SOLUTIONS TO CONCEPTS
 CHAPTER - 16

1. $\mathrm{V}_{\mathrm{air}}=230 \mathrm{~m} / \mathrm{s} . \mathrm{V}_{\mathrm{s}}=5200 \mathrm{~m} / \mathrm{s}$. Here $\mathrm{S}=7 \mathrm{~m}$

So, $t=t_{1}-t_{2}=\left(\frac{1}{330}-\frac{1}{5200}\right)=2.75 \times 10^{-3} \mathrm{sec}=2.75 \mathrm{~ms}$.
2. Here given $S=80 \mathrm{~m} \times 2=160 \mathrm{~m}$.

$$
v=320 \mathrm{~m} / \mathrm{s}
$$

So the maximum time interval will be $t=5 / v=160 / 320=0.5$ seconds.
3. He has to clap 10 times in 3 seconds.

So time interval between two clap $=(3 / 10$ second $)$.
So the time taken go the wall $=(3 / 2 \times 10)=3 / 20$ seconds.
$=333 \mathrm{~m} / \mathrm{s}$.
4. a) for maximum wavelength $\mathrm{n}=20 \mathrm{~Hz}$.
as $\left(\eta \propto \frac{1}{\lambda}\right)$
b) for minimum wavelength, $\mathrm{n}=20 \mathrm{kHz}$
$\therefore \lambda=360 /\left(20 \times 10^{3}\right)=18 \times 10^{-3} \mathrm{~m}=18 \mathrm{~mm}$ $\Rightarrow x=(v / n)=360 / 20=18 \mathrm{~m}$.
5. a) for minimum wavelength $n=20 \mathrm{KHz}$
$\Rightarrow v=n \lambda \Rightarrow \lambda=\left(\frac{1450}{20 \times 10^{3}}\right)=7.25 \mathrm{~cm}$.
b) for maximum wavelength n should be minium

$$
\Rightarrow v=n \lambda \Rightarrow \lambda=v / n \Rightarrow 1450 / 20=72.5 m
$$

6. According to the question,
a) $\lambda=20 \mathrm{~cm} \times 10=200 \mathrm{~cm}=2 \mathrm{~m}$
$\mathrm{v}=340 \mathrm{~m} / \mathrm{s}$
so, $n=v / \lambda=340 / 2=170 \mathrm{~Hz}$.
$\mathrm{N}=\mathrm{v} / \lambda \Rightarrow \frac{340}{2 \times 10^{-2}}=17.000 \mathrm{~Hz}=17 \mathrm{KH}_{2}$ (because $\lambda=2 \mathrm{~cm}=2 \times 10^{-2} \mathrm{~m}$)
7. a) Given $\mathrm{V}_{\text {air }}=340 \mathrm{~m} / \mathrm{s}, \mathrm{n}=4.5 \times 10^{6} \mathrm{~Hz}$
$\Rightarrow \lambda_{\text {air }}=(340 / 4.5) \times 10^{-6}=7.36 \times 10^{-5} \mathrm{~m}$.
b) $V_{\text {tissue }}=1500 \mathrm{~m} / \mathrm{s} \Rightarrow \lambda_{\mathrm{t}}=(1500 / 4.5) \times 10^{-6}=3.3 \times 10^{-4} \mathrm{~m}$.
8. Here given $r_{y}=6.0 \times 10^{-5} \mathrm{~m}$
a) Given $2 \pi / \lambda=1.8 \Rightarrow \lambda=(2 \pi / 1.8)$

So, $\frac{r_{y}}{\lambda}=\frac{6.0 \times(1.8) \times 10^{-5} \mathrm{~m} / \mathrm{s}}{2 \pi}=1.7 \times 10^{-5} \mathrm{~m}$
b) Let, velocity amplitude $=V_{y}$
$V=d y / d t=3600 \cos (600 t-1.8) \times 10^{-5} \mathrm{~m} / \mathrm{s}$
Here $V_{y}=3600 \times 10^{-5} \mathrm{~m} / \mathrm{s}$
Again, $\lambda=2 \pi / 1.8$ and $T=2 \pi / 600 \Rightarrow$ wave speed $=v=\lambda / T=600 / 1.8=1000 / 3 \mathrm{~m} / \mathrm{s}$.
So the ratio of $\left(\mathrm{V}_{\mathrm{y}} / \mathrm{v}\right)=\frac{3600 \times 3 \times 10^{-5}}{1000}$.
9. a) Here given $n=100, v=350 \mathrm{~m} / \mathrm{s}$
$\Rightarrow \lambda=\frac{v}{n}=\frac{350}{100}=3.5 \mathrm{~m}$.
In 2.5 ms , the distance travelled by the particle is given by
$\Delta x=350 \times 2.5 \times 10^{-3}$

