

EXERCISE 5A PAGE: 90

1. Write each of the following in power notation:

i. $(5/7) \times (5/7) \times (5/7) \times (5/7)$

Solution:-

The product of rational number multiplied several times by itself can be expressed in the power notations as, $(5/7)^4$

ii. $(-4/3) \times (-4/3) \times (-4/3) \times (-4/3) \times (-4/3)$

Solution:-

The product of rational number multiplied several times by itself can be expressed in the power notations as, $(-4/3)^5$

iii. $(-1/6) \times (-1/6) \times (-1/6)$

Solution:-

The product of rational number multiplied several times by itself can be expressed in the power notations as,

 $(-1/6)^3$

iv. $(-8) \times (-8) \times (-8) \times (-8) \times (-8)$

Solution:-

The product of rational number multiplied several times by itself can be expressed in the power notations as,

 $(-8)^5$

2. Express each of the following in power notation:

i. (25/36)

Solution:-

We have,

$$25 = 5 \times 5 = (5)^2$$

$$36 = 6 \times 6 = (6)^2$$

Then,

=
$$(5^2/6^2)$$

 $\therefore (5/6)^2$

ii. (-27/64)

Solution:-

We have,

$$-27 = -3 \times -3 \times -3 = (-3)^3$$

64 = 4 × 4 × 4 = (4)³

Then,

=
$$(-3^3/4^3)$$

 $\therefore (-3/4)^3$

iii. (-32/243)

Solution:-

We have,

$$-32 = -2 \times -2 \times -2 \times -2 \times -2 = (-2)^{5}$$

$$243 = 3 \times 3 \times 3 \times 3 \times 3 = (3)^{5}$$

Then,

=
$$(-2^5/3^5)$$

 $\therefore (-2/3)^5$

iv. (-1/128)

Solution:-

We have,

Then,

=
$$(-1^7/2^7)$$

:: $(-1/2)^7$

3. Express each of the following a rational number:

i. (2/3)⁵

Solution:-

We have,

$$(2/3)^5 = (2^5/3^5)$$

= $(2 \times 2 \times 2 \times 2 \times 2) / (3 \times 3 \times 3 \times 3 \times 3)$
= $(32/243)$

ii. (-8/5)³

Solution:-

We have,

$$(-8/5)^3 = (-8^3/5^3)$$

= $(-8 \times -8 \times -8) / (5 \times 5 \times 5)$
= $(-512/125)$

iii. (-13/11)²

Solution:-

We have,

$$(-13/11)^2 = (-13^2/11^2)$$

= $(-13 \times -13) / (11 \times 11)$
= $(169/121)$

iv. $(1/6)^3$

Solution:-

We have,

$$(1/6)^3 = (1^3/6^3)$$

= $(1 \times 1 \times 1) / (6 \times 6 \times 6)$
= $(1/216)$

v. (-1/2)⁵

Solution:-

We have,

$$(-1/2)^5 = (-1^5/2^5)$$

= $(-1 \times -1 \times -1 \times -1 \times -1) / (2 \times 2 \times 2 \times 2 \times 2)$
= $(-1/32)$

vi. $(-4/7)^3$

Solution:-

We have,

$$(-4/7)^3 = (-4^3/7^3)$$

= $(-4 \times -4 \times -4) / (7 \times 7 \times 7)$
= $(-64/343)$

vii. (-1)⁹

Solution:-

We have,

4. Express each of the following as a rational number:

i. (4)-1

Solution:-

We have:

$$(4)^{-1} = (4/1)^{-1}$$

= $(1/4)^{1}$... [: $(a/b)^{-n} = (b/a)^{n}$]
= $(1/4)$

ii. (-6)⁻¹

Solution:-

We have:

$$(-6)^{-1} = (-6/1)^{-1}$$

= $(1/-6)^1$... [: $(a/b)^{-n} = (b/a)^n$]
= $(-1/6)$

iii. (1/3)⁻¹

Solution:-

We have:

$$(1/3)^{-1} = (-6/1)^{-1}$$

= $(3/1)^{1}$
= 3

... [:
$$(a/b)^{-n} = (b/a)^{n}$$
]

iv. (--2/3)⁻¹

Solution:-

We have:

$$(-2/3)^{-1} = (-2/3)^{-1}$$

= $(3/-2)^{1}$
= $(-3/2)$

... [:
$$(a/b)^{-n} = (b/a)^{n}$$
]

