SOLUTIONS TO CONCEPTS

CHAPTER 11

1. Gravitational force of attraction,
$F=\frac{G M m}{r^{2}}$
$=\frac{6.67 \times 10^{-11} \times 10 \times 10}{(0.1)^{2}}=6.67 \times 10^{-7} \mathrm{~N}$
2. To calculate the gravitational force on ' m ' at unline due to other mouse.
$\overrightarrow{F_{O D}}=\frac{G \times m \times 4 m}{\left(a / r^{2}\right)^{2}}=\frac{8 G m^{2}}{a^{2}}$
$\overrightarrow{\mathrm{FOI}_{\mathrm{OI}}}=\frac{\mathrm{G} \times \mathrm{m} \times 2 \mathrm{~m}}{\left(\mathrm{a} / \mathrm{r}^{2}\right)^{2}}=\frac{6 \mathrm{Gm}^{2}}{\mathrm{a}^{2}}$
$\overrightarrow{\mathrm{F}_{\mathrm{OB}}}=\frac{\mathrm{G} \times \mathrm{m} \times 2 \mathrm{~m}}{\left(\mathrm{a} / \mathrm{r}^{2}\right)^{2}}=\frac{4 \mathrm{Gm}^{2}}{\mathrm{a}^{2}}$

$\overrightarrow{F_{\mathrm{OA}}}=\frac{\mathrm{G} \times \mathrm{m} \times \mathrm{m}}{\left(\mathrm{a} / \mathrm{r}^{2}\right)^{2}}=\frac{2 \mathrm{Gm}^{2}}{\mathrm{a}^{2}}$
Resultant $\overrightarrow{\mathrm{F}_{\mathrm{OF}}}=\sqrt{64\left(\frac{\mathrm{Gm}^{2}}{\mathrm{a}^{2}}\right)^{2}+36\left(\frac{\mathrm{Gm}^{2}}{\mathrm{a}^{2}}\right)^{2}}=10 \frac{\mathrm{Gm}^{2}}{\mathrm{a}^{2}}$

Resultant $\overrightarrow{\mathrm{F}_{\mathrm{OE}}}=\sqrt{64\left(\frac{G \mathrm{~m}^{2}}{\mathrm{a}^{2}}\right)^{2}+4\left(\frac{G \mathrm{~m}^{2}}{\mathrm{a}^{2}}\right)^{2}}=2 \sqrt{5 \frac{G \mathrm{~m}^{2}}{\mathrm{a}^{2}}}$
The net resultant force will be,
$F=\sqrt{100\left(\frac{G m^{2}}{a^{2}}\right)^{2}+20\left(\frac{G m^{2}}{a^{2}}\right)^{2}-2\left(\frac{G m^{2}}{a^{2}}\right) \times 20 \sqrt{5}}$
$=\sqrt{\left(\frac{G m^{2}}{a^{2}}\right)^{2}(120-40 \sqrt{5})}=\sqrt{\left(\frac{G m^{2}}{a^{2}}\right)^{2}(120-89.6)}$
$=\frac{\mathrm{Gm}^{2}}{\mathrm{a}^{2}} \sqrt{40.4}=4 \sqrt{2} \frac{\mathrm{Gm}^{2}}{\mathrm{a}^{2}}$
3. a) if ' m ' is placed at mid point of a side
then $\overrightarrow{\mathrm{F}_{\mathrm{OA}}}=\frac{4 \mathrm{Gm}^{2}}{\mathrm{a}^{2}}$ in OA direction
$\overrightarrow{\mathrm{F}_{\mathrm{OB}}}=\frac{4 \mathrm{Gm}^{2}}{\mathrm{a}^{2}}$ in OB direction
Since equal \& opposite cancel each other

$\overrightarrow{F_{o c}}=\frac{G m^{2}}{\left[\left(r^{3} / 2\right) a\right]^{2}}=\frac{4 G m^{2}}{3 a^{2}}$ in OC direction
Net gravitational force on $m=\frac{4 G m^{2}}{a^{2}}$
b) If placed at O (centroid)
the $\overrightarrow{\mathrm{F}_{\mathrm{OA}}}=\frac{\mathrm{Gm}^{2}}{\left(\mathrm{a} / \mathrm{r}_{3}\right)}=\frac{3 G m^{2}}{\mathrm{a}^{2}}$

