can be performed in a manner similar to that of addition.

For subtracting two like fractions, the numerators are subtract and the denominator remains the same.

$$= (5-2)/7$$

= $(3/7)$

ii. (5/6) - (3/4)

Solution:-

For subtraction of two unlike fractions, first change them to the like fractions.

LCM of
$$6, 4 = 12$$

Now, let us change each of the given fraction into an equivalent fraction having 12 as the denominator.

Now,

$$= [(5/6) \times (2/2)] = (10/12)$$

$$= [(3/4) \times (3/3)] = (9/12)$$

$$= (10/12)-(9/12)$$

$$= [(10-9)/12]$$

$$= (1/12)$$

iii. [3(1/5)] - (7/10)

Solution:-

Convert mixed fraction into improper fraction,

$$= [3(1/5)] = (16/5)$$

= $(16/5)$ - $(7/10)$

For subtraction of two unlike fractions, first change them to the like fractions.

$$= [3(4/5)] = (18/5)$$

$$= [2(3/10)] = (23/10)$$

$$= [1(1/15)] = (16/15)$$
Then,
$$(19/5) + (23/10) + (16/15)$$
LCM of 5, 10, 15 = 30

Now, let us change each of the given fraction into an equivalent fraction having 30 as the denominator.

$$= [(19/5) \times (6/6)] = (114/30)$$

$$= [(23/10) \times (3/3)] = (69/30)$$

$$= [(16/15) \times (2/2)] = (32/30)$$
Now,
$$= (114/30) + (69/30) + (32/30)$$

$$= [(114+69+32)/30]$$

$$= (215/30)$$

$$= [7 (5/30)]$$

$$= [7 (1/5)]$$

6. Find the difference:

Solution:-

The subtraction of fraction can be performed in a manner similar to that of addition.

For subtracting two like fractions, the numerators are subtract and the denominator remains the same.

$$= (5-2)/7$$

= $(3/7)$

ii. (5/6) - (3/4)

Solution:-

For subtraction of two unlike fractions, first change them to the like fractions.

LCM of
$$6, 4 = 12$$

Now, let us change each of the given fraction into an equivalent fraction having 12 as the denominator.

Now,

$$= [(5/6) \times (2/2)] = (10/12)$$

$$= [(3/4) \times (3/3)] = (9/12)$$

$$= (10/12)-(9/12)$$

$$= [(10-9)/12]$$

$$= (1/12)$$

iii. [3(1/5)] - (7/10)

Solution:-

Convert mixed fraction into improper fraction,

$$= [3(1/5)] = (16/5)$$

= $(16/5)$ - $(7/10)$

For subtraction of two unlike fractions, first change them to the like fractions.

LCM of 5, 10 = 10

Now, let us change each of the given fraction into an equivalent fraction having 10 as the denominator.

$$= [(16/5) \times (2/2)] = (32/10)$$

$$= [(7/10) \times (1/1)] = (7/10)$$
Then,
$$= (32/10) - (7/10)$$

$$= (32-7)/10$$

$$= (25/10) \qquad ... [÷ by 5]$$

$$= (5/2)$$

$$= [2(1/2)]$$

iv. 7 - [4(2/3)]

Solution:-

Convert mixed fraction into improper fraction, and then find the difference.

v. [3(3/10)] - [1(7/15)]

Solution:-

Convert mixed fraction into improper fraction, and then find the difference.

We get,

= (33/10) - (22/15)

LCM of 10, 15 = 30

Now, let us change each of the given fraction into an equivalent fraction having 10 as the denominator.

$$= [(33/10) \times (3/3)] = (99/30)$$

$$= [(22/15) \times (2/2)] = (44/30)$$
Then,
$$= (99/30) - (44/30)$$

$$= (99 - 44)/30$$

$$= (55/30)$$

$$= (11/6)$$

$$= [1(5/6)]$$

vi. [2(5/9)] - [1(7/15)]

Solution:-

Convert mixed fraction into improper fraction, and then find the difference.

$$= [2(5/9)] = (23/9)$$

= $[1(7/15)] = (22/15)$

We get,

LCM of 5, 10 = 10

Now, let us change each of the given fraction into an equivalent fraction having 10 as the denominator.

$$= [(16/5) \times (2/2)] = (32/10)$$

$$= [(7/10) \times (1/1)] = (7/10)$$
Then,
$$= (32/10) - (7/10)$$

$$= (32-7)/10$$

$$= (25/10) \qquad ... [÷ by 5]$$

$$= (5/2)$$

$$= [2(1/2)]$$

iv. 7 - [4(2/3)]

Solution:-

Convert mixed fraction into improper fraction, and then find the difference.

v. [3(3/10)] - [1(7/15)]

Solution:-

Convert mixed fraction into improper fraction, and then find the difference.

We get,

= (33/10) - (22/15)

LCM of 10, 15 = 30

Now, let us change each of the given fraction into an equivalent fraction having 10 as the denominator.

$$= [(33/10) \times (3/3)] = (99/30)$$

$$= [(22/15) \times (2/2)] = (44/30)$$
Then,
$$= (99/30) - (44/30)$$

$$= (99 - 44)/30$$

$$= (55/30)$$

$$= (11/6)$$

$$= [1(5/6)]$$

vi. [2(5/9)] - [1(7/15)]

Solution:-

Convert mixed fraction into improper fraction, and then find the difference.

$$= [2(5/9)] = (23/9)$$

= $[1(7/15)] = (22/15)$

We get,

Now, let us change each of the given fraction into an equivalent fraction having 45 as the denominator.

$$= [(23/9) \times (5/5)] = (115/45)$$

$$= [(22/15) \times (3/3)] = (66/45)$$
Then,
$$= (115/45) - (66/45)$$

$$= (115 - 66)/45$$

$$= (49/45)$$

$$= [1(4/45)]$$

7. Simplify:

i.
$$(2/3) + (5/6) - (1/9)$$

Solution:-

LCM of 3, 6, 9 = 18

Now, let us change each of the given fraction into an equivalent fraction having 18 as the denominator.

$$= (2/3) \times (6/6) = (12/18)$$

$$= (5/6) \times (3/3) = (15/18)$$

$$= (1/9) \times (2/2) = (2/18)$$
Then,
$$= (12/18) + (15/18) - (2/18)$$

$$= (12+15-2)/18$$

$$= (27-2)/18$$

$$= (25/18)$$

$$= [1(7/18)]$$

ii. 8 - [4(1/2)] - [2(1/4)]

Solution:-

Convert mixed fraction into improper fraction, and then find the difference.

$$= [4(1/2)] = (9/2)$$
$$= [2(1/4)] = (9/4)$$

LCM of 1, 2, 4 = 4

Now, let us change each of the given fraction into an equivalent fraction having 4 as the denominator.

$$= (9/2) \times (2/2) = (18/4)$$

$$= (9/4) \times (1/1) = (9/4)$$

$$= (8/1) \times (4/4) = (32/4)$$
Then,
$$= (32/4) - (18/4) - (9/4)$$

$$= [(32-18-9)/4]$$

$$= [(32-27)/4]$$

$$= (5/4)$$

$$= [1(1/4)]$$

Now, let us change each of the given fraction into an equivalent fraction having 45 as the denominator.