So, phase difference $\phi=\frac{2 \pi}{\lambda} \times \Delta x \Rightarrow \frac{2 \pi}{(350 / 100)} \times 350 \times 2.5 \times 10^{-3}=(\pi / 2)$.
b) In the second case, Given $\Delta \eta=10 \mathrm{~cm}=10^{-1} \mathrm{~m}$

So, $\phi=\frac{2 \pi}{x} \Delta x=\frac{2 \pi \times 10^{-1}}{(350 / 100)}=2 \pi / 35$.
10. a) Given $\Delta x=10 \mathrm{~cm}, \lambda=5.0 \mathrm{~cm}$
$\Rightarrow \phi=\frac{2 \pi}{\lambda} \times \Delta \eta=\frac{2 \pi}{5} \times 10=4 \pi$.

So phase difference is zero.
b) Zero, as the particle is in same phase because of having same path.
11. Given that $\mathrm{p}=1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~T}=273 \mathrm{~K}, \mathrm{M}=32 \mathrm{~g}=32 \times 10^{-3} \mathrm{~kg}$
$V=22.4$ litre $=22.4 \times 10^{-3} \mathrm{~m}^{3}$
$C / C_{v}=r=3.5 R / 2.5 R=1.4$
$\Rightarrow V=\sqrt{\frac{\mathrm{rp}}{\mathrm{f}}}=\sqrt{\frac{1.4 \times 1.0 \times 10^{-5}}{32 / 22.4}}=310 \mathrm{~m} / \mathrm{s}$ (because $\rho=\mathrm{m} / \mathrm{v}$)
12. $\mathrm{V}_{1}=330 \mathrm{~m} / \mathrm{s}, \mathrm{V}_{2}=$?
$\mathrm{T}_{1}=273+17=290 \mathrm{~K}, \mathrm{~T}_{2}=272+32=305 \mathrm{~K}$
We know $\mathrm{v} \propto \sqrt{\mathrm{T}}$
$\frac{\sqrt{V_{1}}}{\sqrt{\mathrm{~V}_{2}}}=\frac{\sqrt{\mathrm{T}_{1}}}{\sqrt{\mathrm{~T}_{2}}} \Rightarrow \mathrm{~V}_{2}=\frac{\mathrm{V}_{1} \times \sqrt{\mathrm{T}_{2}}}{\sqrt{\mathrm{~T}_{1}}}$
$=340 \times \sqrt{\frac{305}{290}}=349 \mathrm{~m} / \mathrm{s}$.
13. $\mathrm{T}_{1}=273 \quad \mathrm{~V}_{2}=2 \mathrm{~V}_{1}$
$\mathrm{V}_{1}=\mathrm{v} \quad \mathrm{T}_{2}=$?
We know that $\mathrm{V} \propto \sqrt{\mathrm{T}} \Rightarrow \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}^{2}}{\mathrm{~V}_{1}^{2}} \Rightarrow \mathrm{~T}_{2}=273 \times 2^{2}=4 \times 273 \mathrm{~K}$
So temperature will be $(4 \times 273)-273=819^{\circ} \mathrm{c}$.
14. The variation of temperature is given by
$T=T_{1}+\frac{\left(T_{2}-T_{2}\right)}{d} x$
We know that $\mathrm{V} \propto \sqrt{\mathrm{T}} \Rightarrow \frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{V}}=\sqrt{\frac{\mathrm{T}}{273}} \Rightarrow \mathrm{VT}=\mathrm{v} \sqrt{\frac{\mathrm{T}}{273}}$
$\Rightarrow \mathrm{dt}=\frac{\mathrm{dx}}{\mathrm{V}_{\mathrm{T}}}=\frac{\mathrm{du}}{\mathrm{V}} \times \sqrt{\frac{273}{\mathrm{~T}}}$
$\Rightarrow t=\frac{273}{V} \int_{0}^{d} \frac{d x}{\left.\left[T_{1}+\left(T_{2}-T_{1}\right) / d\right) x\right]^{1 / 2}}$
$=\frac{\sqrt{273}}{V} \times \frac{2 d}{T_{2}-T_{1}}\left[T_{1}+\frac{T_{2}-T_{1}}{d} x\right]_{0}^{d}=\left(\frac{2 d}{V}\right)\left(\frac{\sqrt{273}}{T_{2}-T_{1}}\right) \times \sqrt{T_{2}}-\sqrt{T_{1}}$
$=T=\frac{2 d}{V} \frac{\sqrt{273}}{\sqrt{T_{2}}+\sqrt{T_{1}}}$
Putting the given value we get
$=\frac{2 \times 33}{330}=\frac{\sqrt{273}}{\sqrt{280}+\sqrt{310}}=96 \mathrm{~ms}$.
15. We know that $v=\sqrt{K / \rho}$

