SOLUTIONS TO CONCEPTS CHAPTER 15

1. $\mathrm{v}=40 \mathrm{~cm} / \mathrm{sec}$

As velocity of a wave is constant location of maximum after 5 sec $=40 \times 5=200 \mathrm{~cm}$ along negative x -axis.

2. Given $y=A e^{-[(x / a)+(t / T))^{2}}$
a) $[A]=\left[M^{0} L^{1} T^{0}\right],[T]=\left[M^{0} L^{0} T^{1}\right]$
$[\mathrm{a}]=\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{0}\right]$
b) Wave speed, $v=\lambda / T=a / T$ [Wave length $\lambda=a$]
c) If $y=f(t-x / v) \rightarrow$ wave is traveling in positive direction and if $y=f(t+x / v) \rightarrow$ wave is traveling in negative direction
So, $y=A e^{-[(x / a)+(t / T)]^{2}}=A e^{-(1 / T)\left[\frac{x}{a / T}+t\right]^{2}}$

$$
=A e^{-\left(1 / T T\left[\frac{x}{v}+t\right]^{2}\right.}
$$

i.e. $y=f\{t+(x / v)\}$
d) Wave speed, $v=a / T$
\therefore Max. of pulse at $\mathrm{t}=\mathrm{T}$ is $(\mathrm{a} / \mathrm{T}) \times \mathrm{T}=\mathrm{a}$ (negative x -axis)
Max. of pulse at $t=2 T=(a / T) \times 2 T=2 a$ (along negative x-axis)
So, the wave travels in negative x-direction.
3. At $\mathrm{t}=1 \mathrm{sec}, \mathrm{s}_{1}=\mathrm{vt}=10 \times 1=10 \mathrm{~cm}$
$\mathrm{t}=2 \mathrm{sec}, \quad \mathrm{s}_{2}=\mathrm{vt}=10 \times 2=20 \mathrm{~cm}$
$\mathrm{t}=3 \mathrm{sec}, \quad \mathrm{s}_{3}=\mathrm{vt}=10 \times 3=30 \mathrm{~cm}$
4. The pulse is given by, $\mathrm{y}=\left[\left(\mathrm{a}^{3}\right) /\left\{(\mathrm{x}-\mathrm{vt})^{2}+\mathrm{a}^{2}\right\}\right]$
$a=5 \mathrm{~mm}=0.5 \mathrm{~cm}, \mathrm{v}=20 \mathrm{~cm} / \mathrm{s}$
Att $=0 \mathrm{~s}, \mathrm{y}=\mathrm{a}^{3} /\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)$
The graph between y and x can be plotted by taking different values of x .
(left as exercise for the student)
similarly, at $t=1 \mathrm{~s}, \mathrm{y}=\mathrm{a}^{3} /\left\{(\mathrm{x}-\mathrm{v})^{2}+\mathrm{a}^{2}\right\}$
and at $t=2 s, \quad y=a^{3} /\left\{(x-2 v)^{2}+a^{2}\right\}$
5. At $x=0, f(t)=a \sin (t / T)$

Wave speed $=v$
$\Rightarrow \lambda=$ wavelength $=\mathrm{vT}$ ($\mathrm{T}=$ Time period)
So, general equation of wave
$Y=A \sin [(t / T)-(x / v T)] \quad[$ because $y=f((t / T)-(x / \lambda))$
6. $\quad A t t=0, g(x)=A \sin (x / a)$
a) $\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{0}\right]=[\mathrm{L}]$
$a=\left[M^{0} L^{1} T^{0}\right]=[L]$
b) Wave speed $=v$
\therefore Time period, $\mathrm{T}=\mathrm{a} / \mathrm{v}(\mathrm{a}=$ wave length $=\lambda)$
\therefore General equation of wave
$y=A \sin \{(x / a)-t /(a / v)\}$
$=A \sin \{(x-v t) / a\}$
7. $A t t=t_{0}, g\left(x, t_{0}\right)=A \sin (x / a)$

For a wave traveling in the positive x -direction, the general equation is given by
$y=f\left(\frac{x}{a}-\frac{t}{T}\right)$
Putting $t=-t_{0}$ and comparing with equation (1), we get
$\Rightarrow \mathrm{g}(\mathrm{x}, 0)=\mathrm{A} \sin \left\{(\mathrm{x} / \mathrm{a})+\left(\mathrm{t}_{0} / \mathrm{T}\right)\right\}$
$\Rightarrow \mathrm{g}(\mathrm{x}, \mathrm{t})=\mathrm{A} \sin \left\{(\mathrm{x} / \mathrm{a})+\left(\mathrm{t}_{0} / \mathrm{T}\right)-(\mathrm{t} / \mathrm{T})\right\}$

As $T=a / v$ ($a=$ wave length, $v=$ speed of the wave)
$\Rightarrow y=A \sin \left(\frac{x}{a}+\frac{t_{0}}{(a / v)}-\frac{t}{(a / v)}\right)$
$=A \sin \left(\frac{x+v\left(t_{0}-t\right)}{a}\right)$
$\Rightarrow \mathrm{y}=\mathrm{A} \sin \left[\frac{\mathrm{x}-\mathrm{v}\left(\mathrm{t}-\mathrm{t}_{0}\right)}{\mathrm{a}}\right]$
8. The equation of the wave is given by
$\left.y=(0.1 \mathrm{~mm}) \sin \left[\left(31.4 \mathrm{~m}^{-1}\right) x+\left(314 \mathrm{~s}^{-1}\right) \mathrm{t}\right] \quad y=r \sin \{(2 \pi x / \lambda)\}+\omega t\right)$
a) Negative x-direction
b) $\mathrm{k}=31.4 \mathrm{~m}^{-1}$
$\Rightarrow 2 \lambda / \lambda=31.4 \Rightarrow \lambda=2 \pi / 31.4=0.2 \mathrm{mt}=20 \mathrm{~cm}$
Again, $\omega=314 \mathrm{~s}^{-1}$
$\Rightarrow 2 \pi \mathrm{f}=314 \Rightarrow \mathrm{f}=314 / 2 \pi=314 /(2 \times(3 / 14)\}=50 \mathrm{sec}^{-1}$
\therefore wave speed, $v=\lambda f=20 \times 50=1000 \mathrm{~cm} / \mathrm{s}$
c) Max. displacement $=0.10 \mathrm{~mm}$

Max. velocity $=\mathrm{a} \omega=0.1 \times 10^{-1} \times 314=3.14 \mathrm{~cm} / \mathrm{sec}$.
9. Wave speed, $v=20 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& A=0.20 \mathrm{~cm} \\
& \lambda=2 \mathrm{~cm}
\end{aligned}
$$

a) Equation of wave along the x-axis

$$
\begin{aligned}
& y=A \sin (k x-w t) \\
\therefore \quad & k=2 \pi / \lambda=2 \pi / 2=\pi \mathrm{cm}^{-1} \\
& T=\lambda / v=2 / 2000=1 / 1000 \mathrm{sec}=10^{-3} \mathrm{sec} \\
\Rightarrow & \omega=2 \pi / T=2 \pi \times 10^{-3} \mathrm{sec}^{-1}
\end{aligned}
$$