$\overrightarrow{\mathrm{F}_{\mathrm{OB}}}=\frac{3 \mathrm{Gm}^{2}}{\mathrm{a}^{2}}$
Resultant $\vec{F}=\sqrt{2\left(\frac{3 G m^{2}}{a^{2}}\right)^{2}-2\left(\frac{3 G m^{2}}{a^{2}}\right)^{2} \times \frac{1}{2}}=\frac{3 G m^{2}}{a^{2}}$
Since $\overrightarrow{F_{O C}}=\frac{3 G m^{2}}{a^{2}}$, equal \& opposite to F, cancel
Net gravitational force $=0$
4. $\overrightarrow{\mathrm{F}_{\mathrm{CB}}}=\frac{\mathrm{Gm}^{2}}{4 \mathrm{a}^{2}} \cos 60 \hat{i}-\frac{G m^{2}}{4 \mathrm{a}^{2}} \sin 60 \hat{j}$
$\overrightarrow{F_{\mathrm{CA}}}=\frac{G m^{2}}{-4 \mathrm{a}^{2}} \cos 60 \hat{\mathrm{i}}-\frac{G m^{2}}{4 \mathrm{a}^{2}} \sin 60 \hat{\mathrm{j}}$
$\vec{F}=\overrightarrow{F_{C B}}+\overrightarrow{F_{C A}}$

$=\frac{-2 G m^{2}}{4 a^{2}} \sin 60 \hat{j}=\frac{-2 G m^{2}}{4 a^{2}} \frac{r_{3}}{2}=\frac{r_{3} G m^{2}}{4 a^{2}}$

$\overrightarrow{F_{\mathrm{CA}}}=\frac{-\mathrm{GM}^{2}}{4 R^{2}} \cos 45 \hat{j}+\frac{\mathrm{GM}^{2}}{4 R^{2}} \sin 45 \hat{j}$
So, resultant force on C ,
$\therefore \overrightarrow{F_{C}}=\overrightarrow{F_{C A}}+\overrightarrow{F_{C B}}+\overrightarrow{F_{C D}}$
$=-\frac{G M^{2}}{4 R^{2}}\left(2+\frac{1}{\sqrt{2}}\right) \hat{i}+\frac{G M^{2}}{4 R^{2}}\left(2+\frac{1}{\sqrt{2}}\right) \hat{\mathrm{j}}$
$\therefore F_{C}=\frac{G^{2}}{4 \mathrm{R}^{2}}(2 \sqrt{2}+1)$
For moving along the circle, $\vec{F}=\frac{m v^{2}}{R}$
or $\frac{\mathrm{GM}^{2}}{4 \mathrm{R}^{2}}(2 \sqrt{2}+1)=\frac{\mathrm{MV}}{} \mathrm{R}^{2}$ or $\mathrm{V}=\sqrt{\frac{\mathrm{GM}}{\mathrm{R}}\left(\frac{2 \sqrt{2}+1}{4}\right)}$
6. $\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})^{2}}=\frac{6.67 \times 10^{-11} \times 7.4 \times 10^{22}}{(1740+1000)^{2} \times 10^{6}}=\frac{49.358 \times 10^{11}}{2740 \times 2740 \times 10^{6}}$
$=\frac{49.358 \times 10^{11}}{0.75 \times 10^{13}}=65.8 \times 10^{-2}=0.65 \mathrm{~m} / \mathrm{s}^{2}$
7. The linear momentum of 2 bodies is 0 initially. Since gravitational force is internal, final momentum is also zero.
So $(10 \mathrm{~kg}) \mathrm{v}_{1}=(20 \mathrm{~kg}) \mathrm{v}_{2}$
Or $\mathrm{v}_{1}=\mathrm{v}_{2}$
Since P.E. is conserved
Initial P.E. $=\frac{-6.67 \times 10^{-11} \times 10 \times 20}{1}=-13.34 \times 10^{-9} \mathrm{~J}$
When separation is 0.5 m ,
$-13.34 \times 10^{-9}+0=\frac{-13.34 \times 10^{-9}}{(1 / 2)}+(1 / 2) \times 10 v_{1}{ }^{2}+(1 / 2) \times 20 v_{2}{ }^{2}$
$\Rightarrow-13.34 \times 10^{-9}=-26.68 \times 10^{-9}+5 \mathrm{v}_{1}{ }^{2}+10 \mathrm{v}_{2}{ }^{2}$
$\Rightarrow-13.34 \times 10^{-9}=-26.68 \times 10^{-9}+30 \mathrm{v}_{2}{ }^{2}$
$\Rightarrow \mathrm{v}_{2}{ }^{2}=\frac{13.34 \times 10^{-9}}{30}=4.44 \times 10^{-10}$
$\Rightarrow \mathrm{v}_{2}=2.1 \times 10^{-5} \mathrm{~m} / \mathrm{s}$.
So, $\mathrm{v}_{1}=4.2 \times 10^{-5} \mathrm{~m} / \mathrm{s}$.
8. In the semicircle, we can consider, a small element of d, then $R d \theta=(M / L) R d \theta=d M$.
$F=\frac{G M R d \theta m}{L R^{2}}$
$\mathrm{dF}_{3}=2 \mathrm{dF}$ since $=\frac{2 \mathrm{GMm}}{\mathrm{LR}} \sin \theta \mathrm{d} \theta$.
$\therefore \mathrm{F}=\int_{0}^{\pi / 2} \frac{2 \mathrm{GMm}}{\mathrm{LR}} \sin \theta \mathrm{d} \theta=\frac{2 \mathrm{GMm}}{\mathrm{LR}}[-\cos \theta]_{0}^{\pi / 2}$