Where $\mathrm{K}=$ bulk modulus of elasticity
$\Rightarrow K=v^{2} \rho=(1330)^{2} \times 800 \mathrm{~N} / \mathrm{m}^{2}$
We know $\mathrm{K}=\left(\frac{\mathrm{F} / \mathrm{A}}{\Delta \mathrm{V} / \mathrm{V}}\right)$
$\Rightarrow \Delta V=\frac{\text { Pressures }}{K}=\frac{2 \times 10^{5}}{1330 \times 1330 \times 800}$
So, $\Delta \mathrm{V}=0.15 \mathrm{~cm}^{3}$
16. We know that,

Bulk modulus $\mathrm{B}=\frac{\Delta \mathrm{p}}{(\Delta \mathrm{V} / \mathrm{V})}=\frac{\mathrm{P}_{0} \lambda}{2 \pi \mathrm{~S}_{0}}$
Where $P_{0}=$ pressure amplitude $\Rightarrow P_{0}=1.0 \times 10^{5}$
$\mathrm{S}_{0}=$ displacement amplitude $\Rightarrow \mathrm{S}_{0}=5.5 \times 10^{-6} \mathrm{~m}$
$\Rightarrow B=\frac{14 \times 35 \times 10^{-2} \mathrm{~m}}{2 \pi(5.5) \times 10^{-6} \mathrm{~m}}=1.4 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$.
17. a) Here given $\mathrm{V}_{\text {air }}=340 \mathrm{~m} / \mathrm{s}$., Power $=\mathrm{E} / \mathrm{t}=20 \mathrm{~W}$

$$
\mathrm{f}=2,000 \mathrm{~Hz}, \rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}
$$

So, intensity I = E/t.A

$$
=\frac{20}{4 \pi r^{2}}=\frac{20}{4 \times \pi \times 6^{2}}=44 \mathrm{mw} / \mathrm{m}^{2}(\text { because } \mathrm{r}=6 \mathrm{~m})
$$

b) We know that $I=\frac{P_{0}^{2}}{2 \rho V_{\text {air }}} \Rightarrow P_{0}=\sqrt{1 \times 2 \rho V_{\text {air }}}$

$$
=\sqrt{2 \times 1.2 \times 340 \times 44 \times 10^{-3}}=6.0 \mathrm{~N} / \mathrm{m}^{2}
$$

c) We know that $\mathrm{I}=2 \pi^{2} \mathrm{~S}_{0}^{2} \mathrm{v}^{2} \rho \mathrm{~V}$ where $\mathrm{S}_{0}=$ displacement amplitude

$$
\Rightarrow \mathrm{S}_{0}=\sqrt{\frac{\mathrm{I}}{\pi^{2} \rho^{2} \rho \mathrm{~V}_{\mathrm{air}}}}
$$