So, the wave equation is,
$\therefore y=(0.2 \mathrm{~cm}) \sin \left[\left(\pi \mathrm{cm}^{-1}\right) x-\left(2 \pi \times 10^{3} \sec ^{-1}\right) t\right]$
b) At $x=2 \mathrm{~cm}$, and $\mathrm{t}=0$,

$$
y=(0.2 \mathrm{~cm}) \sin (\pi / 2)=0
$$

$\therefore \quad v=r \omega \cos \pi x=0.2 \times 2000 \pi \times \cos 2 \pi=400 \pi$

$$
\begin{aligned}
& =400 \times(3.14)=1256 \mathrm{~cm} / \mathrm{s} \\
& =400 \pi \mathrm{~cm} / \mathrm{s}=4 \pi \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

10. $Y=(1 \mathrm{~mm}) \sin \pi\left[\frac{\mathrm{x}}{2 \mathrm{~cm}}-\frac{\mathrm{t}}{0.01 \mathrm{sec}}\right]$
a) $\mathrm{T}=2 \times 0.01=0.02 \mathrm{sec}=20 \mathrm{~ms}$

$$
\lambda=2 \times 2=4 \mathrm{~cm}
$$

b) $\mathrm{v}=\mathrm{dy} / \mathrm{dt}=\mathrm{d} / \mathrm{dt}[\sin 2 \pi(\mathrm{x} / 4-\mathrm{t} / 0.02)]=-\cos 2 \pi\{\mathrm{x} / 4)-(\mathrm{t} / 0.02)\} \times 1 /(0.02)$
$\Rightarrow v=-50 \cos 2 \pi\{(x / 4)-(t / 0.02)\}$
at $x=1$ and $t=0.01 \mathrm{sec}, v=-50 \cos 2^{*}[(1 / 4)-(1 / 2)]=0$
c) i) at $x=3 \mathrm{~cm}, \mathrm{t}=0.01 \mathrm{sec}$

$$
v=-50 \cos 2 \pi(3 / 4-1 / 2)=0
$$

ii) at $x=5 \mathrm{~cm}, \mathrm{t}=0.01 \mathrm{sec}, \mathrm{v}=0$ (putting the values)
iii) at $x=7 \mathrm{~cm}, t=0.01 \mathrm{sec}, v=0$
at $x=1 \mathrm{~cm}$ and $t=0.011 \mathrm{sec}$

$$
\begin{aligned}
& v=-50 \cos 2 \pi\{(1 / 4)-(0.011 / 0.02)\}=-50 \cos (3 \pi / 5)=-9.7 \mathrm{~cm} / \mathrm{sec} \\
& \text { (similarly the other two can be calculated) }
\end{aligned}
$$

11. Time period, $\mathrm{T}=4 \times 5 \mathrm{~ms}=20 \times 10^{-3}=2 \times 10^{-2} \mathrm{~s}$

$$
\lambda=2 \times 2 \mathrm{~cm}=4 \mathrm{~cm}
$$

frequency, $f=1 / \mathrm{T}=1 /\left(2 \times 10^{-2}\right)=50 \mathrm{~s}^{-1}=50 \mathrm{~Hz}$
Wave speed $=\lambda f=4 \times 50 \mathrm{~m} / \mathrm{s}=2000 \mathrm{~m} / \mathrm{s}=2 \mathrm{~m} / \mathrm{s}$
12. Given that, $v=200 \mathrm{~m} / \mathrm{s}$
a) Amplitude, $A=1 \mathrm{~mm}$
b) Wave length, $\lambda=4 \mathrm{~cm}$
c) wave number, $\mathrm{n}=2 \pi / \lambda=(2 \times 3.14) / 4=1.57 \mathrm{~cm}^{-1}$ (wave number $=\mathrm{k}$)
d) frequency, $\mathrm{f}=1 / \mathrm{T}=(26 / \lambda) / 20=20 / 4=5 \mathrm{~Hz}$ (where time period $T=\lambda / v$)
13. Wave speed $=v=10 \mathrm{~m} / \mathrm{sec}$

Time period $=\mathrm{T}=20 \mathrm{~ms}=20 \times 10^{-3}=2 \times 10^{-2} \mathrm{sec}$
a) wave length, $\lambda=v \mathrm{~T}=10 \times 2 \times 10^{-2}=0.2 \mathrm{~m}=20 \mathrm{~cm}$
b) wave length, $\lambda=20 \mathrm{~cm}$
\therefore phase diff $=(2 \pi / \lambda) x=(2 \pi / 20) \times 10=\pi$ rad
$y_{1}=a \sin (\omega t-k x) \Rightarrow 1.5=a \sin (\omega t-k x)$
So, the displacement of the particle at a distance $x=10 \mathrm{~cm}$.
[$\phi=\frac{2 \pi \mathrm{x}}{\lambda}=\frac{2 \pi \times 10}{20}=\pi$] is given by
$\mathrm{y}_{2}=\mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx}+\pi) \Rightarrow-\mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx})=-1.5 \mathrm{~mm}$
\therefore displacement $=-1.5 \mathrm{~mm}$
14. mass $=5 \mathrm{~g}$, length $\mathrm{I}=64 \mathrm{~cm}$
\therefore mass per unit length $=\mathrm{m}=5 / 64 \mathrm{~g} / \mathrm{cm}$
\therefore Tension, $\mathrm{T}=8 \mathrm{~N}=8 \times 10^{5}$ dyne
$V=\sqrt{(T / m)}=\sqrt{\left(8 \times 10^{5} \times 64\right) / 5}=3200 \mathrm{~cm} / \mathrm{s}=32 \mathrm{~m} / \mathrm{s}$
15.

a) Velocity of the wave, $v=\sqrt{(T / m)}=\sqrt{\left(16 \times 10^{5}\right) / 0.4}=2000 \mathrm{~cm} / \mathrm{sec}$
\therefore Time taken to reach to the other end $=20 / 2000=0.01 \mathrm{sec}$
Time taken to see the pulse again in the original position $=0.01 \times 2=0.02 \mathrm{sec}$
b) At $\mathrm{t}=0.01 \mathrm{~s}$, there will be a 'though' at the right end as it is reflected.
16. The crest reflects as a crest here, as the wire is traveling from denser to rarer medium.
\Rightarrow phase change $=0$
a) To again original shape distance travelled by the wave $S=20+20=40 \mathrm{~cm}$.