5. Find the reciprocal of each of the following:

i. (3/8)⁴

Solution:-

We know that the reciprocal of $(a/b)^m$ is $(b/a)^m$ Then,

Reciprocal of (3/8)⁴ is (8/3)⁴

ii. (-5/6)¹¹

Solution:-

We know that the reciprocal of (a/b) m is (b/a) m

Then,

Reciprocal of $(-5/6)^{11}$ is $(-6/5)^{11}$

iii. (6)⁷

Solution:-

We know that the reciprocal of $(a/b)^m$ is $(b/a)^m$

Then,

Reciprocal of $(6)^7$ is $(1/6)^7$

iv. (-4)³

Solution:-

We know that the reciprocal of $(a/b)^m$ is $(b/a)^m$

Then

Reciprocal of $(-4)^3$ is $(-1/4)^3$

6. Find the value of each of the following:

i. 8º

Solution:-

By definition, we have $a^0 = 1$ for every integer.

$$...80 = 1$$

$(-3)^0$ ii.

Solution:-

By definition, we have $a^0 = 1$ for every integer.

$$(-3)^0 = 1$$

$4^0 + 5^0$ iii.

Solution:-

By definition, we have $a^0 = 1$ for every integer.

$$4^{\circ} + 5^{\circ}$$

= 2

$6^{\circ} \times 7^{\circ}$ iv.

Solution:-

By definition, we have $a^0 = 1$ for every integer.

$$\therefore 6^{\circ} \times 7^{\circ}$$

$$= 1 \times 1$$

= 1

7. Simplify each of the following and express each as a rational number:

$$(3/2)^4 \times (1/5)^2$$

Solution:-

We have,

$$(3^4/2^4) = (3\times3\times3\times3)/(2\times2\times2\times2) = (81/16)$$

 $(1^2/5^2) = (1\times1)/(5\times5) = (1/25)$

Then,

$$=(81/16)\times(1/25)$$

=(81/400)

$(-2/3)^5 \times (-3/7)^3$ ii.

Solution:-

We have,

$$(-2^5/3^5) = (-2 \times -2 \times -2 \times -2 \times -2)/(3 \times 3 \times 3 \times 3 \times 3) = (-32/243)$$

 $(-3^3/7^3) = (-3 \times -3 \times -3)/(7 \times 7 \times 7) = (-27/343)$

Then,

$$= (-32/243) \times (-27/343)$$

= $(-32 \times -27) / (243 \times 343)$

By simplifying,
=
$$(-32\times-1) / (9/343)$$

=(32/3087)

iii. $(-1/2)^5 \times 2^3 \times (3/4)^2$

Solution:-

We have,

$$(-1^5/2^5) = (-1 \times -1 \times -1 \times -1) / (2 \times 2 \times 2 \times 2 \times 2) = (-1/32)$$

 $(2)^3 = (2 \times 2 \times 2) = 8$
 $(3^2/4^2) = (3 \times 3) / (4 \times 4) = (9/16)$

Then,

$$= (-1/32) \times 8 \times (9/16)$$

= $(-1\times8\times9) / (32\times1\times16)$

By simplifying,

$$= (-1 \times 1 \times 9) / (32 \times 1 \times 2)$$

= $(-9/64)$

iv. $(2/3)^2 \times (-3/5)^3 \times (7/2)^2$

Solution:-

We have,

$$(2^2/3^2) = (2\times2)/(3\times3) = (4/9)$$

 $(-3/5)^3 = (-3\times-3\times-3)/(5\times5\times5) = (-27/125)$
 $(7^2/2^2) = (7\times7)/(2\times2) = (49/4)$

Then,

On simplifying,

v. $\{(-3/4)^3 - (-5/2)^3\} \times 4^2$

Solution:-

We have,

$$= \{(-3^3/4^3) - (5^3/2^3)\} \times 16$$
$$= \{(-27/64) - (-125/8)\} \times 16$$

First we find the difference of {(-27/64)-(125/8)}

LCM of 64 and 8 is 64

8. Simplify and express each as a rational number:

i.
$$(4/9)^6 \times (4/9)^{-4}$$

Solution:-

We have,

$$= (4/9)^{(6+(-4))}$$

$$= (4/9)^{(6-4)}$$

$$= (4/9)^{2}$$

$$= (4^{2}/9^{2})$$

=(16/81)