Putting the value we get $\mathrm{S}_{\mathrm{g}}=1.2 \times 10^{-6} \mathrm{~m}$.
18. Here $\mathrm{I}_{1}=1.0 \times 10^{-8} \mathrm{~W}_{1} / \mathrm{m}^{2} ; \mathrm{I}_{2}=$?
$r_{1}=5.0 \mathrm{~m}, \mathrm{r}_{2}=25 \mathrm{~m}$.
We know that $I \propto \frac{1}{r^{2}}$
$\Rightarrow I_{1} r_{1}{ }^{2}=I_{2} r_{2}{ }^{2} \Rightarrow I_{2}=\frac{I_{1} r_{1}^{2}}{r_{2}^{2}}$
$=\frac{1.0 \times 10^{-8} \times 25}{625}=4.0 \times 10^{-10} \mathrm{~W} / \mathrm{m}^{2}$.
19. We know that $\beta=10 \log _{10}\left(\frac{I}{I_{0}}\right)$
$\beta_{A}=10 \log \frac{I_{A}}{I_{O}}, \beta_{B}=10 \log \frac{I_{B}}{I_{0}}$
$\Rightarrow I_{A} / I_{0}=10^{\left(\beta_{A} / 10\right)} \Rightarrow I_{B} / I_{0}=10^{\left(\beta_{B} / 10\right)}$
$\Rightarrow \frac{\mathrm{I}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{B}}}=\frac{\mathrm{r}_{\mathrm{B}}^{2}}{\mathrm{r}_{\mathrm{A}}^{2}}=\left(\frac{50}{5}\right)^{2} \Rightarrow 10^{\left(\beta_{A} \beta_{B}\right)}=10^{2}$
$\Rightarrow \frac{\beta_{\mathrm{A}}-\beta_{\mathrm{B}}}{10}=2 \Rightarrow \beta_{\mathrm{A}}-\beta_{\mathrm{B}}=20$
$\Rightarrow \beta_{\mathrm{B}}=40-20=20 \mathrm{~d} \beta$.
20. We know that, $\beta=10 \log _{10} \mathrm{~J} / \mathrm{l}_{0}$

According to the questions
$\beta_{\mathrm{A}}=10 \log _{10}\left(21 / I_{0}\right)$
$\Rightarrow \beta_{B}-\beta_{A}=10 \log (2 \mathrm{I} / \mathrm{I})=10 \times 0.3010=3 \mathrm{~dB}$.
21. If sound level $=120 \mathrm{~dB}$, then $\mathrm{I}=$ intensity $=1 \mathrm{~W} / \mathrm{m}^{2}$

Given that, audio output $=2 \mathrm{~W}$
Let the closest distance be x.
So, intensity $=\left(2 / 4 \pi x^{2}\right)=1 \Rightarrow x^{2}=(2 / 2 \pi) \Rightarrow x=0.4 \mathrm{~m}=40 \mathrm{~cm}$.
22. $\beta_{1}=50 \mathrm{~dB}, \beta_{2}=60 \mathrm{~dB}$
$\therefore I_{1}=10^{-7} \mathrm{~W} / \mathrm{m}^{2}, I_{2}=10^{-6} \mathrm{~W} / \mathrm{m}^{2}$
(because $\beta=10 \log _{10}\left(\mathrm{I} / \mathrm{I}_{0}\right)$, where $\mathrm{I}_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$)
Again, $I_{2} / I_{1}=\left(p_{2} / p_{1}\right)^{2}=\left(10^{-6} / 10^{-7}\right)=10$ (where $p=$ pressure amplitude).
$\therefore\left(p_{2} / p_{1}\right)=\sqrt{10}$.
23. Let the intensity of each student be I.

According to the question
$\beta_{A}=10 \log _{10} \frac{50 I}{I_{0}} ; \beta_{B}=10 \log _{10}\left(\frac{100 I}{I_{0}}\right)$
$\Rightarrow \beta_{B}-\beta_{A}=10 \log _{10} \frac{50 I}{I_{0}}-10 \log _{10}\left(\frac{100 I}{I_{0}}\right)$
$=10 \log \left(\frac{100 \mathrm{I}}{50 \mathrm{I}}\right)=10 \log _{10} 2=3$
So, $\beta_{A}=50+3=53 \mathrm{~dB}$.
24. Distance between tow maximum to a minimum is given by, $\lambda / 4=2.50 \mathrm{~cm}$
$\Rightarrow \lambda=10 \mathrm{~cm}=10^{-1} \mathrm{~m}$
We know, $V=n x$
$\Rightarrow \mathrm{n}=\frac{\mathrm{V}}{\lambda}=\frac{340}{10^{-1}}=3400 \mathrm{~Hz}=3.4 \mathrm{kHz}$.
25. a) According to the data

$$
\lambda / 4=16.5 \mathrm{~mm} \Rightarrow \lambda=66 \mathrm{~mm}=66 \times 10^{-6=3} \mathrm{~m}
$$

$$
\Rightarrow \mathrm{n}=\frac{\mathrm{V}}{\lambda}=\frac{330}{66 \times 10^{-3}}=5 \mathrm{kHz}
$$