Wave speed, v=20 m/s time $=\mathrm{s} / \mathrm{v}=40 / 20=2 \mathrm{sec}$

b) The wave regains its shape, after traveling a periodic distance $=2 \times 30=60 \mathrm{~cm}$ \therefore Time period $=60 / 20=3 \mathrm{sec}$.
c) Frequency, $n=\left(1 / 3 \sec ^{-1}\right)$

$$
\begin{aligned}
& \mathrm{n}=(1 / 2 \mathrm{l}) \sqrt{(\mathrm{T} / \mathrm{m})} \quad \mathrm{m}=\text { mass per unit length }=0.5 \mathrm{~g} / \mathrm{cm} \\
& \Rightarrow 1 / 3=1 /(2 \times 30) \sqrt{(T / 0.5)} \\
& \Rightarrow \mathrm{T}=400 \times 0.5=200 \text { dyne }=2 \times 10^{-3} \text { Newton. }
\end{aligned}
$$

17. Let $\mathrm{v}_{1}=$ velocity in the $1^{\text {st }}$ string
$\Rightarrow v_{1}=\sqrt{\left(T / m_{1}\right)}$
Because $m_{1}=$ mass per unit length $=\left(\rho_{1} a_{1} l_{1} / I_{1}\right)=\rho_{1} a_{1}$ where $a_{1}=$ Area of cross section
$\Rightarrow v_{1}=\sqrt{\left(T / \rho_{1} a_{1}\right)} \quad \ldots$ (1)
Let $v_{2}=$ velocity in the second string
$\Rightarrow \mathrm{v}_{2}=\sqrt{\left(\mathrm{T} / \mathrm{m}^{2}\right)}$
$\Rightarrow \mathrm{v}_{2}=\sqrt{\left(\mathrm{T} / \rho_{2} \mathrm{a}_{2}\right)}$
Given that, $\mathrm{v}_{1}=2 \mathrm{v}_{2}$
$\Rightarrow \sqrt{\left(\mathrm{T} / \rho_{1} \mathrm{a}_{1}\right)}=2 \sqrt{\left(\mathrm{~T} / \rho_{2} \mathrm{a}_{2}\right)} \Rightarrow\left(\mathrm{T} / \mathrm{a}_{1} \rho_{1}\right)=4\left(\mathrm{~T} / \mathrm{a}_{2} \rho_{2}\right)$
$\Rightarrow \rho_{1} / \rho_{2}=1 / 4 \Rightarrow \rho_{1}: \rho_{2}=1: 4 \quad$ (because $a_{1}=a_{2}$)
18. $\mathrm{m}=$ mass per unit length $=1.2 \times 10^{-4} \mathrm{~kg} / \mathrm{mt}$
$Y=(0.02 \mathrm{~m}) \sin \left[\left(1.0 \mathrm{~m}^{-1}\right) \mathrm{x}+\left(30 \mathrm{~s}^{-1}\right) \mathrm{t}\right]$
Here, $k=1 \mathrm{~m}^{-1}=2 \pi / \lambda$
$\omega=30 \mathrm{~s}^{-1}=2 \pi \mathrm{f}$
\therefore velocity of the wave in the stretched string
$v=\lambda f=\omega / k=30 / \mathrm{I}=30 \mathrm{~m} / \mathrm{s}$
$\Rightarrow \mathrm{v}=\sqrt{\mathrm{T} / \mathrm{m}} \Rightarrow 30 \sqrt{\left.(\mathrm{~T} / 1.2) \times 10^{-4} \mathrm{~N}\right)}$
$\Rightarrow \mathrm{T}=10.8 \times 10^{-2} \mathrm{~N} \Rightarrow \mathrm{~T}=1.08 \times 10^{-1}$ Newton.
19. Amplitude, $\mathrm{A}=1 \mathrm{~cm}$, Tension $\mathrm{T}=90 \mathrm{~N}$

Frequency, $f=200 / 2=100 \mathrm{~Hz}$
Mass per unit length, $m=0.1 \mathrm{~kg} / \mathrm{mt}$
a) $\Rightarrow V=\sqrt{T / m}=30 \mathrm{~m} / \mathrm{s}$

$$
\lambda=\mathrm{V} / \mathrm{f}=30 / 100=0.3 \mathrm{~m}=30 \mathrm{~cm}
$$

b) The wave equation $\mathrm{y}=(1 \mathrm{~cm}) \cos 2 \pi(\mathrm{t} / 0.01 \mathrm{~s})-(\mathrm{x} / 30 \mathrm{~cm})$

$$
\text { [because at } x=0 \text {, displacement is maximum] }
$$

c) $y=1 \cos 2 \pi(x / 30-t / 0.01)$

$$
\begin{aligned}
& \Rightarrow v=d y / d t=(1 / 0.01) 2 \pi \sin 2 \pi\{(x / 30)-(t / 0.01)\} \\
& a=d v / \mathrm{dt}=-\left\{4 \pi^{2} /(0.01)^{2}\right\} \cos 2 \pi\{(x / 30)-(\mathrm{t} / 0.01)\} \\
& \text { When, } x=50 \mathrm{~cm}, \mathrm{t}=10 \mathrm{~ms}=10 \times 10^{-3} \mathrm{~s} \\
& x=(2 \pi / 0.01) \sin 2 \pi\{(5 / 3)-(0.01 / 0.01)\} \\
& =(\mathrm{p} / 0.01) \sin (2 \pi \times 2 / 3)=(1 / 0.01) \sin (4 \pi / 3)=-200 \pi \sin (\pi / 3)=-200 \pi \mathrm{x}(\sqrt{3} / 2) \\
& =544 \mathrm{~cm} / \mathrm{s}=5.4 \mathrm{~m} / \mathrm{s} \\
& \text { Similarly } \\
& \mathrm{a}=\left\{4 \pi^{2} /(0.01)^{2}\right\} \cos 2 \pi\{(5 / 3)-1\} \\
& =4 \pi^{2} \times 10^{4} \times 1 / 2 \Rightarrow 2 \times 10^{5} \mathrm{~cm} / \mathrm{s}^{2} \Rightarrow 2 \mathrm{~km} / \mathrm{s}^{2}
\end{aligned}
$$

20. $\mathrm{I}=40 \mathrm{~cm}$, mass $=10 \mathrm{~g}$
\therefore mass per unit length, $\mathrm{m}=10 / 40=1 / 4$ (g/cm)
spring constant $K=160 \mathrm{~N} / \mathrm{m}$
deflection $=x=1 \mathrm{~cm}=0.01 \mathrm{~m}$
$\Rightarrow \mathrm{T}=\mathrm{kx}=160 \times 0.01=1.6 \mathrm{~N}=16 \times 10^{4}$ dyne
Again $\mathrm{v}=\sqrt{(\mathrm{T} / \mathrm{m})}=\sqrt{\left(16 \times 10^{4} /(1 / 4)\right.}=8 \times 10^{2} \mathrm{~cm} / \mathrm{s}=800 \mathrm{~cm} / \mathrm{s}$
\therefore Time taken by the pulse to reach the spring
$\mathrm{t}=40 / 800=1 / 20=0 / 05 \mathrm{sec}$.
21. $m_{1}=m_{2}=3.2 \mathrm{~kg}$
mass per unit length of $A B=10 \mathrm{~g} / \mathrm{mt}=0.01 \mathrm{~kg} \cdot \mathrm{mt}$
mass per unit length of $C D=8 \mathrm{~g} / \mathrm{mt}=0.008 \mathrm{~kg} / \mathrm{mt}$
for the string $C D, T=3.2 \times \mathrm{g}$