...
$$[{(a/b)^m \times (a/b)^n}] = (a/b)^{m-n}$$

ii. $(-7/8)^{-3} \times (-7/8)^2$

Solution:-

We have,

$$= (-7/8)^{(-3+2)}$$

$$= (-7/8)^{(-1)}$$

$$= (-8/7)$$

...
$$[{(a/b)^m \times (a/b)^n}] = (a/b)^{m-n}$$

iii. (4/3)⁻³× (4/3)⁻²

Solution:-

We have,

$$= (4/3)^{(-3+(-2))}$$

$$= (4/3)^{(-3-2)}$$

$$= (4/3)^{-5}$$

$$= (3/4)^{5}$$

$$= (3^{5}/4^{5})$$

$$= 243/1024$$

...
$$[{(a/b)^m \times (a/b)^n}] = (a/b)^{m-n}$$

9. Express each of the following as a rational number:

i. 5⁻³

Solution:-

We know that,

$$= (5)^{-3} = (1/5)^3$$
$$= (1^3/5^3)$$
$$= (1/125)$$

... [::
$$(a/b)^{-n} = (b/a)^{n}$$
]

ii. (-2)⁻⁵

Solution:-

We know that,

=
$$(-2)^{-5}$$
 = $(-1/2)^3$
= $(-1^3/2^3)$
= $(-1/8)$

... [:
$$(a/b)^{-n} = (b/a)^{n}$$
]

iii. (1/4)⁻⁴

Solution:-

We know that,

$$= (1/4)^{-4} = (4/1)^4$$
$$= (4^4/1^4)$$
$$= (256/1)$$
$$= 256$$

... [:
$$(a/b)^{-n} = (b/a)^{n}$$
]

$(-3/4)^{-3}$ iv.

Solution:-

We know that,

$$= (-3/4)^{-3} = (-4/3)^3$$
$$= (-4^3/3^3)$$
$$= (-64/27)$$

... [:
$$(a/b)^{-n} = (b/a)^{n}$$
]

$(-3)^{-1} \times (1/3)^{-1}$ ٧.

Solution:-

We know that,

$$= (-3)^{-1} = (-1/3)^{1}$$

$$= (1/3)^{-1} = (3/1)^{1}$$

$$= (-1/3) \times (3/1)$$

$$= (-1\times3)/(3\times1)$$

$$= (-3/3)$$

$$= -1$$

... [:
$$(a/b)^{-n} = (b/a)^{n}$$
]
... [: $(a/b)^{-n} = (b/a)^{n}$]

$(5/7)^{-1} \times (7/4)^{-1}$ vi.

Solution:-

We know that,

$$= (5/7)^{-1} = (7/5)^{1}$$

$$= (7/4)^{-1} = (4/7)^{1}$$

$$= (7/5) \times (4/7)$$

$$= (7\times4)/(5\times7)$$

...
$$[\because (a/b)^{-n} = (b/a)^n]$$

... $[\because (a/b)^{-n} = (b/a)^n]$

On simplifying,

$$= (1 \times 4) / (5 \times 1)$$

= 4/5

(5-1-7-1)-1 vii.

Solution:-

We know that,

$$= (5)^{-1} = (1/5)^{1}$$

$$= (7)^{-1} = (1/7)^{1}$$
Now subtract,
$$= \{(1/5) - (1/7)\}^{-1}$$

...
$$[\because (a/b)^{-n} = (b/a)^n]$$

... $[\because (a/b)^{-n} = (b/a)^n]$

$$= \{(1/5) - (1/7)\}^{-1}$$

$$= \{(7-5)/35\}^{-1}$$

$$= \{2/35\}^{-1}$$

$$= \{35/2\}$$

nng App

viii. $\{(4/3)^{-1} - (1/4)^{-1}\}^{-1}$

Solution:-

We know that,

=
$$(4/3)^{-1}$$
= $(3/4)^1$
= $(1/4)^{-1}$ = $(4/1)^1$

Now subtract,

$$= \{(3/4) - (4/1)\}^{-1}$$

$$= \{(3-16)/4\}^{-1}$$

$$= \{-13/4\}^{-1}$$

$$= \{-4/13\}$$

...
$$[\because (a/b)^{-n} = (b/a)^{n}]$$

... $[\because (a/b)^{-n} = (b/a)^{n}]$

... [LCM of 4 and 1 is 4]

ix.
$$\{(3/2)^{-1} \div (-2/5)^{-1}\}$$

Solution:-

We know that,

=
$$(3/2)^{-1}$$
= $(2/3)^1$
= $(-2/5)^{-1}$ = $(-5/2)^1$

Now divide,

$$= \{(2/3) \div (-5/2)\}^{-1}$$

$$= \{(2/3) \times (-2/5)\}$$

$$= \{(2\times -2) / (3\times 5)\}$$

$$= \{-4/15\}$$

...
$$[\because (a/b)^{-n} = (b/a)^n]$$

... $[\because (a/b)^{-n} = (b/a)^n]$

x. (23/25)⁰

Solution:-

$$=(23/25)^0=1$$

Because, by definition, we have $a^0 = 1$ for every integer.