b) $I_{\text {minimum }}=K\left(A_{1}-A_{2}\right)^{2}=I \Rightarrow A_{1}-A_{2}=11$
$I_{\text {maximum }}=K\left(A_{1}+A_{2}\right)^{2}=9 \Rightarrow A_{1}+A_{2}=31$
So, $\frac{A_{1}+A_{2}}{A_{1}+A_{2}}=\frac{3}{4} \Rightarrow A_{1} / A_{2}=2 / 1$
So, the ratio amplitudes is 2 .
26. The path difference of the two sound waves is given by
$\Delta \mathrm{L}=6.4-6.0=0.4 \mathrm{~m}$
The wavelength of either wave $=\lambda=\frac{V}{\rho}=\frac{320}{\rho}(\mathrm{~m} / \mathrm{s})$
For destructive interference $\Delta L=\frac{(2 n+1) \lambda}{2}$ where n is an integers.
or $0.4 \mathrm{~m}=\frac{2 \mathrm{n}+1}{2} \times \frac{320}{\rho}$
$\Rightarrow \rho=\mathrm{n}=\frac{320}{0.4}=800 \frac{2 \mathrm{n}+1}{2} \mathrm{~Hz}=(2 \mathrm{n}+1) 400 \mathrm{~Hz}$
Thus the frequency within the specified range which cause destructive interference are 1200 Hz , $2000 \mathrm{~Hz}, 2800 \mathrm{~Hz}, 3600 \mathrm{~Hz}$ and 4400 Hz .
27. According to the given data
$\mathrm{V}=336 \mathrm{~m} / \mathrm{s}$,
$\lambda / 4=$ distance between maximum and minimum intensity
$=(20 \mathrm{~cm}) \Rightarrow \lambda=80 \mathrm{~cm}$
$\Rightarrow \mathrm{n}=$ frequency $=\frac{\mathrm{V}}{\lambda}=\frac{336}{80 \times 10^{-2}}=420 \mathrm{~Hz}$.

28. Here given $\lambda=\mathrm{d} / 2$

Initial path difference is given by $=2 \sqrt{\left(\frac{d}{2}\right)^{2}+2 d^{2}}-d$
If it is now shifted a distance x then path difference will be
$=2 \sqrt{\left(\frac{d}{2}\right)^{2}}+(\sqrt{2} d+x)^{2}-d=\frac{d}{4}\left(2 d+\frac{d}{4}\right)$
$\Rightarrow\left(\frac{d}{2}\right)^{2}+(\sqrt{2} d+x)^{2}=\frac{169 d^{2}}{64} \Rightarrow \frac{153}{64} \mathrm{~d}^{2}$
$\Rightarrow \sqrt{2} \mathrm{~d}+\mathrm{x}=1.54 \mathrm{~d} \Rightarrow \mathrm{x}=1.54 \mathrm{~d}-1.414 \mathrm{~d}=0.13 \mathrm{~d}$.
29. As shown in the figure the path differences $2.4=\Delta x=\sqrt{(3.2)^{2}+(2.4)^{2}}-3.2$

Again, the wavelength of the either sound waves $=\frac{320}{\rho}$
We know, destructive interference will be occur
If $\Delta x=\frac{(2 n+1) \lambda}{2}$
$\Rightarrow \sqrt{(3.2)^{2}+(2.4)^{2}-(3.2)}=\frac{(2 n+1)}{2} \frac{320}{\rho}$

Solving we get
$\Rightarrow V=\frac{(2 n+1) 400}{2}=200(2 n+1)$
where $\mathrm{n}=1,2,3, \ldots \ldots 4$. (audible region)
30. According to the data
$\lambda=20 \mathrm{~cm}, \mathrm{~S}_{1} \mathrm{~S}_{2}=20 \mathrm{~cm}, \mathrm{BD}=20 \mathrm{~cm}$
Let the detector is shifted to left for a distance x for hearing the minimum sound.
So path difference $A I=B C-A B$
$=\sqrt{(20)^{2}+(10+x)^{2}}-\sqrt{(20)^{2}+(10-x)^{2}}$

So the minimum distances hearing for minimum
$=\frac{(2 \mathrm{n}+1) \lambda}{2}=\frac{\lambda}{2}=\frac{20}{2}=10 \mathrm{~cm}$
$\Rightarrow \sqrt{(20)^{2}+(10+x)^{2}}-\sqrt{(20)^{2}+(10-x)^{2}}=10$ solving we get $x=12.0 \mathrm{~cm}$.
31.