$\Rightarrow v=\sqrt{(\mathrm{T} / \mathrm{m})}=\sqrt{(3.2 \times 10) / 0.008}=\sqrt{\left(32 \times 10^{3}\right) / 8}=2 \times 10 \sqrt{10}=20 \times 3.14=63 \mathrm{~m} / \mathrm{s}$
for the string $A B, T=2 \times 3.2 \mathrm{~g}=6.4 \times \mathrm{g}=64 \mathrm{~N}$
$\Rightarrow v=\sqrt{(T / m)}=\sqrt{(64 / 0.01)}=\sqrt{6400}=80 \mathrm{~m} / \mathrm{s}$
22. Total length of string $2+0.25=2.25 \mathrm{mt}$

Mass per unit length $\mathrm{m}=\frac{4.5 \times 10^{-3}}{2.25}=2 \times 10^{-3} \mathrm{~kg} / \mathrm{m}$
$\mathrm{T}=2 \mathrm{~g}=20 \mathrm{~N}$
Wave speed, $v=\sqrt{(\mathrm{T} / \mathrm{m})}=\sqrt{20} /\left(2 \times 10^{-3}\right)=\sqrt{10^{4}}=10^{2} \mathrm{~m} / \mathrm{s}=100 \mathrm{~m} / \mathrm{s}$

Time taken to reach the pully, $\mathrm{t}=(\mathrm{s} / \mathrm{v})=2 / 100=0.02 \mathrm{sec}$.
23. $\mathrm{m}=19.2 \times 10^{-3} \mathrm{~kg} / \mathrm{m}$
from the freebody diagram,
$T-4 g-4 a=0$
$\Rightarrow \mathrm{T}=4(\mathrm{a}+\mathrm{g})=48 \mathrm{~N}$
wave speed, $v=\sqrt{(T / m)}=50 \mathrm{~m} / \mathrm{s}$

24. Let $\mathrm{M}=$ mass of the heavy ball
($\mathrm{m}=$ mass per unit length)
Wave speed, $\mathrm{v}_{1}=\sqrt{(\mathrm{T} / \mathrm{m})}=\sqrt{(\mathrm{Mg} / \mathrm{m})}$ (because $\mathrm{T}=\mathrm{Mg}$)
$\Rightarrow 60=\sqrt{(\mathrm{Mg} / \mathrm{m})} \Rightarrow \mathrm{Mg} / \mathrm{m}=60^{2}$
From the freebody diagram (2),
$\mathrm{v}_{2}=\sqrt{\left(\mathrm{T}^{\prime} / \mathrm{m}\right)}$
$\Rightarrow \mathrm{v}_{2}=\frac{\left[(\mathrm{Ma})^{2}+(\mathrm{Mg})^{2}\right]^{1 / 4}}{\mathrm{~m}^{1 / 2}} \quad$ (because $\left.\mathrm{T}^{\prime}=\sqrt{(\mathrm{Ma})^{2}+(\mathrm{Mg})^{2}}\right)$
$\Rightarrow 62=\frac{\left[(\mathrm{Ma})^{2}+(\mathrm{Mg})^{2}\right]^{1 / 4}}{\mathrm{~m}^{1 / 2}}$
$\Rightarrow \frac{\sqrt{(\mathrm{Ma})^{2}+(\mathrm{Mg})^{2}}}{\mathrm{~m}}=62^{2}$
$\mathrm{Eq}(1)+\mathrm{Eq}(2) \Rightarrow(\mathrm{Mg} / \mathrm{m}) \times\left[\mathrm{m} / \sqrt{(\mathrm{Ma})^{2}+(\mathrm{Mg})^{2}}\right]=3600 / 3844$

$\Rightarrow g / \sqrt{\left(a^{2}+g^{2}\right)}=0.936 \Rightarrow g^{2} /\left(a^{2}+g^{2}\right)=0.876$
$\Rightarrow\left(a^{2}+100\right) 0.876=100$
$\Rightarrow a^{2} \times 0.876=100-87.6=12.4$
$\Rightarrow a^{2}=12.4 / 0.876=14.15 \Rightarrow a=3.76 \mathrm{~m} / \mathrm{s}^{2}$
\therefore Acce $^{\mathrm{n}}$ of the car $=3.7 \mathrm{~m} / \mathrm{s}^{2}$
25. $m=$ mass per unit length of the string
$R=$ Radius of the loop
$\omega=$ angular velocity, $\mathrm{V}=$ linear velocity of the string
Consider one half of the string as shown in figure.
The half loop experiences cetrifugal force at every point, away from centre, which is balanced by tension 2 T .
Consider an element of angular part d θ at angle θ. Consider another
 element symmetric to this centrifugal force experienced by the element $=(m R d \theta) \omega^{2} R$.
$(\ldots$ Length of element $=R d \theta$, mass $=m R d \theta)$
Resolving into rectangular components net force on the two symmetric elements,
$D F=2 m R^{2} d \theta \omega^{2} \sin \theta$ [horizontal components cancels each other]
So, total $F=\int_{0}^{\pi / 2} 2 m R^{2} \omega^{2} \sin \theta d \theta=2 m R^{2} \omega^{2}[-\cos \theta] \Rightarrow 2 m R^{2} \omega^{2}$
Again, $2 T=2 m R^{2} \omega^{2} \quad \Rightarrow T=m R^{2} \omega^{2}$
Velocity of transverse vibration $V=\sqrt{T / m}=\omega R=V$
So, the speed of the disturbance will be V .
26. a) $m \rightarrow$ mass per unit of length of string
consider an element at distance ' x ' from lower end.
Here wt acting down ward $=(m x) g=$ Tension in the string of upper part
Velocity of transverse vibration $=v=\sqrt{T / m}=\sqrt{(\mathrm{mgx} / \mathrm{m})}=\sqrt{(\mathrm{gx})}$

b) For small displacement $\mathrm{dx}, \mathrm{dt}=\mathrm{dx} / \sqrt{(\mathrm{gx})}$

Total time $T=\int_{0}^{L} d x / \sqrt{g x}=\sqrt{(4 L / g)}$
c) Suppose after time ' t ' from start the pulse meet the particle at distance y from lower end.
$\mathrm{t}=\int_{0}^{\mathrm{y}} \mathrm{dx} / \sqrt{\mathrm{gx}}=\sqrt{(4 \mathrm{y} / \mathrm{g})}$
\therefore Distance travelled by the particle in this time is $(\mathrm{L}-\mathrm{y})$