EXERCISE 5B PAGE: 92

1. Express each of the following numbers in standard form:

i. 538

Solution:-

A given number is said to be in standard form if it can be expressed as $k \times 10^n$, where k is a real number such that $1 \le k < 10$ and n is a positive integer.

Then,

 $538 = 5.38 \times 10^2$

ii. 6428000

Solution:-

A given number is said to be in standard form if it can be expressed as $k \times 10^n$, where k is a real number such that $1 \le k < 10$ and n is a positive integer.

Then,

 $6428000 = 6.428 \times 10^6$

iii. 82934000000

Solution:-

A given number is said to be in standard form if it can be expressed as $k \times 10^n$, where k is a real number such that $1 \le k < 10$ and n is a positive integer.

Then,

 $82934000000 = 8.2934 \times 10^{10}$

iv. 94000000000

Solution:-

A given number is said to be in standard form if it can be expressed as $k \times 10^n$, where k is a real number such that $1 \le k < 10$ and n is a positive integer.

Then

 $9400000000000 = 9.4 \times 10^{11}$

v. 23000000

Solution:-

A given number is said to be in standard form if it can be expressed as $k \times 10^n$, where k is a real number such that $1 \le k < 10$ and n is a positive integer.

Then,

 $23000000 = 2.3 \times 10^7$

2. Express each of the following numbers in standard form:

i. Diameter of Earth = 12756000 m

Solution:-

A given number is said to be in standard form if it can be expressed as $k \times 10^n$, where k is a real number such that $1 \le k < 10$ and n is a positive integer.

Then,

Diameter of Earth = 12756000 m

 $= (1.2156 \times 10^7) \text{ m}$

(in standard form)

ii. Distance between Earth and Moon = 384000000 m Solution:-

A given number is said to be in standard form if it can be expressed as $k \times 10^n$, where k is a real number such that $1 \le k < 10$ and n is a positive integer.

Then,

Distance between Earth and Moon = 384000000 m

 $= (3.84 \times 10^8) \text{ m}$

(in standard form)

iii. Population of India in March 2001= 1027000000 Solution:-

A given number is said to be in standard form if it can be expressed as $k \times 10^n$, where k is a real number such that $1 \le k < 10$ and n is a positive integer.

Then.

Population of India in March 2001= 1027000000

 $= (1.027 \times 10^9)$

(in standard form)

iv. Number of stars in a galaxy = 100000000000 Solution:-

A given number is said to be in standard form if it can be expressed as $k \times 10^n$, where k is a real number such that $1 \le k < 10$ and n is a positive integer.

Then

Number of stars in a galaxy = 100000000000

 $= (1 \times 10^{11})$

(in standard form)

v. The present age of universe = 12000000000 years Solution:-

A given number is said to be in standard form if it can be expressed as $k \times 10^n$, where k is a real number such that $1 \le k < 10$ and n is a positive integer.

Then,

The present age of universe = 12000000000

 $= (1.2 \times 10^{10})$ years

(in standard form)

EXERCISE 5C PAGE: 93

Mark tick against the correct answer in each of the following:

- 1. $(6^{-1}-8^{-1})^{-1}=?$
 - (a) (-1/2) Solution:-
- (b)-2
- (c)(1/24)
- (d) 24

(D) 24

We know that,

$$= (6)^{-1} = (1/6)^{1}$$

= $(8)^{-1} = (1/8)^{1}$

$$= \{(1/6) - (1/8)\}^{-1}$$
$$= \{(4-3)/24\}^{-1}$$

$$= \{1/24\}^{-1}$$

- = {24/1}
- = 24

- ... $[\because (a/b)^{-n} = (b/a)^n]$... $[\because (a/b)^{-n} = (b/a)^n]$

... [LCM of 6 and 8 is 24]

... [: $(a/b)^{-n} = (b/a)^{n}$]

... [: $(a/b)^{-n} = (b/a)^{n}$]

- 2. $(5^{-1} \times 3^{-1})^{-1}$
 - (a)(1/15)
- (b)(-1/15)
- (c) 15
- (d)-15

Solution:-

(c) 15

We know that,

$$= (5)^{-1} = (1/5)^{1}$$

$$= (3)^{-1} = (1/3)^{1}$$

$$= \{(1/5) \times (1/3)\}^{-1}$$

$$= \{(1\times1)/(5\times3)\}^{-1}$$

$$= \{1/15\}^{-1}$$

- 3. $(2^{-1} 4^{-1})^2$
 - (a) 4
- (b)-4
- (c) (1/16)