Given, $F=600 \mathrm{~Hz}$, and $v=330 \mathrm{~m} / \mathrm{s} \Rightarrow \lambda=v / \mathrm{f}=330 / 600=0.55 \mathrm{~mm}$

Let $O P=D, P Q=y \Rightarrow \theta=y / R$
Now path difference is given by, $x=S_{2} Q-S_{1} Q=y d / D$
Where $\mathrm{d}=2 \mathrm{~m}$
[The proof of $x=y d / D$ is discussed in interference of light waves]
a) For minimum intensity, $x=(2 n+1)(\lambda / 2)$
$\therefore y d / D=\lambda / 2$ [for minimum $y, x=\lambda / 2$]
$\therefore y / D=\theta=\lambda / 2=0.55 / 4=0.1375 \mathrm{rad}=0.1375 \times(57.1)^{\circ}=7.9^{\circ}$
b) For minimum intensity, $x=2 n(\lambda / 2)$
$\mathrm{yd} / \mathrm{D}=\lambda \Rightarrow \mathrm{y} / \mathrm{D}=\theta=\lambda / \mathrm{D}=0.55 / 2=0.275 \mathrm{rad}$
$\therefore \theta=16^{\circ}$
c) For more maxima,
$y d / D=2 \lambda, 3 \lambda, 4 \lambda, \ldots$
$\Rightarrow y / D=\theta=32^{\circ}, 64^{\circ}, 128^{\circ}$
But since, the maximum value of θ can be 90°, he will hear two more maximum i.e. at 32° and 64°.
32.

Because the 3 sources have equal intensity, amplitude are equal
So, $A_{1}=A_{2}=A_{3}$
As shown in the figure, amplitude of the resultant $=0$ (vector method)
So, the resultant, intensity at B is zero.
33. The two sources of sound S_{1} and S_{2} vibrate at same phase and frequency.

Resultant intensity at $P=I_{0}$
a) Let the amplitude of the waves at S_{1} and S_{2} be ' r '.

When $\theta=45^{\circ}$, path difference $=S_{1} P-S_{2} P=0$ (because $S_{1} P=S_{2} P$)
So, when source is switched off, intensity of sound at P is $I_{0} / 4$.
b) When $\theta=60^{\circ}$, path difference is also 0 .

Similarly it can be proved that, the intensity at P is $I_{0} / 4$ when one is switched off.
34. If $V=340 \mathrm{~m} / \mathrm{s}, I=20 \mathrm{~cm}=20 \times 10^{-2} \mathrm{~m}$

Fundamental frequency $=\frac{\mathrm{V}}{21}=\frac{340}{2 \times 20 \times 10^{-2}}=850 \mathrm{~Hz}$
We know first over tone $=\frac{2 \mathrm{~V}}{21}=\frac{2 \times 340}{2 \times 20 \times 10^{-2}}$ (for open pipe) $=1750 \mathrm{~Hz}$
Second over tone $=3(\mathrm{~V} / 21)=3 \times 850=2500 \mathrm{~Hz}$.
35. According to the questions $V=340 \mathrm{~m} / \mathrm{s}, \mathrm{n}=500 \mathrm{~Hz}$

We know that $\mathrm{V} / 4 \mathrm{I}$ (for closed pipe)
$\Rightarrow I=\frac{340}{4 \times 500} \mathrm{~m}=17 \mathrm{~cm}$.
36. Here given distance between two nodes is $=4.0 \mathrm{~cm}$,
$\Rightarrow \lambda=2 \times 4.0=8 \mathrm{~cm}$
We know that $v=n \lambda$
$\Rightarrow \eta=\frac{328}{8 \times 10^{-2}}=4.1 \mathrm{~Hz}$.
37. $V=340 \mathrm{~m} / \mathrm{s}$

Distances between two nodes or antinodes
$\Rightarrow \lambda / 4=25 \mathrm{~cm}$
$\Rightarrow \lambda=100 \mathrm{~cm}=1 \mathrm{~m}$
$\Rightarrow n=v / \lambda=340 \mathrm{~Hz}$.
38. Here given that $1=50 \mathrm{~cm}, v=340 \mathrm{~m} / \mathrm{s}$

As it is an open organ pipe, the fundamental frequency $f_{1}=(v / 21)$
$=\frac{340}{2 \times 50 \times 10^{-2}}=340 \mathrm{~Hz}$.