$\therefore=-2 \frac{\mathrm{GMm}}{\mathrm{LR}}(-1)=\frac{2 \mathrm{GMm}}{\mathrm{LR}}=\frac{2 \mathrm{GMm}}{\mathrm{L} \times \mathrm{L} / \mathrm{A}}=\frac{2 \pi \mathrm{GMm}}{\mathrm{L}^{2}}$
9. A small section of rod is considered at ' x ' distance mass of the element $=(M / L) . d x=d m$
$\mathrm{dE}_{1}=\frac{\mathrm{G}(\mathrm{dm}) \times 1}{\left(\mathrm{~d}^{2}+\mathrm{x}^{2}\right)}=\mathrm{dE}_{2}$
Resultant $\mathrm{dE}=2 \mathrm{dE}_{1} \sin \theta$
$=2 \times \frac{G(d m)}{\left(d^{2}+x^{2}\right)} \times \frac{d}{\sqrt{\left(d^{2}+x^{2}\right)}}=\frac{2 \times G M \times d d x}{L\left(d^{2}+x^{2}\right)\left(\sqrt{\left(d^{2}+x^{2}\right)}\right)}$
Total gravitational field
$E=\int_{0}^{L / 2} \frac{2 G m d d x}{L\left(d^{2}+x^{2}\right)^{3 / 2}}$

Integrating the above equation it can be found that,
$E=\frac{2 G M}{d \sqrt{L^{2}+4 d^{2}}}$
10. The gravitational force on ' m ' due to the shell of M_{2} is 0 .
M is at a distance $\frac{R_{1}+R_{2}}{2}$
Then the gravitational force due to M is given by
$=\frac{G M_{1} m}{\left(R_{1}+R_{2 / 2}\right.}=\frac{4 G M_{1} m}{\left(R_{1}+R_{2}\right)^{2}}$

11. Man of earth $M=(4 / 3) \pi R^{3} \rho$

Man of the imaginary sphere, having
Radius $=x, M^{\prime}=(4 / 3) \pi x^{3} \rho$
or $\frac{M^{\prime}}{M}=\frac{x^{3}}{R^{3}}$
\therefore Gravitational force on $F=\frac{G^{\prime} m}{\mathrm{~m}^{2}}$

or $F=\frac{G M x^{3} m}{R^{3} x^{2}}=\frac{G M m x}{R^{3}}$
12. Let d be the distance from centre of earth to man ' m ' then
$D=\sqrt{x^{2}+\left(\frac{R^{2}}{4}\right)}=(1 / 2) \sqrt{4 x^{2}+R^{2}}$
M be the mass of the earth, M^{\prime} the mass of the sphere of radius $d / 2$.
Then $M=(4 / 3) \pi R^{3} \rho$
$\mathrm{M}^{\prime}=(4 / 3) \pi \mathrm{d}^{3} \tau$

or $\frac{M^{\prime}}{M}=\frac{d^{3}}{R^{3}}$
\therefore Gravitational force is m ,
$F=\frac{\mathrm{Gm}^{\prime} \mathrm{m}}{\mathrm{d}^{2}}=\frac{\mathrm{Gd}^{3} \mathrm{Mm}}{\mathrm{R}^{3} \mathrm{~d}^{2}}=\frac{\mathrm{GMmd}}{\mathrm{R}^{3}}$
So, Normal force exerted by the wall $=F \cos \theta$.
$=\frac{G M m d}{R^{3}} \times \frac{R}{2 d}=\frac{G M m}{2 R^{2}} \quad$ (therefore I think normal force does not depend on x)