$$= [(23/9) \times (5/5)] = (115/45)$$

$$= [(22/15) \times (3/3)] = (66/45)$$
Then,
$$= (115/45) - (66/45)$$

$$= (115 - 66)/45$$

$$= (49/45)$$

$$= [1(4/45)]$$

7. Simplify:

i.
$$(2/3) + (5/6) - (1/9)$$

Solution:-

LCM of 3, 6, 9 = 18

Now, let us change each of the given fraction into an equivalent fraction having 18 as the denominator.

$$= (2/3) \times (6/6) = (12/18)$$

$$= (5/6) \times (3/3) = (15/18)$$

$$= (1/9) \times (2/2) = (2/18)$$
Then,
$$= (12/18) + (15/18) - (2/18)$$

$$= (12+15-2)/18$$

$$= (27-2)/18$$

$$= (25/18)$$

$$= [1(7/18)]$$

ii. 8 - [4(1/2)] - [2(1/4)]

Solution:-

Convert mixed fraction into improper fraction, and then find the difference.

$$= [4(1/2)] = (9/2)$$
$$= [2(1/4)] = (9/4)$$

LCM of 1, 2, 4 = 4

Now, let us change each of the given fraction into an equivalent fraction having 4 as the denominator.

$$= (9/2) \times (2/2) = (18/4)$$

$$= (9/4) \times (1/1) = (9/4)$$

$$= (8/1) \times (4/4) = (32/4)$$
Then,
$$= (32/4) - (18/4) - (9/4)$$

$$= [(32-18-9)/4]$$

$$= [(32-27)/4]$$

$$= (5/4)$$

$$= [1(1/4)]$$

iii. [8(5/6)] – [3(3/8)] + [1(7/12)]

Solution:-

First convert each mixed fraction into improper fraction.

We get,

```
= [8(5/6)] = (53/6)
= [3(3/8)] = (27/8)
= [1(7/12)] = (19/12)
```

Then,

(53/6)- (27/8) - (19/12)

LCM of 6, 8, 12 = 24

Now, let us change each of the given fraction into an equivalent fraction having 24 as the denominator.

$$= [(53/6) \times (4/4)] = (212/24)$$

$$= [(27/8) \times (3/3)] = (81/24)$$

$$= [(19/12) \times (2/2)] = (38/24)$$
Now,
$$= (212/24) - (81/24) - (38/24)$$

$$= [(212-81+38)/24]$$

$$= [(250-81/24)]$$

$$= (169/24)$$

$$= [7(1/24)]$$

8. Aneeta bought [3(3/4)] kg apples and [4(1/2)] kg guava. What is the total weight of fruits purchased by her?

Solution:-

The total weight of fruits bought by Aneeta = [3(3/4)] + [4(1/2)]

We have

First convert each mixed fraction into improper fraction

Then,

= (15/4) + (9/2)

LCM of 4, 2 = 4

Now, let us change each of the given fraction into an equivalent fraction having 4 as the denominator

$$= (15/4) \times (1/1) = (15/4)$$

$$= (9/2) \times (2/2) = (18/4)$$

$$= (15/4) + (18/4)$$

$$= (15 + 18)/4)$$

$$= (33/4)$$

$$= [8(1/4)]$$

The total weight of fruits purchased by Aneeta is [8(1/4)] kg

iii. [8(5/6)] – [3(3/8)] + [1(7/12)]

Solution:-

First convert each mixed fraction into improper fraction.

We get,

```
= [8(5/6)] = (53/6)
= [3(3/8)] = (27/8)
= [1(7/12)] = (19/12)
```

Then,

(53/6)- (27/8) - (19/12)

LCM of 6, 8, 12 = 24

Now, let us change each of the given fraction into an equivalent fraction having 24 as the denominator.

$$= [(53/6) \times (4/4)] = (212/24)$$

$$= [(27/8) \times (3/3)] = (81/24)$$

$$= [(19/12) \times (2/2)] = (38/24)$$
Now,
$$= (212/24) - (81/24) - (38/24)$$

$$= [(212-81+38)/24]$$

$$= [(250-81/24)]$$

$$= (169/24)$$

$$= [7(1/24)]$$

8. Aneeta bought [3(3/4)] kg apples and [4(1/2)] kg guava. What is the total weight of fruits purchased by her?

Solution:-

The total weight of fruits bought by Aneeta = [3(3/4)] + [4(1/2)]

We have

First convert each mixed fraction into improper fraction

Then,

= (15/4) + (9/2)

LCM of 4, 2 = 4

Now, let us change each of the given fraction into an equivalent fraction having 4 as the denominator

$$= (15/4) \times (1/1) = (15/4)$$

$$= (9/2) \times (2/2) = (18/4)$$

$$= (15/4) + (18/4)$$

$$= (15 + 18)/4)$$

$$= (33/4)$$

$$= [8(1/4)]$$

The total weight of fruits purchased by Aneeta is [8(1/4)] kg

EXERCISE 2B PAGE: 26

1. Find the product:

i. (3/5) × (7/11)

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

ii. (5/8) × (4/7)

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

iii. (4/9) × (15/16)

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

iv. $(2/5) \times 15$

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

v. (8/15) × 20

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

EXERCISE 2B PAGE: 26

1. Find the product:

i. (3/5) × (7/11)

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

ii. (5/8) × (4/7)

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

iii. (4/9) × (15/16)

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

iv. $(2/5) \times 15$

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

v. (8/15) × 20

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

vi. (5/8) × 1000

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then

=
$$(5 \times 1000)/(8 \times 1)$$

= $(5000/8)$... [÷ by 8]

= 625

vii. $[3(1/8)] \times (16)$

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

viii. [2(4/15)] × (12)

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

ix. $[3(6/7)] \times [4(2/3)]$

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$x. \qquad [9(1/2)] \times [1(9/19)]$

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

vi. (5/8) × 1000

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then

=
$$(5 \times 1000)/(8 \times 1)$$

= $(5000/8)$... [÷ by 8]

= 625

vii. $[3(1/8)] \times (16)$

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

viii. [2(4/15)] × (12)

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

ix. $[3(6/7)] \times [4(2/3)]$

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$x. \qquad [9(1/2)] \times [1(9/19)]$

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then, = $(19/2) \times (28/19)$ = $(19 \times 28)/(2 \times 19)$ = (532/38)= 14

xi. $[4(1/8)] \times [2(10/11)]$

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

= (33/8) × (32/11) = (33 × 32)/ (8 × 11) = (1056/88) = 12

xii. $[5(5/6)] \times [1(5/7)]$

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

= (35/6) × (12/7) = (35 × 12)/ (6 × 7) = (420/42) = 10

2. Simplify:

i. $(2/3) \times (5/44) \times (33/35)$

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

 $= (2 \times 5 \times 33) / (3 \times 44 \times 35)$

On simplifying we get,

= (1×1×11) / (1×22×7) = (11/154) = (1/14)

ii. (12/25) × (15/28) × (35/36)