So, the harmonies are
$\mathrm{f}_{3}=3 \times 340=1020 \mathrm{~Hz}$
$\mathrm{f}_{5}=5 \times 340=1700, \mathrm{f}_{6}=6 \times 340=2040 \mathrm{~Hz}$
so, the possible frequencies are between 1000 Hz and 2000 Hz are 1020, 1360, 1700.
39. Here given $\mathrm{I}_{2}=0.67 \mathrm{~m}, \mathrm{I}_{1}=0.2 \mathrm{~m}, \mathrm{f}=400 \mathrm{~Hz}$

We know that
$\lambda=2\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right) \Rightarrow \lambda=2(62-20)=84 \mathrm{~cm}=0.84 \mathrm{~m}$.
So, $v=n \lambda=0.84 \times 400=336 \mathrm{~m} / \mathrm{s}$
We know from above that,
$l_{1}+d=\lambda / 4 \Rightarrow d=\lambda / 4-l_{1}=21-20=1 \mathrm{~cm}$.
40. According to the questions
f_{1} first overtone of a closed organ pipe $P_{1}=3 \mathrm{v} / 4 \mathrm{I}=\frac{3 \times \mathrm{V}}{4 \times 30}$
f_{2} fundamental frequency of a open organ pipe $P_{2}=\frac{V}{2 I_{2}}$
Here given $\frac{3 V}{4 \times 30}=\frac{V}{2 I_{2}} \Rightarrow I_{2}=20 \mathrm{~cm}$
\therefore length of the pipe P_{2} will be 20 cm .
41. Length of the wire $=1.0 \mathrm{~m}$

For fundamental frequency $\lambda / 2=1$
$\Rightarrow \lambda=2 \mathrm{l}=2 \times 1=2 \mathrm{~m}$
Here given $\mathrm{n}=3.8 \mathrm{~km} / \mathrm{s}=3800 \mathrm{~m} / \mathrm{s}$
We know $\Rightarrow v=n \lambda \Rightarrow n=3800 / 2=1.9 \mathrm{kH}$.
So standing frequency between 20 Hz and 20 kHz which will be heard are
$=\mathrm{n} \times 1.9 \mathrm{kHz} \quad$ where $\mathrm{n}=0,1,2,3, \ldots 10$.
42. Let the length will be I.

Here given that $V=340 \mathrm{~m} / \mathrm{s}$ and $\mathrm{n}=20 \mathrm{~Hz}$
Here $\lambda / 2=\mathrm{I} \Rightarrow \lambda=2 \mathrm{l}$
We know $V=n \lambda \Rightarrow I=\frac{V}{n}=\frac{340}{2 \times 20}=\frac{34}{4}=8.5 \mathrm{~cm}$ (for maximum wavelength, the frequency is minimum).
43. a) Here given $\mathrm{I}=5 \mathrm{~cm}=5 \times 10^{-2} \mathrm{~m}, \mathrm{v}=340 \mathrm{~m} / \mathrm{s}$
$\Rightarrow \mathrm{n}=\frac{\mathrm{V}}{2 \mid}=\frac{340}{2 \times 5 \times 10^{-2}}=3.4 \mathrm{KHz}$
b) If the fundamental frequency $=3.4 \mathrm{KHz}$
\Rightarrow then the highest harmonic in the audible range $(20 \mathrm{~Hz}-20 \mathrm{KHz})$
$=\frac{20000}{3400}=5.8=5$ (integral multiple of 3.4 KHz).
44. The resonance column apparatus is equivalent to a closed organ pipe.

Here $\mathrm{I}=80 \mathrm{~cm}=10 \times 10^{-2} \mathrm{~m} ; \mathrm{v}=320 \mathrm{~m} / \mathrm{s}$
$\Rightarrow \mathrm{n}_{0}=\mathrm{v} / 4 \mathrm{I}=\frac{320}{4 \times 50 \times 10^{-2}}=100 \mathrm{~Hz}$
So the frequency of the other harmonics are odd multiple of $n_{0}=(2 n+1) 100 \mathrm{~Hz}$
According to the question, the harmonic should be between 20 Hz and 2 KHz .
45. Let the length of the resonating column will be $=1$