13. a) m ' is placed at a distance x from ' O '.

If $r<x, 2 r$, Let's consider a thin shell of man
$\mathrm{dm}=\frac{\mathrm{m}}{(4 / 3) \pi \mathrm{r}^{2}} \times \frac{4}{3} \pi \mathrm{x}^{3}=\frac{\mathrm{m} \mathrm{x}^{3}}{\mathrm{r}^{3}}$
Thus $\int d m=\frac{m x^{3}}{r^{3}}$

Then gravitational force $F=\frac{G m d m}{x^{2}}=\frac{G m x^{3} / r^{3}}{x^{2}}=\frac{G m x}{r^{3}}$
b) $2 r<x<2 R$, then F is due to only the sphere.
$\therefore F=\frac{G m m^{\prime}}{(x-r)^{2}}$
c) if $x>2 R$, then Gravitational force is due to both sphere \& shell, then due to shell,
$\mathrm{F}=\frac{\mathrm{GMm} \mathrm{m}^{\prime}}{(\mathrm{x}-\mathrm{R})^{2}}$
due to the sphere $=\frac{G m m^{\prime}}{(x-r)^{2}}$
So, Resultant force $=\frac{G m m^{\prime}}{(x-r)^{2}}+\frac{G M m^{\prime}}{(x-R)^{2}}$
14. At P_{1}, Gravitational field due to sphere $M=\frac{G M}{(3 a+a)^{2}}=\frac{G M}{16 a^{2}}$

At P_{2}, Gravitational field is due to sphere \& shell,
$=\frac{G M}{(a+4 a+a)^{2}}+\frac{G M}{(4 a+a)^{2}}=\frac{G M}{a^{2}}\left(\frac{1}{36}+\frac{1}{25}\right)=\left(\frac{61}{900}\right) \frac{G M}{a^{2}}$

15. We know in the thin spherical shell of uniform density has gravitational field at its internal point is zero.

At A and B point, field is equal and opposite and cancel each other so Net field is zero.
Hence, $E_{A}=E_{B}$
16. Let 0.1 kg man is x m from 2 kg mass and $(2-\mathrm{x}) \mathrm{m}$ from 4 kg mass.

$\therefore \frac{2 \times 0.1}{\mathrm{x}^{2}}=-\frac{4 \times 0.1}{(2-\mathrm{x})^{2}}$
or $\frac{0.2}{x^{2}}=-\frac{0.4}{(2-x)^{2}}$
or $\frac{1}{x^{2}}=\frac{2}{(2-x)^{2}}$ or $(2-x)^{2}=2 x^{2}$
or $2-x=\sqrt{2} x$ or $x\left(r_{2}+1\right)=2$
or $x=\frac{2}{2.414}=0.83 \mathrm{~m}$ from 2 kg mass.
17. Initially, the ride of Δ is a

To increase it to 2a,
work done $=\frac{\mathrm{Gm}^{2}}{2 \mathrm{a}}+\frac{\mathrm{Gm}^{2}}{\mathrm{a}}=\frac{3 \mathrm{Gm}^{2}}{2 \mathrm{a}}$

18. Work done against gravitational force to take away the particle from sphere,
$=\frac{G \times 10 \times 0.1}{0.1 \times 0.1}=\frac{6.67 \times 10^{-11} \times 1}{1 \times 10^{-1}}=6.67 \times 10^{-10} \mathrm{~J}$
19. $\vec{E}=(5 \mathrm{~N} / \mathrm{kg}) \hat{i}+(12 \mathrm{~N} / \mathrm{kg}) \hat{j}$

a) $\vec{F}=\vec{E} m$
$=2 k g[(5 \mathrm{~N} / \mathrm{kg}) \hat{i}+(12 \mathrm{~N} / \mathrm{kg}) \hat{\mathrm{j}}]=(10 \mathrm{~N}) \hat{i}+(12 \mathrm{~N}) \hat{j}$
$|\vec{F}|=\sqrt{100+576}=26 \mathrm{~N}$
b) $\vec{V}=\vec{E} r$