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

 $= (12 \times 15 \times 35) / (25 \times 28 \times 36)$

On simplifying we get,

 $= (1 \times 3 \times 5) / (5 \times 4 \times 3)$

Again simplifying we get,

Then, = $(19/2) \times (28/19)$ = $(19 \times 28)/(2 \times 19)$ = (532/38)= 14

xi. $[4(1/8)] \times [2(10/11)]$

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

= (33/8) × (32/11) = (33 × 32)/ (8 × 11) = (1056/88) = 12

xii. $[5(5/6)] \times [1(5/7)]$

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

= (35/6) × (12/7) = (35 × 12)/ (6 × 7) = (420/42) = 10

2. Simplify:

i. $(2/3) \times (5/44) \times (33/35)$

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

 $= (2 \times 5 \times 33) / (3 \times 44 \times 35)$

On simplifying we get,

= (1×1×11) / (1×22×7) = (11/154) = (1/14)

ii. (12/25) × (15/28) × (35/36)

Solution:-

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

 $= (12 \times 15 \times 35) / (25 \times 28 \times 36)$

On simplifying we get,

 $= (1 \times 3 \times 5) / (5 \times 4 \times 3)$

Again simplifying we get,

Then, = $(45 \times 5)/(1 \times 9)$ On simplifying we get, = $(5 \times 5)/(1 \times 1)$ = 25

iv. (7/50) of 1000

Solution:-

We have:

= (7/50) of (1000/1)

This can be written as,

$$=(1000/1)\times(7/50)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (1000 \times 7)/(1 \times 50)$$

On simplifying we get,

$$= (20 \times 7) / (1 \times 1)$$

= 140

v. (3/20) of 1020

Solution:-

We have:

This can be written as,

$$=(1020/1)\times(3/20)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (1020 \times 3)/(1 \times 20)$$

On simplifying we get,

$$= (51 \times 3)/(1 \times 1)$$

= 153

vi. (5/11) of ₹ 220

Solution:-

We have:

This can be written as,

$$=(220/1)\times(5/11)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (220 \times 5)/(1 \times 11)$$

On simplifying we get,

$$= (20 \times 5) / (1 \times 1)$$

= ₹ 100

Then, = $(45 \times 5)/(1 \times 9)$ On simplifying we get, = $(5 \times 5)/(1 \times 1)$ = 25

iv. (7/50) of 1000

Solution:-

We have:

= (7/50) of (1000/1)

This can be written as,

$$=(1000/1)\times(7/50)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (1000 \times 7)/(1 \times 50)$$

On simplifying we get,

$$= (20 \times 7) / (1 \times 1)$$

= 140

v. (3/20) of 1020

Solution:-

We have:

This can be written as,

$$=(1020/1)\times(3/20)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (1020 \times 3)/(1 \times 20)$$

On simplifying we get,

$$= (51 \times 3)/(1 \times 1)$$

= 153

vi. (5/11) of ₹ 220

Solution:-

We have:

This can be written as,

$$=(220/1)\times(5/11)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (220 \times 5)/(1 \times 11)$$

On simplifying we get,

$$= (20 \times 5) / (1 \times 1)$$

= ₹ 100

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

By Converting mixed fraction into improper fraction we get,

$$= (49/16) \times (52/7) \times (64/39)$$

On simplifying we get,

$$= (7 \times 4 \times 4) / (1 \times 1 \times 3)$$

$$=(112)/(3)$$

$$= [37(1/3)]$$

3. Find:

i. (1/3) of 24

Solution:-

We have:

$$= (1/3) \text{ of } (24/1)$$

This can be written as,

$$= (24/1) \times (1/3)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (24 \times 1)/(1 \times 3)$$

$$=(24/3)$$

ii. (3/4) of 32

Solution:-

We have:

$$= (3/4) \text{ of } (32/1)$$

This can be written as,

$$=(32/1)\times(3/4)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (32 \times 3)/(1 \times 4)$$

On simplifying we get,

$$= (8 \times 3) / (1 \times 1)$$

iii. (5/9) of 45

Solution:-

We have:

This can be written as,

$$= (45/1) \times (5/9)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

By Converting mixed fraction into improper fraction we get,

$$= (49/16) \times (52/7) \times (64/39)$$

On simplifying we get,

$$= (7 \times 4 \times 4) / (1 \times 1 \times 3)$$

$$=(112)/(3)$$

$$= [37(1/3)]$$

3. Find:

i. (1/3) of 24

Solution:-

We have:

$$= (1/3) \text{ of } (24/1)$$

This can be written as,

$$= (24/1) \times (1/3)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (24 \times 1)/(1 \times 3)$$

$$=(24/3)$$

ii. (3/4) of 32

Solution:-

We have:

$$= (3/4) \text{ of } (32/1)$$

This can be written as,

$$=(32/1)\times(3/4)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (32 \times 3)/(1 \times 4)$$

On simplifying we get,

$$= (8 \times 3) / (1 \times 1)$$

iii. (5/9) of 45

Solution:-

We have:

This can be written as,

$$= (45/1) \times (5/9)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then, = $(45 \times 5)/(1 \times 9)$ On simplifying we get, = $(5 \times 5)/(1 \times 1)$ = 25

iv. (7/50) of 1000

Solution:-

We have:

= (7/50) of (1000/1)

This can be written as,

$$=(1000/1)\times(7/50)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (1000 \times 7)/(1 \times 50)$$

On simplifying we get,

$$= (20 \times 7) / (1 \times 1)$$

= 140

v. (3/20) of 1020

Solution:-

We have:

This can be written as,

$$=(1020/1)\times(3/20)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (1020 \times 3)/(1 \times 20)$$

On simplifying we get,

$$= (51 \times 3)/(1 \times 1)$$

= 153

vi. (5/11) of ₹ 220

Solution:-

We have:

This can be written as,

$$=(220/1)\times(5/11)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (220 \times 5)/(1 \times 11)$$

On simplifying we get,

$$= (20 \times 5) / (1 \times 1)$$

= ₹ 100

Then, = $(45 \times 5)/(1 \times 9)$ On simplifying we get, = $(5 \times 5)/(1 \times 1)$ = 25

iv. (7/50) of 1000

Solution:-

We have:

= (7/50) of (1000/1)

This can be written as,

$$=(1000/1)\times(7/50)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (1000 \times 7)/(1 \times 50)$$

On simplifying we get,

$$= (20 \times 7) / (1 \times 1)$$

= 140

v. (3/20) of 1020

Solution:-

We have:

This can be written as,

$$=(1020/1)\times(3/20)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (1020 \times 3)/(1 \times 20)$$

On simplifying we get,

$$= (51 \times 3)/(1 \times 1)$$

= 153

vi. (5/11) of ₹ 220

Solution:-

We have:

This can be written as,

$$=(220/1)\times(5/11)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (220 \times 5)/(1 \times 11)$$

On simplifying we get,

$$= (20 \times 5) / (1 \times 1)$$

= ₹ 100

vii. (4/9) of 54 meters

Solution:-

We have:

$$= (4/9) \text{ of } (54/1)$$

This can be written as,

$$= (54/1) \times (4/9)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (54 \times 4)/(1 \times 9)$$