$\therefore \mathrm{S}-\mathrm{ut}+1 / 2 \mathrm{gt}^{2}$
$\Rightarrow L-y(1 / 2) g \times\left\{\sqrt{(4 y / g)^{2}}\right\} \quad\{u=0\}$
$\Rightarrow \mathrm{L}-\mathrm{y}=2 \mathrm{y} \Rightarrow 3 \mathrm{y}=\mathrm{L}$
$\Rightarrow \mathrm{y}=\mathrm{L} / 3$. So, the particle meet at distance $\mathrm{L} / 3$ from lower end.
27. $\mathrm{m}_{\mathrm{A}}=1.2 \times 10^{-2} \mathrm{~kg} / \mathrm{m}, \mathrm{T}_{\mathrm{A}}=4.8 \mathrm{~N}$
$\Rightarrow V_{A}=\sqrt{T / m}=20 \mathrm{~m} / \mathrm{s}$
$\mathrm{m}_{\mathrm{B}}=1.2 \times 10^{-2} \mathrm{~kg} / \mathrm{m}, \mathrm{T}_{\mathrm{B}}=7.5 \mathrm{~N}$
$\Rightarrow V_{B}=\sqrt{T / m}=25 \mathrm{~m} / \mathrm{s}$
$t=0$ in string A
$\mathrm{t}_{1}=0+20 \mathrm{~ms}=20 \times 10^{-3}=0.02 \mathrm{sec}$
In $0.02 \mathrm{sec} A$ has travelled $20 \times 0.02=0.4 \mathrm{mt}$
Relative speed between A and $B=25-20=5 \mathrm{~m} / \mathrm{s}$
Time taken for B for overtake $A=s / v=0.4 / 5=0.08 \mathrm{sec}$
28. $r=0.5 \mathrm{~mm}=0.5 \times 10^{-3} \mathrm{mt}$
$\mathrm{f}=100 \mathrm{~Hz}, \mathrm{~T}=100 \mathrm{~N}$
$\mathrm{v}=100 \mathrm{~m} / \mathrm{s}$
$v=\sqrt{T / m} \Rightarrow v^{2}=(T / m) \Rightarrow m=\left(T / v^{2}\right)=0.01 \mathrm{~kg} / \mathrm{m}$
$\mathrm{P}_{\mathrm{ave}}=2 \pi^{2} m \mathrm{mr}^{2} \mathrm{f}^{2}$
$=2(3.14)^{2}(0.01) \times 100 \times\left(0.5 \times 10^{-3}\right)^{2} \times(100)^{2} \Rightarrow 49 \times 10^{-3} \mathrm{watt}=49 \mathrm{~mW}$.
29. $A=1 \mathrm{~mm}=10^{-3} \mathrm{~m}, \mathrm{~m}=6 \mathrm{~g} / \mathrm{m}=6 \times 10^{-3} \mathrm{~kg} / \mathrm{m}$
$T=60 \mathrm{~N}, \mathrm{f}=200 \mathrm{~Hz}$
$\therefore \mathrm{V}=\sqrt{\mathrm{T} / \mathrm{m}}=100 \mathrm{~m} / \mathrm{s}$
a) $\mathrm{P}_{\text {average }}=2 \pi^{2} \mathrm{mv} \mathrm{A}^{2} \mathrm{f}^{2}=0.47 \mathrm{~W}$
b) Length of the string is 2 m . So, $t=2 / 100=0.02 \mathrm{sec}$.

Energy $=2 \pi^{2} \mathrm{mvf}^{2} \mathrm{~A}^{2} \mathrm{t}=9.46 \mathrm{~mJ}$.
30. $f=440 \mathrm{~Hz}, \mathrm{~m}=0.01 \mathrm{~kg} / \mathrm{m}, \mathrm{T}=49 \mathrm{~N}, \mathrm{r}=0.5 \times 10^{-3} \mathrm{~m}$
a) $v=\sqrt{T / m}=70 \mathrm{~m} / \mathrm{s}$
b) $v=\lambda f \Rightarrow \lambda=v / f=16 \mathrm{~cm}$
c) $P_{\text {average }}=2 \pi^{2} \mathrm{mvr}^{2} \mathrm{f}^{2}=0.67 \mathrm{~W}$.
31. Phase difference $\phi=\pi / 2$
f and λ are same. So, ω is same.
$y_{1}=r \sin w t, y_{2}=r \sin (w t+\pi / 2)$
From the principle of superposition
$y=y_{1}+y_{2} \quad \rightarrow \quad=r \sin w t+r \sin (w t+\pi / 2)$
$=r[\sin w t+\sin (w t+\pi / 2)]$
$=r[2 \sin \{(w t+w t+\pi / 2) / 2\} \cos \{(w t-w t-\pi / 2) / 2\}]$
$\Rightarrow y=2 r \sin (w t+\pi / 4) \cos (-\pi / 4)$
Resultant amplitude $=\sqrt{2} r=4 \sqrt{2} \mathrm{~mm} \quad$ (because $\mathrm{r}=4 \mathrm{~mm}$)
32. The distance travelled by the pulses are shown below.
$\mathrm{t}=4 \mathrm{~ms}=4 \times 10^{-3} \mathrm{~s}$
$\mathrm{s}=\mathrm{vt}=50 \times 10 \times 4 \times 10^{-3}=2 \mathrm{~mm}$
$\mathrm{t}=8 \mathrm{~ms}=8 \times 10^{-3} \mathrm{~s} \quad \mathrm{~s}=\mathrm{vt}=50 \times 10 \times 8 \times 10^{-3}=4 \mathrm{~mm}$
$\mathrm{t}=6 \mathrm{~ms}=6 \times 10^{-3} \mathrm{~s}$
$\mathrm{s}=3 \mathrm{~mm}$
$\mathrm{t}=12 \mathrm{~ms}=12 \times 10^{-3} \mathrm{~s}$
$\mathrm{s}=50 \times 10 \times 12 \times 10^{-3}=6 \mathrm{~mm}$

The shape of the string at different times are shown in the figure.
33. $\mathrm{f}=100 \mathrm{~Hz}, \lambda=2 \mathrm{~cm}=2 \times 10^{-2} \mathrm{~m}$
\therefore wave speed, $\mathrm{v}=\mathrm{f} \lambda=2 \mathrm{~m} / \mathrm{s}$
a) in $0.015 \mathrm{sec} 1^{\text {st }}$ wave has travelled
$x=0.015 \times 2=0.03 \mathrm{~m}=$ path diff ${ }^{\mathrm{n}}$
\therefore corresponding phase difference, $\phi=2 \pi \mathrm{x} / \lambda=\left\{2 \pi /\left(2 \times 10^{-2}\right)\right\} \times 0.03=3 \pi$.
b) Path different $x=4 \mathrm{~cm}=0.04 \mathrm{~m}$

$$
\Rightarrow \phi=(2 \pi / \lambda) x=\left\{\left(2 \pi / 2 \times 10^{-2}\right) \times 0.04\right\}=4 \pi
$$

c) The waves have same frequency, same wavelength and same amplitude.