At $(12 \mathrm{~m}, 0), \overrightarrow{\mathrm{V}}=-(60 \mathrm{~J} / \mathrm{kg}) \hat{\mathrm{i}}|\overrightarrow{\mathrm{V}}|=60 \mathrm{~J}$
At $(0,5 \mathrm{~m}), \vec{V}=-(60 \mathrm{~J} / \mathrm{kg}) \hat{\mathrm{j}}|\overrightarrow{\mathrm{V}}|=-60 \mathrm{~J}$
c) $\Delta \vec{V}=\int_{(0,0)}^{(1,2,5)} \overrightarrow{\mathrm{E}} \mathrm{mdr}=\left[[(10 \mathrm{~N}) \hat{\mathrm{i}}+(24 \mathrm{~N}) \hat{\mathrm{j}}] \mathrm{r} \int_{(0,0)}^{(12,5)}\right.$
$=-(120 \mathrm{~J} \hat{i}+120 \mathrm{~J} \hat{\mathrm{i}})=240 \mathrm{~J}$
d) $\Delta v=-[r(10 \mathrm{~N} \hat{\mathrm{i}}+24 \mathrm{~N} \hat{\mathrm{j}})]\left(\begin{array}{c}(12 \mathrm{~m}, 0)\end{array}\right.$
$=-120 \hat{j}+120 \hat{i}=0$
20. a) $V=(20 N / k g)(x+y)$
$\frac{G M}{R}=\frac{M L T^{-2}}{M} L$ or $\frac{M^{-1} L^{3} T^{-2} M^{1}}{L}=\frac{M L^{2} T^{-2}}{M}$
$\operatorname{Or} M^{0} L^{2} T^{-2}=M^{0} L^{2} T^{-2}$
\therefore L.H.S $=$ R.H.S
b) $\vec{E}_{(x, y)}=-20(N / k g) \hat{i}-20(N / k g) \hat{j}$
c) $\vec{F}=\vec{E} m$
$=0.5 \mathrm{~kg}[-(20 \mathrm{~N} / \mathrm{kg}) \hat{\mathrm{i}}-(20 \mathrm{~N} / \mathrm{kg}) \hat{\mathrm{j}}=-10 \mathrm{~N} \hat{\mathrm{i}}-10 \mathrm{~N} \hat{\mathrm{j}}$
$\therefore|\vec{F}|=\sqrt{100+100}=10 \sqrt{2} \mathrm{~N}$
21. $\vec{E}=2 \hat{i}+3 \hat{j}$

The field is represented as
$\tan \theta_{1}=3 / 2$
Again the line $3 y+2 x=5$ can be represented as $\tan \theta_{2}=-2 / 3$
$m_{1} m_{2}=-1$

Since, the direction of field and the displacement are perpendicular, is done by the particle on the line.
22. Let the height be h
$\therefore(1 / 2) \frac{G M}{R^{2}}=\frac{G M}{(R+h)^{2}}$
Or $2 R^{2}=(R+h)^{2}$
Or $\sqrt{2} R=R+h$
Or $h=\left(r_{2}-1\right) R$
23. Let g^{\prime} be the acceleration due to gravity on mount everest.
$g^{\prime}=g\left(1-\frac{2 h}{R}\right)$
$=9.8\left(1-\frac{17696}{6400000}\right)=9.8(1-0.00276)=9.773 \mathrm{~m} / \mathrm{s}^{2}$
24. Let g^{\prime} be the acceleration due to gravity in mine.