On simplifying we get,

$$= (6 \times 4) / (1 \times 1)$$

= 24 meters

viii. (6/7) of 35 liters

Solution:-

We have:

$$= (6/7) \text{ of } (35/1)$$

This can be written as,

$$= (35/1) \times (6/7)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (35 \times 6)/(1 \times 7)$$

On simplifying we get,

$$= (5 \times 6) / (1 \times 1)$$

= 30 liters

ix. (1/6) of an hour

Solution:-

The above question can be written as,

$$= (1/6)$$
 of 60 min

We have:

$$= (1/6) \text{ of } (60/1)$$

This can be written as,

$$= (60/1) \times (1/6)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (60 \times 1)/(6 \times 1)$$

On simplifying we get,

$$= (10 \times 1)/(1 \times 1)$$

= 10 min

x. (5/6) of an year

Solution:-

vii. (4/9) of 54 meters

Solution:-

We have:

$$= (4/9) \text{ of } (54/1)$$

This can be written as,

$$= (54/1) \times (4/9)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (54 \times 4)/(1 \times 9)$$

On simplifying we get,

$$= (6 \times 4) / (1 \times 1)$$

= 24 meters

viii. (6/7) of 35 liters

Solution:-

We have:

$$= (6/7) \text{ of } (35/1)$$

This can be written as,

$$= (35/1) \times (6/7)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (35 \times 6)/(1 \times 7)$$

On simplifying we get,

$$= (5 \times 6) / (1 \times 1)$$

= 30 liters

ix. (1/6) of an hour

Solution:-

The above question can be written as,

$$= (1/6)$$
 of 60 min

We have:

$$= (1/6) \text{ of } (60/1)$$

This can be written as,

$$= (60/1) \times (1/6)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (60 \times 1)/(6 \times 1)$$

On simplifying we get,

$$= (10 \times 1)/(1 \times 1)$$

= 10 min

x. (5/6) of an year

Solution:-

The above question can be written as,

$$= (5/6)$$
 of 12 months

We have:

$$= (5/6) \text{ of } (12/1)$$

This can be written as,

$$= (12/1) \times (5/6)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (12 \times 5)/(1 \times 6)$$

On simplifying we get,

$$= (2 \times 5)/(1 \times 1)$$

= 10 months

xi. (7/20) of a kg

Solution:-

The above question can be written as,

$$= (7/20)$$
 of 1000 grams

We have:

This can be written as,

$$=(1000/1)\times(7/20)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (1000 \times 7)/(1 \times 20)$$

On simplifying we get,

$$= (50 \times 7)/(1 \times 1)$$

= 350 grams

xii. (9/20) of a meter

Solution:-

The above question can be written as,

$$= (9/20)$$
 of 100 cm

We have:

This can be written as,

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (100 \times 9)/(1 \times 20)$$

On simplifying we get,

$$= (5 \times 9) / (1 \times 1)$$

= 45 cm

xiii. (7/8) of a day

The above question can be written as,

$$= (5/6)$$
 of 12 months

We have:

$$= (5/6) \text{ of } (12/1)$$

This can be written as,

$$= (12/1) \times (5/6)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (12 \times 5)/(1 \times 6)$$

On simplifying we get,

$$= (2 \times 5)/(1 \times 1)$$

= 10 months

xi. (7/20) of a kg

Solution:-

The above question can be written as,

$$= (7/20)$$
 of 1000 grams

We have:

This can be written as,

$$=(1000/1)\times(7/20)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (1000 \times 7)/(1 \times 20)$$

On simplifying we get,

$$= (50 \times 7)/(1 \times 1)$$

= 350 grams

xii. (9/20) of a meter

Solution:-

The above question can be written as,

$$= (9/20)$$
 of 100 cm

We have:

This can be written as,

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (100 \times 9)/(1 \times 20)$$

On simplifying we get,

$$= (5 \times 9) / (1 \times 1)$$

= 45 cm

xiii. (7/8) of a day

Solution:-

The above question can be written as,

$$= (7/8)$$
 of 24 hours

We have:

$$= (7/8) \text{ of } (24/1)$$

This can be written as,

$$= (24/1) \times (7/8)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (24 \times 7)/(1 \times 8)$$

On simplifying we get,

$$= (3 \times 7) / (1 \times 1)$$

= 21 hours

xiv. (3/7) of a week

Solution:-

The above question can be written as,

$$= (3/7)$$
 of 7 days

We have:

$$= (3/7) \text{ of } (7/1)$$

This can be written as,

$$= (7/1) \times (3/7)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (7 \times 3)/(1 \times 7)$$

On simplifying we get,

$$= (1 \times 3) / (1 \times 1)$$

= 3 days

xv. (7/50) of a liter

Solution:-

The above question can be written as,

We have:

This can be written as,

$$=(1000/1)\times(7/50)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (1000 \times 7)/(1 \times 50)$$

On simplifying we get,

$$= (20 \times 7)/(1 \times 1)$$

= 140 ml

Solution:-

The above question can be written as,

$$= (7/8)$$
 of 24 hours

We have:

$$= (7/8) \text{ of } (24/1)$$

This can be written as,

$$= (24/1) \times (7/8)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (24 \times 7)/(1 \times 8)$$

On simplifying we get,

$$= (3 \times 7) / (1 \times 1)$$

= 21 hours

xiv. (3/7) of a week

Solution:-

The above question can be written as,

$$= (3/7)$$
 of 7 days

We have:

$$= (3/7) \text{ of } (7/1)$$

This can be written as,

$$= (7/1) \times (3/7)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (7 \times 3)/(1 \times 7)$$

On simplifying we get,

$$= (1 \times 3) / (1 \times 1)$$

= 3 days

xv. (7/50) of a liter

Solution:-

The above question can be written as,

We have:

This can be written as,

$$=(1000/1)\times(7/50)$$

By the rule Multiplication of fraction,

Product of fraction = (product of numerator)/ (product of denominator)

Then,

$$= (1000 \times 7)/(1 \times 50)$$

On simplifying we get,

$$= (20 \times 7)/(1 \times 1)$$

= 140 ml

Apples are sold at ₹ [48(4/5)] per kg. What is the cost of [3(3/4)] kg of apples? Solution:-

From the question,

The cost of 1 kg of apples = [48(4/5)] = (244/5)

Therefore, the cost of [3(3/4)] kg of apples = (15/4)

Then,

$$= (244/5) \times (15/4)$$
$$= (244 \times 15) / (5 \times 4)$$

On simplifying we get,

$$= (61 \times 3) / (1 \times 1)$$

= ₹ 183

Hence, the cost of [3(3/4)] kg is ₹ 183

Cloth is being sold at ₹ [42(1/2)] per meter. What is the cost of [5(3/5)] meters of this cloth? Solution:-

From the question,

The cost of 1 meter of cloth = $\mathbb{Z}[42(1/2)] = (85/2)$

Therefore, the cost of [5(3/5)] meters of cloth = (28/5)

Then,

$$= (85 \times 28) / (2 \times 5)$$

On simplifying we get,

$$= (17 \times 14) / (1 \times 1)$$

Hence, the cost of [5(3/5)] meters of cloth is $\stackrel{?}{\stackrel{?}{\sim}} 238$.