Let, $y_{1}=r \sin w t, y_{2}=r \sin (w t+\phi)$
$\Rightarrow y=y_{1}+y_{2}=r[\sin w t+(w t+\phi)]$
$=2 r \sin (w t+\phi / 2) \cos (\phi / 2)$
\therefore resultant amplitude $=2 r \cos \phi / 2$
So, when $\phi=3 \pi, r=2 \times 10^{-3} \mathrm{~m}$
$\mathrm{R}_{\mathrm{res}}=2 \times\left(2 \times 10^{-3}\right) \cos (3 \pi / 2)=0$
Again, when $\phi=4 \pi, \mathrm{R}_{\text {res }}=2 \times\left(2 \times 10^{-3}\right) \cos (4 \pi / 2)=4 \mathrm{~mm}$.
34. $\mathrm{I}=1 \mathrm{~m}, \mathrm{~V}=60 \mathrm{~m} / \mathrm{s}$
\therefore fundamental frequency, $\mathrm{f}_{0}=\mathrm{V} / 2 \mathrm{I}=30 \sec ^{-1}=30 \mathrm{~Hz}$.
35. $\mathrm{I}=2 \mathrm{~m}, \mathrm{f}_{0}=100 \mathrm{~Hz}, \mathrm{~T}=160 \mathrm{~N}$
$f_{0}=1 / 21 \sqrt{(T / m)}$
$\Rightarrow \mathrm{m}=1 \mathrm{~g} / \mathrm{m}$. So, the linear mass density is $1 \mathrm{~g} / \mathrm{m}$.
36. $m=(4 / 80) \mathrm{g} / \mathrm{cm}=0.005 \mathrm{~kg} / \mathrm{m}$
$\mathrm{T}=50 \mathrm{~N}, \mathrm{I}=80 \mathrm{~cm}=0.8 \mathrm{~m}$
$v=\sqrt{(T / m)}=100 \mathrm{~m} / \mathrm{s}$
fundamental frequency $f_{0}=1 / 2 \mathrm{I} \sqrt{(\mathrm{T} / \mathrm{m})}=62.5 \mathrm{~Hz}$
First harmonic $=62.5 \mathrm{~Hz}$
$\mathrm{f}_{4}=$ frequency of fourth harmonic $=4 \mathrm{f}_{0}=\mathrm{F}_{3}=250 \mathrm{~Hz}$
$V=\mathrm{f}_{4} \lambda_{4} \Rightarrow \lambda_{4}=\left(\mathrm{v} / \mathrm{f}_{4}\right)=40 \mathrm{~cm}$.
37. $\mathrm{I}=90 \mathrm{~cm}=0.9 \mathrm{~m}$
$\mathrm{m}=(6 / 90) \mathrm{g} / \mathrm{cm}=(6 / 900) \mathrm{kg} / \mathrm{mt}$
$\mathrm{f}=261.63 \mathrm{~Hz}$
$f=1 / 2 \mathrm{I} \sqrt{(T / m)} \Rightarrow T=1478.52 \mathrm{~N}=1480 \mathrm{~N}$.
38. First harmonic be f_{0}, second harmonic be f_{1}
$\therefore \mathrm{f}_{1}=2 \mathrm{f}_{0}$
$\Rightarrow \mathrm{f}_{0}=\mathrm{f}_{1} / 2$
$\mathrm{f}_{1}=256 \mathrm{~Hz}$
$\therefore 1^{\text {st }}$ harmonic or fundamental frequency

$\mathrm{f}_{0}=\mathrm{f}_{1} / 2=256 / 2=128 \mathrm{~Hz}$
$\lambda / 2=1.5 \mathrm{~m} \Rightarrow \lambda=3 \mathrm{~m}$ (when fundamental wave is produced)
\Rightarrow Wave speed $=V=f_{0} \mathrm{QI}=384 \mathrm{~m} / \mathrm{s}$.
39. $\mathrm{I}=1.5 \mathrm{~m}$, mass -12 g
$\Rightarrow \mathrm{m}=12 / 1.5 \mathrm{~g} / \mathrm{m}=8 \times 10^{-3} \mathrm{~kg} / \mathrm{m}$
$\mathrm{T}=9 \times \mathrm{g}=90 \mathrm{~N}$
$\lambda=1.5 \mathrm{~m}, \mathrm{f}_{1}=2 / 2 \mathrm{I} \sqrt{\mathrm{T} / \mathrm{m}}$
[for, second harmonic two loops are produced]

$\mathrm{f}_{1}=2 \mathrm{f}_{0} \Rightarrow 70 \mathrm{~Hz}$.
40. A string of mass 40 g is attached to the tuning fork
$\mathrm{m}=\left(40 \times 10^{-3}\right) \mathrm{kg} / \mathrm{m}$
The fork vibrates with $\mathrm{f}=128 \mathrm{~Hz}$
$\lambda=0.5 \mathrm{~m}$

$v=\mathrm{f} \lambda=128 \times 0.5=64 \mathrm{~m} / \mathrm{s}$
$v=\sqrt{T / m} \Rightarrow T=v^{2} m=163.84 N \Rightarrow 164 N$.
41. This wire makes a resonant frequency of 240 Hz and 320 Hz .

The fundamental frequency of the wire must be divisible by both 240 Hz and 320 Hz .
a) So, the maximum value of fundamental frequency is 80 Hz .
b) Wave speed, v $=40 \mathrm{~m} / \mathrm{s}$

$\Rightarrow 80=(1 / 2 \mathrm{I}) \times 40 \Rightarrow 0.25 \mathrm{~m}$.
42. Let there be ' n ' loops in the $1^{\text {st }}$ case
\Rightarrow length of the wire, $I=\left(n \lambda_{1}\right) / 2 \quad\left[\lambda_{1}=2 \times 2=4 \mathrm{~cm}\right]$
So there are $(n+1)$ loops with the $2^{\text {nd }}$ case
\Rightarrow length of the wire, $I=\left\{(n+1) \lambda_{2} / 2 \quad[\lambda=2 \times 1.6=3.2 \mathrm{~cm}]\right.$
$\Rightarrow \mathrm{n} \lambda_{1} / 2=\frac{(\mathrm{n}+1) \lambda_{2}}{2}$
$\Rightarrow \mathrm{n} \times 4=(\mathrm{n}+1)(3.2) \Rightarrow \mathrm{n}=4$
\therefore length of the string, $I=\left(n \lambda_{1}\right) / 2=8 \mathrm{~cm}$.

43. Frequency of the tuning fork, $f=660 \mathrm{~Hz}$

Wave speed, $v=220 \mathrm{~m} / \mathrm{s} \Rightarrow \lambda=v / \mathrm{f}=1 / 3 \mathrm{~m}$
No.of loops $=3$
a) So, $\mathrm{f}=(3 / 2 \mathrm{l}) \mathrm{v} \Rightarrow \mathrm{I}=50 \mathrm{~cm}$
b) The equation of resultant stationary wave is given by $y=2 A \cos (2 \pi x / Q l) \sin (2 \pi v t / \lambda)$

$$
\Rightarrow y=(0.5 \mathrm{~cm}) \cos \left(0.06 \pi \mathrm{~cm}^{-1}\right) \sin \left(1320 \pi \mathrm{~s}^{-1} \mathrm{t}\right)
$$