Then $g^{\prime}=g\left(1-\frac{d}{R}\right)$
$=9.8\left(1-\frac{640}{6400 \times 10^{3}}\right)=9.8 \times 0.9999=9.799 \mathrm{~m} / \mathrm{s}^{2}$
25. Let g^{\prime} be the acceleration due to gravity at equation $\&$ that of pole $=g$
$g^{\prime}=g-\omega^{2} R$
$=9.81-\left(7.3 \times 10^{-5}\right)^{2} \times 6400 \times 10^{3}$
$=9.81-0.034$
$=9.776 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{mg}^{\prime}=1 \mathrm{~kg} \times 9.776 \mathrm{~m} / \mathrm{s}^{2}$
$=9.776 \mathrm{~N}$ or 0.997 kg
The body will weigh 0.997 kg at equator.
26. At equator, $g^{\prime}=g-\omega^{2} R$

Let at ' h ' height above the south pole, the acceleration due to gravity is same.
Then, here $g^{\prime}=g\left(1-\frac{2 h}{R}\right)$
$\therefore g-\omega^{2} R=g\left(1-\frac{2 h}{R}\right)$
or $1-\frac{\omega^{2} R}{g}=1-\frac{2 h}{R}$
or $\mathrm{h}=\frac{\omega^{2} \mathrm{R}^{2}}{2 \mathrm{~g}}=\frac{\left(7.3 \times 10^{-5}\right)^{2} \times\left(6400 \times 10^{3}\right)^{2}}{2 \times 9.81}=11125 \mathrm{~N}=10 \mathrm{Km}$ (approximately)
27. The apparent ' g ' at equator becomes zero.
i.e. $g^{\prime}=g-\omega^{2} R=0$
or $g=\omega^{2} R$
or $\omega=\sqrt{\frac{g}{R}}=\sqrt{\frac{9.8}{6400 \times 10^{3}}}=\sqrt{1.5 \times 10^{-6}}=1.2 \times 10^{-3} \mathrm{rad} / \mathrm{s}$.
$\mathrm{T}=\frac{2 \pi}{\omega}=\frac{2 \times 3.14}{1.2 \times 10^{-3}}=1.5 \times 10^{-6}$ sec. $=1.41$ hour
28. a) Speed of the ship due to rotation of earth $v=\omega R$
b) $T_{0}=m g r=m g-m \omega^{2} R$
$\therefore \mathrm{T}_{0}-\mathrm{mg}=\mathrm{m} \omega^{2} \mathrm{R}$
c) If the ship shifts at speed ' v '
$\mathrm{T}=\mathrm{mg}-\mathrm{m} \omega_{1}{ }^{2} \mathrm{R}$