6. A car covers a certain distance at a uniform speed of [66(2/3)] km per hour. How much distance will it cover in 9 hours?

Solution:-

From the question,

The total distance covered by a car in 1 hour = [66(2/3)] km = (200/3)

Therefore, the distance covered by a car in 9 hour = $(200/3) \times 9$

Then,

$$= (200/3) \times (9/1)$$

$$= (200 \times 9) / (3 \times 1)$$

On simplifying we get,

$$= (200 \times 3) / (1 \times 1)$$

$$= 600 \text{ km}$$

Hence, the distance covered by a car in 9 hour is 600 km.

7. One tin holds [12(3/4)] liters of oil. How many liters of oil can 26 such tins hold? Solution:-

From the question,

The total amount of oil in 1 tin = [12(3/4)] liters = (51/4)

Therefore, the amount of oil in 26 such tins = $(51/4) \times 26$

Then,

$$= (51/4) \times (26/1)$$

Apples are sold at ₹ [48(4/5)] per kg. What is the cost of [3(3/4)] kg of apples? Solution:-

From the question,

The cost of 1 kg of apples = [48(4/5)] = (244/5)

Therefore, the cost of [3(3/4)] kg of apples = (15/4)

Then,

$$= (244/5) \times (15/4)$$
$$= (244 \times 15) / (5 \times 4)$$

On simplifying we get,

$$= (61 \times 3) / (1 \times 1)$$

= ₹ 183

Hence, the cost of [3(3/4)] kg is ₹ 183

Cloth is being sold at ₹ [42(1/2)] per meter. What is the cost of [5(3/5)] meters of this cloth? Solution:-

From the question,

The cost of 1 meter of cloth = $\mathbb{Z}[42(1/2)] = (85/2)$

Therefore, the cost of [5(3/5)] meters of cloth = (28/5)

Then,

$$= (85 \times 28) / (2 \times 5)$$

On simplifying we get,

$$= (17 \times 14) / (1 \times 1)$$

Hence, the cost of [5(3/5)] meters of cloth is $\stackrel{?}{\stackrel{?}{\sim}} 238$.

6. A car covers a certain distance at a uniform speed of [66(2/3)] km per hour. How much distance will it cover in 9 hours?

Solution:-

From the question,

The total distance covered by a car in 1 hour = [66(2/3)] km = (200/3)

Therefore, the distance covered by a car in 9 hour = $(200/3) \times 9$

Then,

$$= (200/3) \times (9/1)$$

$$= (200 \times 9) / (3 \times 1)$$

On simplifying we get,

$$= (200 \times 3) / (1 \times 1)$$

$$= 600 \text{ km}$$

Hence, the distance covered by a car in 9 hour is 600 km.

7. One tin holds [12(3/4)] liters of oil. How many liters of oil can 26 such tins hold? Solution:-

From the question,

The total amount of oil in 1 tin = [12(3/4)] liters = (51/4)

Therefore, the amount of oil in 26 such tins = $(51/4) \times 26$

Then,

$$= (51/4) \times (26/1)$$

= $(51 \times 26) / (4 \times 1)$ On simplifying we get,

= (51× 13) / (2 × 1)

= (663/2)

= [331(1/2)] liters

Hence, the amount of oil in 26 such tins is [331(1/2)] liters.

= $(51 \times 26) / (4 \times 1)$ On simplifying we get,

= (51× 13) / (2 × 1)

= (663/2)

= [331(1/2)] liters

Hence, the amount of oil in 26 such tins is [331(1/2)] liters.

EXERCISE 2C PAGE: 30

1. Write down the reciprocal of:

i. (5/8)

Solution:-

Reciprocal of (5/8) is (8/5)

$$[: ((5/8) \times (8/5)) = 1]$$

ii. 7

Solution:-

Reciprocal of 7 is (1/7)

$$[\because ((7/1) \times (1/7)) = 1]$$

iii. (1/12)

Solution:-

$$[\because ((1/12) \times (12/1)) = 1]$$

= 12

iv. [12(3/5)]

Solution:-

Convert mixed fraction into improper fraction,

$$=(63/5)$$

Reciprocal of (63/5) is (5/63)

$$[: ((63/5) \times (5/63)) = 1]$$

2. Simplify:

i. (4/7) ÷ (9/14)

Solution:-

We have,

$$= (4/7) \div (9/14)$$

$$= (4/7) \times (14/9)$$

(Because reciprocal of (9/14) is (14/9)

$$= (4 \times 14) / (7 \times 9)$$

$$= (4 \times 2) / (1 \times 9)$$

ii. $(7/10) \div (3/5)$

Solution:-

We have,

$$= (7/10) \times (5/3)$$

(Because reciprocal of (3/5) is (5/3)

$$= (7 \times 5) / (10 \times 3)$$

$$= (7 \times 1) / (2 \times 3)$$

=(7/6)

= [1(1/6)]

iii. $(8/9) \div (16)$

Solution:-

EXERCISE 2C PAGE: 30

1. Write down the reciprocal of:

i. (5/8)

Solution:-

Reciprocal of (5/8) is (8/5)

$$[: ((5/8) \times (8/5)) = 1]$$

ii. 7

Solution:-

Reciprocal of 7 is (1/7)

$$[\because ((7/1) \times (1/7)) = 1]$$

iii. (1/12)

Solution:-

$$[\because ((1/12) \times (12/1)) = 1]$$

= 12

iv. [12(3/5)]

Solution:-

Convert mixed fraction into improper fraction,

$$=(63/5)$$

Reciprocal of (63/5) is (5/63)

$$[: ((63/5) \times (5/63)) = 1]$$

2. Simplify:

i. (4/7) ÷ (9/14)

Solution:-

We have,

$$= (4/7) \div (9/14)$$

$$= (4/7) \times (14/9)$$

(Because reciprocal of (9/14) is (14/9)

$$= (4 \times 14) / (7 \times 9)$$

$$= (4 \times 2) / (1 \times 9)$$

ii. $(7/10) \div (3/5)$

Solution:-

We have,

$$= (7/10) \times (5/3)$$

(Because reciprocal of (3/5) is (5/3)

$$= (7 \times 5) / (10 \times 3)$$

$$= (7 \times 1) / (2 \times 3)$$

=(7/6)

= [1(1/6)]

iii. $(8/9) \div (16)$

Solution:-

=
$$(8/9) \div (16/1)$$

= $(8/9) \times (1/16)$
(Because reciprocal of $(16/1)$ is $(1/16)$
= $(8 \times 1) / (9 \times 16)$
= $(1 \times 1) / (9 \times 2)$
= $(1/18)$

iv. $(9) \div (1/3)$

Solution:-

We have,

$$= (9/1) \div (1/3)$$
$$= (9/1) \times (3/1)$$

(Because reciprocal of (1/3) is (3/1)