44. $\mathrm{I}_{1}=30 \mathrm{~cm}=0.3 \mathrm{~m}$
$\mathrm{f}_{1}=196 \mathrm{~Hz}, \mathrm{f}_{2}=220 \mathrm{~Hz}$
We know $f \propto(1 / I)$ (as V is constant for a medium)
$\Rightarrow \frac{\mathrm{f}_{1}}{\mathrm{f}_{2}}=\frac{\mathrm{l}_{2}}{\mathrm{l}_{1}} \Rightarrow \mathrm{I}_{2}=26.7 \mathrm{~cm}$
Again $f_{3}=247 \mathrm{~Hz}$
$\Rightarrow \frac{\mathrm{f}_{3}}{\mathrm{f}_{1}}=\frac{\mathrm{I}_{1}}{\mathrm{I}_{3}} \Rightarrow \frac{0.3}{\mathrm{I}_{3}}$
$\Rightarrow I_{3}=0.224 \mathrm{~m}=22.4 \mathrm{~cm}$ and $\mathrm{I}_{3}=20 \mathrm{~cm}$
45. Fundamental frequency $f_{1}=200 \mathrm{~Hz}$

Let $\mathrm{I}_{4} \mathrm{~Hz}$ be nth harmonic
$\Rightarrow F_{2} / F_{1}=14000 / 200$
$\Rightarrow \mathrm{NF}_{1} / \mathrm{F}_{1}=70 \Rightarrow \mathrm{~N}=70$
\therefore The highest harmonic audible is $70^{\text {th }}$ harmonic.
46. The resonant frequencies of a string are
$f_{1}=90 \mathrm{~Hz}, \mathrm{f}_{2}=150 \mathrm{~Hz}, \mathrm{f}_{3}=120 \mathrm{~Hz}$
a) The highest possible fundamental frequency of the string is $f=30 \mathrm{~Hz}$ [because f_{1}, f_{2} and f_{3} are integral multiple of 30 Hz]
b) The frequencies are $f_{1}=3 f, f_{2}=5 f, f_{3}=7 f$

So, f_{1}, f_{2} and f_{3} are $3^{\text {rd }}$ harmonic, $5^{\text {th }}$ harmonic and $7^{\text {th }}$ harmonic respectively.
c) The frequencies in the string are f, $2 \mathrm{f}, 3 \mathrm{f}, 4 \mathrm{f}, 5 \mathrm{f}$,

So, $\quad 3 f=2^{\text {nd }}$ overtone and $3^{\text {rd }}$ harmonic
$5 \mathrm{f}=4^{\text {th }}$ overtone and $5^{\text {th }}$ harmonic
$7 \mathrm{f}=6^{\text {th }}$ overtone and $7^{\text {th }}$ harmonic
d) length of the string is $I=80 \mathrm{~cm}$
$\Rightarrow f_{1}=(3 / 21) v \quad(v=$ velocity of the wave $)$
$\Rightarrow 90=\{3 /(2 \times 80)\} \times \mathrm{K}$
$\Rightarrow K=(90 \times 2 \times 80) / 3=4800 \mathrm{~cm} / \mathrm{s}=48 \mathrm{~m} / \mathrm{s}$.
47. Frequency $f=\frac{1}{I D} \sqrt{\frac{T}{\pi \rho}} \Rightarrow f_{1}=\frac{1}{l_{1} D_{1}} \sqrt{\frac{T_{1}}{\pi \rho_{1}}} \Rightarrow f_{2}=\frac{1}{I_{2} n_{2}} \sqrt{\frac{T_{2}}{\pi \rho_{2}}}$

Given that, $T_{1} / T_{2}=2, r_{1} / r_{2}=3=D_{1} / D_{2}$
$\frac{\rho_{1}}{\rho_{2}}=\frac{1}{2}$
So, $\frac{f_{1}}{f_{2}}=\frac{l_{2} D_{2}}{l_{1} D_{1}} \sqrt{\frac{T_{1}}{T_{2}}} \sqrt{\frac{\pi \rho_{2}}{\pi \rho_{1}}} \quad\left(l_{1}=l_{2}=\right.$ length of string $)$
$\Rightarrow \mathrm{f}_{1}: \mathrm{f}_{2}=2: 3$
48. Length of the rod $=\mathrm{L}=40 \mathrm{~cm}=0.4 \mathrm{~m}$

Mass of the rod $\mathrm{m}=1.2 \mathrm{~kg}$
Let the 4.8 kg mass be placed at a distance
' x ' from the left end.
Given that, $f_{l}=2 f_{r}$
$\therefore \frac{1}{2 \mid} \sqrt{\frac{T_{1}}{m}}=\frac{2}{2 \mid} \sqrt{\frac{T_{r}}{m}}$
$\Rightarrow \sqrt{\frac{T_{1}}{T_{r}}}=2 \Rightarrow \frac{T_{1}}{T_{r}}=4$
From the freebody diagram,
$T_{1}+T_{r}=60 \mathrm{~N}$

$\Rightarrow 4 \mathrm{~T}_{\mathrm{r}}+\mathrm{T}_{\mathrm{r}}=60 \mathrm{~N}$
$\therefore \mathrm{T}_{\mathrm{r}}=12 \mathrm{~N}$ and $\mathrm{T}_{1}=48 \mathrm{~N}$
Now taking moment about point A ,
$\mathrm{T}_{\mathrm{r}} \times(0.4)=48 \mathrm{x}+12(0.2) \Rightarrow \mathrm{x}=5 \mathrm{~cm}$
So, the mass should be placed at a distance 5 cm from the left end.
49. $\rho_{\mathrm{s}}=7.8 \mathrm{~g} / \mathrm{cm}^{3}, \rho_{\mathrm{A}}=2.6 \mathrm{~g} / \mathrm{cm}^{3}$
$m_{s}=\rho_{s} A_{s}=7.8 \times 10^{-2} \mathrm{~g} / \mathrm{cm} \quad$ ($\mathrm{m}=$ mass per unit length)
$\mathrm{m}_{\mathrm{A}}=\rho_{\mathrm{A}} \mathrm{A}_{\mathrm{A}}=2.6 \times 10^{-2} \times 3 \mathrm{~g} / \mathrm{cm}=7.8 \times 10^{-3} \mathrm{~kg} / \mathrm{m}$
A node is always placed in the joint. Since aluminium and steel rod has same mass per unit length, velocity of wave in both of them is same.

$\Rightarrow v=\sqrt{T / m} \Rightarrow 500 / 7 \mathrm{~m} / \mathrm{x}$
For minimum frequency there would be maximum wavelength for maximum wavelength minimum no of loops are to be produced.
\therefore maximum distance of a loop $=20 \mathrm{~cm}$
\Rightarrow wavelength $=\lambda=2 \times 20=40 \mathrm{~cm}=0.4 \mathrm{~m}$
$\therefore \mathrm{f}=\mathrm{v} / \lambda=180 \mathrm{~Hz}$.
50. Fundamental frequency
$V=1 / 21 \sqrt{T / m} \Rightarrow \sqrt{T / m}=v 2 l \quad[\sqrt{T / m}=$ velocity of wave $]$
a) wavelength, $\lambda=$ velocity $/$ frequency $=v 2 l / v=2 l$ and wave number $=K=2 \pi / \lambda=2 \pi / 21=\pi / l$
b) Therefore, equation of the stationary wave is

$$
\begin{array}{rlrl}
y & =A \cos (2 \pi x / \lambda) \sin (2 \pi V t / L) \\
& =A \cos (2 \pi x / 2 l) \sin (2 \pi V t / 2 L) \\
v & =V / 2 L & & {[\text { because } v=(v / 2 I)]}
\end{array}
$$