(d) (-1/16)

Solution:-

(c) (1/16)

We know that,

$$= (2)^{-1} = (1/2)^{1}$$

$$= (4)^{-1} = (1/4)^{1}$$

$$= \{(1/2) - (1/4)\}^2$$

$$= \{(2-1)/4\}^2$$

$$= \{1/4\}^2$$

$$= \{1^2/4^2\}$$

... [: $(a/b)^{-n} = (b/a)^{n}$]

... [:
$$(a/b)^{-n} = (b/a)^{n}$$
]

... [LCM of 2 and 4 is 4]

$$= \{1/16\}$$

4. $(1/2)^{-2} + (1/3)^{-2} + (1/4)^{-2} = ?$ (a)(61/144) (b) 29

Solution:-

(b) 29

We know that,

$$= (1/2)^{-2} = (2/1)^{2}$$

$$= (1/3)^{-2} = (3/1)^{2}$$

$$= (1/4)^{-2} = (4/1)^{2}$$

Now add,

$$= (2)^{2} + (3)^{2} + (4)^{2}$$
$$= 4 + 9 + 16$$
$$= 29$$

5. $\{6^{-1}+(3/2)^{-1}\}^{-1}$

(a)(2/3)

(b)(5/6)

Solution:-

(c)(6/5)

We know that,

=
$$(6)^{-1}$$
= $(1/6)$
= $(3/2)^{-1}$ = $(2/3)$

Now add,

$$= \{(1/6) + (2/3)\}^{-1}$$

$$= \{(1+4)/6\}^{-1}$$

$$= \{5/6\}^{-1}$$

$$= \{6/5\}$$

(c) (144/61)

(d) none of these

... [:
$$(a/b)^{-n} = (b/a)^{n}$$
]

...
$$[\because (a/b)^{-n} = (b/a)^n]$$

... [:
$$(a/b)^{-n} = (b/a)^{n}$$
]

(c)(6/5)(d) None of these

...
$$[\because (a/b)^{-n} = (b/a)^{n}]$$

...
$$[\because (a/b)^{-n} = (b/a)^n]$$

... [LCM of 6 and 3 is 6]

6. $(-1/2)^{-6} = ?$

(a)-64

(b) 64

(c) (1/64)

(d) (-1/64)

Solution:-(b) 64

We know that,

$$= (-1/2)^{-6} = (-2/1)^{6}$$
$$= (-2)^{6}$$
$$= 64$$

... [: $(a/b)^{-n} = (b/a)^{n}$]

7. $\{(3/4)^{-1} - (1/4)^{-1}\}^{-1} = ?$

(a)(3/8)

(b)(-3/8)

(c)(8/3)

(d)(-8/3)

Solution:-

(b)(-3/8)

We know that,

$$= (3/4)^{-1} = (4/3)^{1}$$

... [: $(a/b)^{-n} = (b/a)^{n}$]

$$= (1/4)^{-1} = (4/1)^{1} \qquad \dots [\because (a/b)^{-n} = (b/a)^{n}]$$
Now subtract,
$$= \{(4/3) - (4/1)\}^{-1}$$

$$= \{(4-12)/3\}^{-1} \qquad \dots [LCM of 3 and 1 is 3]$$

$$= \{-8/3\}^{-1}$$

$$= \{-3/8\}$$

- 8. $[\{(-1/2)^2\}^{-2}]^{-1}=?$
 - (a) (1/16) Solution:-
- (b)16
- (c)(-1/16)
- (d)-16

 $[\{(-1/2)^2\}^{-2}]^{-1} = [\{(-1^2/2^2)\}^{-2}]^{-1}$ $= [\{1/4\}^{-2}]^{-1}$ $= [\{4\}^2]^{-1}$

- $= [{4}]^{2}^{-1}$ $= [16]^{-1}$ = [1/16]
- 9. (5/6)⁰ =? (a) 5/6

- (b) 0
- (c)1
- (d)none of these

Solution:-

$$(5/6)^0 = 1$$

By definition, we have $a^0 = 1$ for every integer.

- 10. (2/3)⁻⁵=?
 - (a)(32/243)
- (b)(243/32)
- (c)(-32/243)
- (d)(-243/32)

Solution:- $(2/3)^{-5}=(3/2)^5$ $=(3^5/2^5)$ =(243/32)