Solution:-

We have,

$$= (24/1) \div (6/7)$$
$$= (24/1) \times (7/6)$$

(Because reciprocal of (6/7) is (7/6)

$$= (24 \times 7) / (1 \times 6)$$

= (4 \times 7) / (1 \times 1)
= 28

vi. [3(3/5)] ÷ (4/5)

Solution:-

Convert mixed fraction into improper fraction,

We have,

$$= (18/5) \div (4/5)$$
$$= (18/5) \times (5/4)$$

(Because reciprocal of (4/5) is (5/4)

$$= (18 \times 5) / (5 \times 4)$$

$$= (9 \times 1) / (1 \times 2)$$

$$= (9/2)$$

$$= [4(1/2)$$

vii. [3(3/7)] ÷ (8/21)

Solution:-

Convert mixed fraction into improper fraction,

$$= [3(3/7)] = (24/7)$$

$$= (24/7) \div (8/21)$$

= $(24/7) \times (21/8)$

=
$$(8/9) \div (16/1)$$

= $(8/9) \times (1/16)$
(Because reciprocal of $(16/1)$ is $(1/16)$
= $(8 \times 1) / (9 \times 16)$
= $(1 \times 1) / (9 \times 2)$
= $(1/18)$

iv. $(9) \div (1/3)$

Solution:-

We have,

$$= (9/1) \div (1/3)$$
$$= (9/1) \times (3/1)$$

(Because reciprocal of (1/3) is (3/1)

Solution:-

We have,

$$= (24/1) \div (6/7)$$
$$= (24/1) \times (7/6)$$

(Because reciprocal of (6/7) is (7/6)

$$= (24 \times 7) / (1 \times 6)$$

= (4 \times 7) / (1 \times 1)
= 28

vi. [3(3/5)] ÷ (4/5)

Solution:-

Convert mixed fraction into improper fraction,

We have,

$$= (18/5) \div (4/5)$$
$$= (18/5) \times (5/4)$$

(Because reciprocal of (4/5) is (5/4)

$$= (18 \times 5) / (5 \times 4)$$

$$= (9 \times 1) / (1 \times 2)$$

$$= (9/2)$$

$$= [4(1/2)$$

vii. [3(3/7)] ÷ (8/21)

Solution:-

Convert mixed fraction into improper fraction,

$$= [3(3/7)] = (24/7)$$

$$= (24/7) \div (8/21)$$

= $(24/7) \times (21/8)$

=
$$(24 \times 21) / (7 \times 8)$$

= $(3 \times 3) / (1 \times 1)$
= 9

viii. $[5(4/7)] \div [1(3/10)]$

Solution:-

Convert mixed fraction into improper fraction,

$$= [5(4/7)] = (39/7)$$
$$= [1(3/10)] = (13/10)$$
We have,

 $=(39/7) \div (13/10)$

$$= (39/7) \times (10/13)$$

se reciprocal of $(13/10)$ is $(10/13)$

(Because reciprocal of (13/10) is (10/13) $= (39 \times 10) / (7 \times 13)$

= (390) / (91)

= (30 / 7)

= [4(2/7)]

[15(3/7)] ÷ [1(23/49)] ix.

Solution:-

Convert mixed fraction into improper fraction,

We have,

$$= (108/7) \div (72/49)$$

$$= (108/7) \times (49/72)$$

(Because reciprocal of (72/49) is (49/72)

$$= (108 \times 49) / (7 \times 72)$$

= (9×7) / (1 × 6)

 $= (3 \times 7) / (1 \times 2)$

=(21/2)

= [10(1/2)]

3. Divide:

(11/24) by (7/8) i.

Solution:-

The above question can be written as,

$$=(11/24) \div (7/8)$$

We have,

$$= (11/24) \times (8/7)$$

(Because reciprocal of (7/8) is (8/7)

=
$$(11 \times 8) / (24 \times 7)$$

= $(11 \times 1) / (3 \times 9)$

=(11/21)

[6(7/8)] by (11/16) ii.

Solution:-

=
$$(24 \times 21) / (7 \times 8)$$

= $(3 \times 3) / (1 \times 1)$
= 9

viii. $[5(4/7)] \div [1(3/10)]$

Solution:-

Convert mixed fraction into improper fraction,

$$= [5(4/7)] = (39/7)$$
$$= [1(3/10)] = (13/10)$$
We have,

 $=(39/7) \div (13/10)$

$$= (39/7) \times (10/13)$$

se reciprocal of $(13/10)$ is $(10/13)$

(Because reciprocal of (13/10) is (10/13) $= (39 \times 10) / (7 \times 13)$

= (390) / (91)

= (30 / 7)

= [4(2/7)]

[15(3/7)] ÷ [1(23/49)] ix.

Solution:-

Convert mixed fraction into improper fraction,

We have,

$$= (108/7) \div (72/49)$$

$$= (108/7) \times (49/72)$$

(Because reciprocal of (72/49) is (49/72)

$$= (108 \times 49) / (7 \times 72)$$

= (9×7) / (1 × 6)

 $= (3 \times 7) / (1 \times 2)$

=(21/2)

= [10(1/2)]

3. Divide:

(11/24) by (7/8) i.

Solution:-

The above question can be written as,

$$=(11/24) \div (7/8)$$

We have,

$$= (11/24) \times (8/7)$$

(Because reciprocal of (7/8) is (8/7)

=
$$(11 \times 8) / (24 \times 7)$$

= $(11 \times 1) / (3 \times 9)$

=(11/21)

[6(7/8)] by (11/16) ii.

Solution:-

The above question can be written as,

$$= [6(7/8)] \div (11/16)$$

Convert mixed fraction into improper fraction,

$$= [6(7/8)] = (55/8)$$

We have,

$$= (55/8) \times (16/11)$$

(Because reciprocal of (11/16) is (16/11)

$$= (55 \times 16) / (8 \times 11)$$

$$= (5 \times 2) / (1 \times 1)$$

= 10

iii. [5(5/9)] by [3(1/3)]

Solution:-

The above question can be written as,

$$= [5(5/9)] \div [3(1/3)]$$

Convert mixed fraction into improper fraction,

$$= [5(5/9)] = (50/9)$$

$$= [3(1/3)] = (10/3)$$

We have,

$$= (50/9) \times (3/10)$$

(Because reciprocal of (10/3) is (3/10)

$$= (50 \times 3) / (9 \times 10)$$

$$= (5 \times 1) / (3 \times 1)$$

$$= (5/3)$$

$$= [1(2/3)]$$

iv. 32 by [1(3/5)]

Solution:-

The above question can be written as,

$$= 32 \div [1(3/5)]$$

Convert mixed fraction into improper fraction,

$$= [1(3/5)] = (8/5)$$

We have,

$$= (32/1) \times (5/8)$$

(Because reciprocal of (8/5) is (5/8)

$$= (32 \times 5) / (1 \times 8)$$

$$= (4 \times 5) / (1 \times 1)$$

= 20

v. 45 by [1(4/5)]