51. $V=200 \mathrm{~m} / \mathrm{s}, 2 A=0.5 \mathrm{~m}$
a) The string is vibrating in its $1^{\text {st }}$ overtone

$$
\Rightarrow \lambda=1=2 \mathrm{~m}
$$

$$
\Rightarrow \mathrm{f}=\mathrm{v} / \lambda=100 \mathrm{~Hz}
$$

b) The stationary wave equation is given by

$$
\begin{aligned}
& y=2 A \cos \frac{2 \pi x}{\lambda} \sin \frac{2 \pi V t}{\lambda} \\
& =(0.5 \mathrm{~cm}) \cos \left[\left(\pi \mathrm{m}^{-1}\right) \mathrm{x}\right] \sin \left[\left(200 \pi \mathrm{~s}^{-1}\right) \mathrm{t}\right]
\end{aligned}
$$

52. The stationary wave equation is given by $y=(0.4 \mathrm{~cm}) \sin [(0.314 \mathrm{~cm}-1) x] \cos \left[\left(6.00 \pi \mathrm{~s}^{-1}\right) \mathrm{t}\right]$
a) $\omega=600 \pi \Rightarrow 2 \pi \mathrm{f}=600 \pi \Rightarrow \mathrm{f}=300 \mathrm{~Hz}$
wavelength, $\lambda=2 \pi / 0.314=(2 \times 3.14) / 0.314=20 \mathrm{~cm}$
b) Therefore nodes are located at, $0,10 \mathrm{~cm}, 20 \mathrm{~cm}, 30 \mathrm{~cm}$
c) Length of the string $=3 \lambda / 2=3 \times 20 / 2=30 \mathrm{~cm}$

d) $y=0.4 \sin (0.314 x) \cos (600 \pi t) \Rightarrow 0.4 \sin \{(\pi / 10) x\} \cos (600 \pi t)$ since, λ and v are the wavelength and velocity of the waves that interfere to give this vibration $\lambda=20$ cm

$$
\mathrm{v}=\omega / \mathrm{k}=6000 \mathrm{~cm} / \mathrm{sec}=60 \mathrm{~m} / \mathrm{s}
$$

53. The equation of the standing wave is given by
$y=(0.4 \mathrm{~cm}) \sin \left[\left(0.314 \mathrm{~cm}^{-1}\right) x\right] \cos \left[\left(6.00 \pi \mathrm{~s}^{-1}\right) \mathrm{t}\right]$
$\Rightarrow \mathrm{k}=0.314=\pi / 10$
$\Rightarrow 2 \pi / \lambda=\pi / 10 \Rightarrow \lambda=20 \mathrm{~cm}$
for smallest length of the string, as wavelength remains constant, the string should vibrate in fundamental frequency

$\Rightarrow I=\lambda / 2=20 \mathrm{~cm} / 2=10 \mathrm{~cm}$
54. $\mathrm{L}=40 \mathrm{~cm}=0.4 \mathrm{~m}$, mass $=3.2 \mathrm{~kg}=3.2 \times 10^{-3} \mathrm{~kg}$
\therefore mass per unit length, $\mathrm{m}=(3.2) /(0.4)=8 \times 10^{-3} \mathrm{~kg} / \mathrm{m}$
change in length, $\Delta \mathrm{L}=40.05-40=0.05 \times 10^{-2} \mathrm{~m}$
strain $=\Delta \mathrm{L} / \mathrm{L}=0.125 \times 10^{-2} \mathrm{~m}$
$\mathrm{f}=220 \mathrm{~Hz}$

$f=\frac{1}{2 l^{\prime}} \sqrt{\frac{T}{m}}=\frac{1}{2 \times(0.4005)} \sqrt{\frac{T}{8 \times 10^{-3}}} \Rightarrow T=248.19 \mathrm{~N}$
Strain $=248.19 / 1 \mathrm{~mm}^{2}=248.19 \times 10^{6}$
$\mathrm{Y}=$ stress $/$ strain $=1.985 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
55. Let, $\rho \rightarrow$ density of the block

Weight $\rho \mathrm{Vg}$ where $\mathrm{V}=$ volume of block
The same turning fork resonates with the string in the two cases
$f_{10}=\frac{10}{2 l} \sqrt{\frac{T-\rho_{w} V g}{m}}=\frac{11}{21} \sqrt{\frac{\left(\rho-\rho_{w}\right) V g}{m}}$
As the f of tuning fork is same,
$f_{10}=f_{11} \Rightarrow \frac{10}{2 l} \sqrt{\frac{\rho V g}{m}}=\frac{11}{2 l} \sqrt{\frac{\left(\rho-\rho_{w}\right) V g}{m}}$
$\Rightarrow \frac{10}{11}=\sqrt{\frac{\rho-\rho_{w}}{m}} \Rightarrow \frac{\rho-1}{\rho}=\frac{100}{121} \quad$ (because, $\rho_{w}=1 \mathrm{gm} / \mathrm{cc}$)
$\Rightarrow 100 \rho=121 \rho-121 \Rightarrow 5.8 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
56. $\mathrm{I}=$ length of rope $=2 \mathrm{~m}$
$\mathrm{M}=$ mass $=80 \mathrm{gm}=0.8 \mathrm{~kg}$
mass per unit length $=\mathrm{m}=0.08 / 2=0.04 \mathrm{~kg} / \mathrm{m}$
Tension $\mathrm{T}=256 \mathrm{~N}$
Velocity, $V=\sqrt{T / m}=80 \mathrm{~m} / \mathrm{s}$
For fundamental frequency,
$\mathrm{I}=\lambda / 4 \Rightarrow \lambda=4 \mathrm{I}=8 \mathrm{~m}$
$\Rightarrow \mathrm{f}=80 / 8=10 \mathrm{~Hz}$
a) Therefore, the frequency of $1^{\text {st }}$ two overtones are $1^{\text {st }}$ overtone $=3 \mathrm{f}=30 \mathrm{~Hz}$

$$
2^{\text {nd }} \text { overtone }=5 \mathrm{f}=50 \mathrm{~Hz}
$$

b) $\lambda_{1}=4 \mathrm{I}=8 \mathrm{~m}$

$$
\lambda_{1}=\mathrm{V} / \mathrm{f}_{1}=2.67 \mathrm{~m}
$$

$$
\lambda_{2}=\mathrm{V} / \mathrm{f}_{2}=1.6 \mathrm{mt}
$$

so, the wavelengths are $8 \mathrm{~m}, 2.67 \mathrm{~m}$ and 1.6 m respectively.
57. Initially because the end A is free, an antinode will be formed.

So, $I=Q_{1} / 4$
Again, if the movable support is pushed to right by 10 m , so that the joint is placed on the pulley, a node will be formed there.
So, $\mathrm{I}=\lambda_{2} / 2$
Since, the tension remains same in both the cases, velocity remains same.
As the wavelength is reduced by half, the frequency will become twice as that of 120 Hz i.e. 240 Hz .