$=T_{0}-\left(\frac{(v-\omega R)^{2}}{R^{2}}\right) R$
$=T_{0}-\left(\frac{v^{2}+\omega^{2} R^{2}-2 \omega R v}{R}\right) m$
$\therefore \mathrm{T}=\mathrm{T}_{0}+2 \omega \mathrm{v} \mathrm{m}$
29. According to Kepler's laws of planetary motion,
$T^{2} \alpha R^{3}$
$\frac{T_{m}{ }^{2}}{T_{e}{ }^{2}}=\frac{R_{m s}{ }^{3}}{R_{e s}{ }^{3}}$
$\left(\frac{\mathrm{R}_{\mathrm{ms}}}{\mathrm{R}_{\mathrm{es}}}\right)^{3}=\left(\frac{1.88}{1}\right)^{2}$
$\therefore \frac{R_{\mathrm{ms}}}{\mathrm{R}_{\mathrm{es}}}=(1.88)^{2 / 3}=1.52$
30. $\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{r}^{3}}{\mathrm{GM}}}$
$27.3=2 \times 3.14 \sqrt{\frac{\left(3.84 \times 10^{5}\right)^{3}}{6.67 \times 10^{-11} \times M}}$
or $2.73 \times 2.73=\frac{2 \times 3.14 \times\left(3.84 \times 10^{5}\right)^{3}}{6.67 \times 10^{-11} \times \mathrm{M}}$
or $\mathrm{M}=\frac{2 \times(3.14)^{2} \times(3.84)^{3} \times 10^{15}}{3.335 \times 10^{-11}(27.3)^{2}}=6.02 \times 10^{24} \mathrm{~kg}$
\therefore mass of earth is found to be $6.02 \times 10^{24} \mathrm{~kg}$.
31. $\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{r}^{3}}{\mathrm{GM}}}$
$\Rightarrow 27540=2 \times 3.14 \sqrt{\frac{\left(9.4 \times 10^{3} \times 10^{3}\right)^{3}}{6.67 \times 10^{-11} \times M}}$
or $(27540)^{2}=(6.28)^{2} \frac{\left(9.4 \times 10^{6}\right)^{2}}{6.67 \times 10^{-11} \times \mathrm{M}}$
or $M=\frac{(6.28)^{2} \times(9.4)^{3} \times 10^{18}}{6.67 \times 10^{-11} \times(27540)^{2}}=6.5 \times 10^{23} \mathrm{~kg}$.
32. a) $V=\sqrt{\frac{G M}{r+h}}=\sqrt{\frac{g r^{2}}{r+h}}$
$=\sqrt{\frac{9.8 \times\left(6400 \times 10^{3}\right)^{2}}{10^{6} \times(6.4+2)}}=6.9 \times 10^{3} \mathrm{~m} / \mathrm{s}=6.9 \mathrm{~km} / \mathrm{s}$
b) K.E. $=(1 / 2) \mathrm{mv}^{2}$
$=(1 / 2) 1000 \times\left(47.6 \times 10^{6}\right)=2.38 \times 10^{10} \mathrm{~J}$
c) P.E. $=\frac{G M m}{-(\mathrm{R}+\mathrm{h})}$
$=-\frac{6.67 \times 10^{-11} \times 6 \times 10^{24} \times 10^{3}}{(6400+2000) \times 10^{3}}=-\frac{40 \times 10^{13}}{8400}=-4.76 \times 10^{10} \mathrm{~J}$
d) $\mathrm{T}=\frac{2 \pi(\mathrm{r}+\mathrm{h})}{\mathrm{V}}=\frac{2 \times 3.14 \times 8400 \times 10^{3}}{6.9 \times 10^{3}}=76.6 \times 10^{2} \mathrm{sec}=2.1$ hour
33. Angular speed f earth \& the satellite will be same
$\frac{2 \pi}{\mathrm{~T}_{\mathrm{e}}}=\frac{2 \pi}{\mathrm{~T}_{\mathrm{s}}}$
or $\frac{1}{24 \times 3600}=\frac{1}{2 \pi \sqrt{\frac{(\mathrm{R}+\mathrm{h})^{3}}{g R^{2}}}} \quad$ or $12 \mathrm{I} 3600=3.14 \sqrt{\frac{(\mathrm{R}+\mathrm{h})^{3}}{g R^{2}}}$
or $\frac{(\mathrm{R}+\mathrm{h})^{2}}{\mathrm{gR}^{2}}=\frac{(12 \times 3600)^{2}}{(3.14)^{2}} \quad$ or $\frac{(6400+\mathrm{h})^{3} \times 10^{9}}{9.8 \times(6400)^{2} \times 10^{6}}=\frac{(12 \times 3600)^{2}}{(3.14)^{2}}$
or $\frac{(6400+h)^{3} \times 10^{9}}{6272 \times 10^{9}}=432 \times 10^{4}$
or $(6400+h)^{3}=6272 \times 432 \times 10^{4}$
or $6400+h=\left(6272 \times 432 \times 10^{4}\right)^{1 / 3}$
or $h=\left(6272 \times 432 \times 10^{4}\right)^{1 / 3}-6400$
$=42300 \mathrm{~cm}$.
b) Time taken from north pole to equator $=(1 / 2) \mathrm{t}$
$=(1 / 2) \times 6.28 \sqrt{\frac{(43200+6400)^{3}}{10 \times(6400)^{2} \times 10^{6}}}=3.14 \sqrt{\frac{(497)^{3} \times 10^{6}}{(64)^{2} \times 10^{11}}}$
$=3.14 \sqrt{\frac{497 \times 497 \times 497}{64 \times 64 \times 10^{5}}}=6$ hour.
34. For geo stationary satellite,
$\mathrm{r}=4.2 \times 10^{4} \mathrm{~km}$
$\mathrm{h}=3.6 \times 10^{4} \mathrm{~km}$
Given $\mathrm{mg}=10 \mathrm{~N}$
$m g h=m g\left(\frac{R^{2}}{(R+h)^{2}}\right)$

$=10\left[\frac{\left(6400 \times 10^{3}\right)^{2}}{\left(6400 \times 10^{3}+3600 \times 10^{3}\right)^{2}}\right]=\frac{4096}{17980}=0.23 \mathrm{~N}$
35. $\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{R}_{2}{ }^{3}}{\mathrm{gR}_{1}{ }^{2}}}$