Solution:-

The above question can be written as,

$$=45 \div [1(4/5)]$$

Convert mixed fraction into improper fraction,

$$= [1(4/5)] = (9/5)$$

$$= (45/1) \times (5/9)$$

The above question can be written as,

$$= [6(7/8)] \div (11/16)$$

Convert mixed fraction into improper fraction,

$$= [6(7/8)] = (55/8)$$

We have,

$$= (55/8) \times (16/11)$$

(Because reciprocal of (11/16) is (16/11)

$$= (55 \times 16) / (8 \times 11)$$

$$= (5 \times 2) / (1 \times 1)$$

= 10

iii. [5(5/9)] by [3(1/3)]

Solution:-

The above question can be written as,

$$= [5(5/9)] \div [3(1/3)]$$

Convert mixed fraction into improper fraction,

$$= [5(5/9)] = (50/9)$$

$$= [3(1/3)] = (10/3)$$

We have,

$$= (50/9) \times (3/10)$$

(Because reciprocal of (10/3) is (3/10)

$$= (50 \times 3) / (9 \times 10)$$

$$= (5 \times 1) / (3 \times 1)$$

$$= (5/3)$$

$$= [1(2/3)]$$

iv. 32 by [1(3/5)]

Solution:-

The above question can be written as,

$$= 32 \div [1(3/5)]$$

Convert mixed fraction into improper fraction,

$$= [1(3/5)] = (8/5)$$

We have,

$$= (32/1) \times (5/8)$$

(Because reciprocal of (8/5) is (5/8)

$$= (32 \times 5) / (1 \times 8)$$

$$= (4 \times 5) / (1 \times 1)$$

= 20

v. 45 by [1(4/5)]

Solution:-

The above question can be written as,

$$=45 \div [1(4/5)]$$

Convert mixed fraction into improper fraction,

$$= [1(4/5)] = (9/5)$$

$$= (45/1) \times (5/9)$$

(Because reciprocal of (9/5) is (5/9)
=
$$(45 \times 5) / (1 \times 9)$$

= $(5 \times 5) / (1 \times 1)$
= 25

vi. 63 by [2(1/4)]

Solution:-

The above question can be written as, $= 63 \div [2(1/4)]$ Convert mixed fraction into improper fraction,

= [2(1/4)] = (9/4)

= 28

We have,

=
$$(63/1) \times (4/9)$$

(Because reciprocal of $(9/4)$ is $(4/9)$
= $(63 \times 4) / (1 \times 9)$
= $(7 \times 4) / (1 \times 1)$

4. A rope of length [13(1/2)] m has been divided into 9 pieces of the same length. What is the length of each piece?

Solution:-

From the question,

Rope length = [13(1/2)] m = (27/2)

Number of equal pieces divided into = 9

Then we have,

$$= (27/2) \div (9/1)$$
$$= (27/2) \times (1/9)$$

(Because reciprocal of (9/1) is (1/9)

$$= (27 \times 1) / (2 \times 9)$$

$$= (3 \times 1) / (2 \times 1)$$

$$= (3 / 2)$$

= [1(1/2)] m

Hence, the length of 9 pieces of rope is [1(1/2)] m

5. 18 boxes of nails weigh equally and their total weight is [49(1/2)] kg. How much does each box weigh? Solution:-

From the question,

Total weight of boxes= [49(1/2)] kg = (99/2)

Number of boxes = 18

Then we have,

$$= (99/2) \times (1/18)$$

(Because reciprocal of (18/1) is (1/18)

$$= (99 \times 1) / (2 \times 18)$$

$$= (11 \times 1) / (2 \times 2)$$

$$= (11/4)$$

$$= [2(3/4)] kg$$

(Because reciprocal of (9/5) is (5/9)
=
$$(45 \times 5) / (1 \times 9)$$

= $(5 \times 5) / (1 \times 1)$
= 25

vi. 63 by [2(1/4)]

Solution:-

The above question can be written as, $= 63 \div [2(1/4)]$ Convert mixed fraction into improper fraction,

= [2(1/4)] = (9/4)

= 28

We have,

=
$$(63/1) \times (4/9)$$

(Because reciprocal of $(9/4)$ is $(4/9)$
= $(63 \times 4) / (1 \times 9)$
= $(7 \times 4) / (1 \times 1)$

4. A rope of length [13(1/2)] m has been divided into 9 pieces of the same length. What is the length of each piece?

Solution:-

From the question,

Rope length = [13(1/2)] m = (27/2)

Number of equal pieces divided into = 9

Then we have,

$$= (27/2) \div (9/1)$$
$$= (27/2) \times (1/9)$$

(Because reciprocal of (9/1) is (1/9)

$$= (27 \times 1) / (2 \times 9)$$

$$= (3 \times 1) / (2 \times 1)$$

$$= (3 / 2)$$

= [1(1/2)] m

Hence, the length of 9 pieces of rope is [1(1/2)] m

5. 18 boxes of nails weigh equally and their total weight is [49(1/2)] kg. How much does each box weigh? Solution:-

From the question,

Total weight of boxes= [49(1/2)] kg = (99/2)

Number of boxes = 18

Then we have,

$$= (99/2) \times (1/18)$$

(Because reciprocal of (18/1) is (1/18)

$$= (99 \times 1) / (2 \times 18)$$

$$= (11 \times 1) / (2 \times 2)$$

$$= (11/4)$$

$$= [2(3/4)] kg$$

Hence, the weight of each box is [2(3/4)] kg

6. By selling oranges at the rate of ₹ [6(3/4)] per orange, a man gets ₹ 378. How many oranges does he sell?

Solution:-

From the question, Cost for 1 orange = ₹ [6(3/4)] = (27/4) Man gets = ₹ 378 Then we have, = (378/1) ÷ (27/4) = (378/1) × (4/27) (Because reciprocal of (27/4) is (4/27) = (378 × 4) / (1 × 27) = (42×4) / (1×3) = (14×4) / (1×1)

Hence, the man sold 56 orange.

Mangos are sold at ₹ [43(1/2)] per kg. What is the weight of mangoes available for ₹ [326(1/4)]?

From the question,

= 56

Mangos are sold at = ₹ [43(1/2)] = (87/2)

The weight of mangos available for = ₹ [326(1/4)] = (1305/4)

Then we have,

 $= (1305/4) \div (87/2)$ $= (1305/4) \times (2/87)$ (Because reciprocal of (87/2) is (2/87) $= (1305 \times 2) / (4 \times 87)$ $= (435 \times 1) / (2 \times 29)$

= [7(1/2)] kg

Hence, the weight of mangos available for (1305/4) is [7(1/2)] kg

8. Vikas can cover a distance of [20(2/3)] km in [7(3/4)] hours on foot. How many km per hour does he walk?

Solution:-

From the question,

Distance covered by vikas in [7(3/4)] hours on foot = [20(2/3)] km = (62/3)

Distance covered by vikas in 1 hour = $(62/3) \div (31/4)$

Then we have,

 $= (62/3) \times (4/31)$

(Because reciprocal of (31/4) is (4/31)

$$= (62 \times 4) / (3 \times 31)$$

$$= (2 \times 4) / (3 \times 1)$$

= (8) / (3)

= [2(2/3) km]

Hence, Distance covered by vikas in 1 hour is [2(2/3) km

Hence, the weight of each box is [2(3/4)] kg

6. By selling oranges at the rate of ₹ [6(3/4)] per orange, a man gets ₹ 378. How many oranges does he sell?

Solution:-

From the question, Cost for 1 orange = ₹ [6(3/4)] = (27/4) Man gets = ₹ 378 Then we have, = (378/1) ÷ (27/4) = (378/1) × (4/27) (Because reciprocal of (27/4) is (4/27) = (378 × 4) / (1 × 27) = (42×4) / (1×3) = (14×4) / (1×1)

Hence, the man sold 56 orange.

Mangos are sold at ₹ [43(1/2)] per kg. What is the weight of mangoes available for ₹ [326(1/4)]?

From the question,

= 56

Mangos are sold at = ₹ [43(1/2)] = (87/2)

The weight of mangos available for = ₹ [326(1/4)] = (1305/4)

Then we have,

 $= (1305/4) \div (87/2)$ $= (1305/4) \times (2/87)$ (Because reciprocal of (87/2) is (2/87) $= (1305 \times 2) / (4 \times 87)$ $= (435 \times 1) / (2 \times 29)$

= [7(1/2)] kg

Hence, the weight of mangos available for (1305/4) is [7(1/2)] kg

8. Vikas can cover a distance of [20(2/3)] km in [7(3/4)] hours on foot. How many km per hour does he walk?

Solution:-

From the question,

Distance covered by vikas in [7(3/4)] hours on foot = [20(2/3)] km = (62/3)

Distance covered by vikas in 1 hour = $(62/3) \div (31/4)$

Then we have,

 $= (62/3) \times (4/31)$

(Because reciprocal of (31/4) is (4/31)

$$= (62 \times 4) / (3 \times 31)$$

$$= (2 \times 4) / (3 \times 1)$$

= (8) / (3)

= [2(2/3) km]

Hence, Distance covered by vikas in 1 hour is [2(2/3) km

PAGE: 31 **EXERCISE 2D**

Mark against the correct answer	in	each	of	the	fol	lowing
---------------------------------	----	------	----	-----	-----	--------

- 1. Which of the following is a vulgar fraction?
 - a) (3/10)
 - Solution:-
- b) (13/10) c) (10/3)
- d) none of these

(10/3). Because, its denominator is a whole number, other than 10, 100, 10000 etc.

- 2. Which of the following is an improper fraction? a) (7/10)
 - b) (7/9)
- c) (9/7)
- d) none of these

Solution:-

(9/7). Because, its numerator is more than its denominator.

- 3. Which of the following is a reducible fraction?
 - a) (105/112)
- b) (104/121)
- C) (77/72)
- d) (46/63)

Solution:-

(105/112). Because the fraction can be reduced by dividing both numerator and denominator by a common factor.

- 4. (2/3), (4/6), (6/9), (8/12) are
 - a) Like fractions
- b) irreducible fraction
- c) equivalent fraction

d) None of these

Solution: -

Like fractions. Because the numerator is less than the denominator.

- 5. Which of the following statement is true?
 - a) (9/16) = (13/24)
- b) (9/16) < (13/4)
- c) (9/16) > (13/24)
- d) none

of these

Solution:-

(9/16) > (13/24)

Because,

By cross multiplication

 $(9 \times 24) = 216$ and $(13 \times 16) = 208$

There for,

216 > 208

Hence,

(9/16) > (13/24)

- 6. Reciprocal of [1(3/4)]
 - a) [1(4/3)]
- b) [4(1/3)]
- c) [3(1/4)]
- d) none of these

Solution:-

None of these.

Because, Reciprocal of [1(3/4)] = (7/4) = (4/7)

PAGE: 31 **EXERCISE 2D**

Mark against the correct answer	in	each	of	the	fol	lowing
---------------------------------	----	------	----	-----	-----	--------

- 1. Which of the following is a vulgar fraction?
 - a) (3/10)
 - Solution:-
- b) (13/10) c) (10/3)
- d) none of these

(10/3). Because, its denominator is a whole number, other than 10, 100, 10000 etc.

- 2. Which of the following is an improper fraction? a) (7/10)
 - b) (7/9)
- c) (9/7)
- d) none of these

Solution:-

(9/7). Because, its numerator is more than its denominator.

- 3. Which of the following is a reducible fraction?
 - a) (105/112)
- b) (104/121)
- C) (77/72)
- d) (46/63)

Solution:-

(105/112). Because the fraction can be reduced by dividing both numerator and denominator by a common factor.

- 4. (2/3), (4/6), (6/9), (8/12) are
 - a) Like fractions
- b) irreducible fraction
- c) equivalent fraction

d) None of these

Solution: -

Like fractions. Because the numerator is less than the denominator.

- 5. Which of the following statement is true?
 - a) (9/16) = (13/24)
- b) (9/16) < (13/4)
- c) (9/16) > (13/24)
- d) none

of these

Solution:-

(9/16) > (13/24)

Because,

By cross multiplication

 $(9 \times 24) = 216$ and $(13 \times 16) = 208$

There for,

216 > 208

Hence,

(9/16) > (13/24)

- 6. Reciprocal of [1(3/4)]
 - a) [1(4/3)]
- b) [4(1/3)]
- c) [3(1/4)]
- d) none of these

Solution:-

None of these.

Because, Reciprocal of [1(3/4)] = (7/4) = (4/7)

c) (5/6)

RS Aggarwal Solutions for Class 7 Maths chapter 2 Fractions.

d) none of these

7. [(3/10)+(8/15)] = ?a) (11/10) b) (11/15)Solution:-(5/6)Because, = (3/10) + (8/15)LCM of 10 and 15 = 30 $= (3/10) \times (3/3) = (9/30)$ $= (8/15) \times (2/2) = (16/30)$ = (9/30) + (16/30) = (9 + 16)/30 = (25/30) = (5/6)

8. [3(1/4)] - [2(1/3)] = ?

a) [1(1/12)] Solution:- b) (1/12)

c) [1 (1/11)]

d) (11/12)

(11/12)
Because, = (13/4) - (5/3)LCM of 4 and 3 = 12 $= (13/4) \times (3/3) = (39/12)$ $= (6/3) \times (4/4) = (28/12)$ = (39/12) - (28/12) = (39 - 28)/12 = (11/12)

c) (5/6)

RS Aggarwal Solutions for Class 7 Maths chapter 2 Fractions.

d) none of these

7. [(3/10)+(8/15)] = ?a) (11/10) b) (11/15)Solution:-(5/6)Because, = (3/10) + (8/15)LCM of 10 and 15 = 30 $= (3/10) \times (3/3) = (9/30)$ $= (8/15) \times (2/2) = (16/30)$ = (9/30) + (16/30) = (9 + 16)/30 = (25/30) = (5/6)

8. [3(1/4)] - [2(1/3)] = ?

a) [1(1/12)] Solution:- b) (1/12)

c) [1 (1/11)]

d) (11/12)

(11/12)
Because, = (13/4) - (5/3)LCM of 4 and 3 = 12 $= (13/4) \times (3/3) = (39/12)$ $= (6/3) \times (4/4) = (28/12)$ = (39/12) - (28/12) = (39 - 28)/12 = (11/12)