Or $\mathrm{T}^{2}=4 \pi^{2} \frac{\mathrm{R}_{2}{ }^{3}}{\mathrm{gR}_{1}{ }^{2}}$
$\operatorname{Org}=\frac{4 \pi^{2}}{\mathrm{~T}^{2}} \frac{\mathrm{R}_{2}{ }^{3}}{\mathrm{R}_{1}{ }^{2}}$
\therefore Acceleration due to gravity of the planet is $=\frac{4 \pi^{2}}{\mathrm{~T}^{2}} \frac{\mathrm{R}_{2}{ }^{3}}{\mathrm{R}_{1}{ }^{2}}$
36. The colattitude is given by ϕ.
$\angle O A B=90^{\circ}-\angle A B O$
Again $\angle \mathrm{OBC}=\phi=\angle \mathrm{OAB}$
$\therefore \sin \phi=\frac{6400}{42000}=\frac{8}{53}$
$\therefore \phi=\sin ^{-1}\left(\frac{8}{53}\right)=\sin ^{-1} 0.15$.

37. The particle attain maximum height $=6400 \mathrm{~km}$.

On earth's surface, its P.E. \& K.E.
$E_{e}=(1 / 2) m v^{2}+\left(\frac{-G M m}{R}\right)$
In space, its P.E. \& K.E.
$E_{s}=\left(-\frac{G M m}{R+h}\right)+0$
$E_{s}=\left(-\frac{G M m}{2 R}\right)$
$\ldots(2) \quad(\because h=R)$
Equating (1) \& (2)
$-\frac{G M m}{R}+\frac{1}{2} m v^{2}=-\frac{G M m}{2 R}$
$\operatorname{Or}(1 / 2) m v^{2}=G M m\left(-\frac{1}{2 R}+\frac{1}{R}\right)$
Or $v^{2}=\frac{G M}{R}$
$=\frac{6.67 \times 10^{-11} \times 6 \times 10^{24}}{6400 \times 10^{3}}$
$=\frac{40.02 \times 10^{13}}{6.4 \times 10^{6}}$
$=6.2 \times 10^{7}=0.62 \times 10^{8}$
Or $v=\sqrt{0.62 \times 10^{8}}=0.79 \times 10^{4} \mathrm{~m} / \mathrm{s}=7.9 \mathrm{~km} / \mathrm{s}$.
38. Initial velocity of the particle $=15 \mathrm{~km} / \mathrm{s}$

Let its speed be ' v ' at interstellar space.
$\therefore(1 / 2) \mathrm{m}\left[\left(15 \times 10^{3}\right)^{2}-\mathrm{v}^{2}\right]=\int_{\mathrm{R}}^{\infty} \frac{\mathrm{GMm}}{\mathrm{x}^{2}} \mathrm{dx}$
$\Rightarrow(1 / 2) m\left[\left(15 \times 10^{3}\right)^{2}-v^{2}\right]=G M m\left[-\frac{1}{x}\right]_{R}^{\infty}$
$\Rightarrow(1 / 2) m\left[\left(225 \times 10^{6}\right)-v^{2}\right]=\frac{G M m}{R}$
$\Rightarrow 225 \times 10^{6}-\mathrm{v}^{2}=\frac{2 \times 6.67 \times 10^{-11} \times 6 \times 10^{24}}{6400 \times 10^{3}}$
$\Rightarrow v^{2}=225 \times 10^{6}-\frac{40.02}{32} \times 10^{8}$
$\Rightarrow v^{2}=225 \times 10^{6}-1.2 \times 10^{8}=10^{8}(1.05)$
Or $v=1.01 \times 10^{4} \mathrm{~m} / \mathrm{s}$ or

$$
=10 \mathrm{~km} / \mathrm{s}
$$

39. The man of the sphere $=6 \times 10^{24} \mathrm{~kg}$.

Escape velocity $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$V_{c}=\sqrt{\frac{2 G M}{R}}$
Or $R=\frac{2 G M}{V_{c}{ }^{2}}$
$=\frac{2 \times 6.67 \times 10^{-11} \times 6 \times 10^{24}}{\left(3 \times 10^{8}\right)^{2}}=\frac{80.02}{9} \times 10^{-3}=8.89 \times 10^{-3} \mathrm{~m} \approx 9 \mathrm{~mm}$.