Here V $=320 \mathrm{~m} / \mathrm{s}$
Then the two successive resonance frequencies are $\frac{(n+1) v}{4 I}$ and $\frac{n v}{4 l}$
Here given $\frac{(\mathrm{n}+1) \mathrm{v}}{4 \mathrm{I}}=2592 ; \lambda=\frac{\mathrm{nv}}{4 \mathrm{l}}=1944$
$\Rightarrow \frac{(\mathrm{n}+1) \mathrm{v}}{4 \mathrm{I}}-\frac{\mathrm{nv}}{4 \mathrm{l}}=2592-1944=548 \mathrm{~cm}=25 \mathrm{~cm}$.
46. Let, the piston resonates at length I_{1} and I_{2}

Here, $\mathrm{I}=32 \mathrm{~cm} ; \mathrm{v}=$?, $\mathrm{n}=512 \mathrm{~Hz}$
Now $\Rightarrow 512=\mathrm{v} / \lambda$
$\Rightarrow v=512 \times 0.64=328 \mathrm{~m} / \mathrm{s}$.
47. Let the length of the longer tube be L_{2} and smaller will be L_{1}.

According to the data $440=\frac{3 \times 330}{4 \times L_{2}}$
...(1) (first over tone)
and $440=\frac{330}{4 \times L_{1}}$
...(2) (fundamental)

solving equation we get $L_{2}=56.3 \mathrm{~cm}$ and $L_{1}=18.8 \mathrm{~cm}$.
48. Let $\mathrm{n}_{0}=$ frequency of the turning fork, $\mathrm{T}=$ tension of the string
$\mathrm{L}=40 \mathrm{~cm}=0.4 \mathrm{~m}, \mathrm{~m}=4 \mathrm{~g}=4 \times 10^{-3} \mathrm{~kg}$
So, $m=$ Mass/Unit length $=10^{-2} \mathrm{~kg} / \mathrm{m}$
$n_{0}=\frac{1}{2 l} \sqrt{\frac{T}{m}}$.
So, $2^{\text {nd }}$ harmonic $2 n_{0}=(2 / 21) \sqrt{T / m}$
As it is unison with fundamental frequency of vibration in the air column
$\Rightarrow 2 \mathrm{n}_{0}=\frac{340}{4 \times 1}=85 \mathrm{~Hz}$
$\Rightarrow 85=\frac{2}{2 \times 0.4} \sqrt{\frac{\mathrm{~T}}{14}} \Rightarrow \mathrm{~T}=85^{2} \times(0.4)^{2} \times 10^{-2}=11.6$ Newton.
49. Given, $\mathrm{m}=10 \mathrm{~g}=10 \times 10^{-3} \mathrm{~kg}, \mathrm{l}=30 \mathrm{~cm}=0.3 \mathrm{~m}$

Let the tension in the string will be $=\mathrm{T}$
$\mu=$ mass $/$ unit length $=33 \times 10^{-3} \mathrm{~kg}$
The fundamental frequency $\Rightarrow n_{0}=\frac{1}{21} \sqrt{\frac{T}{\mu}}$
The fundamental frequency of closed pipe
$\Rightarrow \mathrm{n}_{0}=(\mathrm{v} / 4 \mathrm{I}) \frac{340}{4 \times 50 \times 10^{2}}=170 \mathrm{~Hz}$
According equations (1) $\times(2)$ we get
$170=\frac{1}{2 \times 30 \times 10^{-2}} \times \sqrt{\frac{T}{33 \times 10^{-3}}}$
$\Rightarrow T=347$ Newton.
50. We know that $\mathrm{f} \propto \sqrt{\mathrm{T}}$

According to the question $f+\Delta f \propto \sqrt{\Delta T}+T$
$\Rightarrow \frac{\mathrm{f}+\Delta \mathrm{f}}{\mathrm{f}}=\sqrt{\frac{\Delta \mathrm{t}+\mathrm{T}}{\mathrm{T}}} \Rightarrow 1+\frac{\Delta \mathrm{f}}{\mathrm{f}}=\left(1+\frac{\Delta \mathrm{T}}{\mathrm{T}}\right)^{1 / 2}=1+\frac{1}{2} \frac{\Delta \mathrm{~T}}{\mathrm{~T}}+\ldots$ (neglecting other terms)
$\Rightarrow \frac{\Delta f}{f}=(1 / 2) \frac{\Delta T}{T}$.
51. We know that the frequency $=\mathrm{f}, \mathrm{T}=$ temperatures
$f \propto \sqrt{T}$
So $\frac{f_{1}}{f_{2}}=\frac{\sqrt{T_{1}}}{\sqrt{T_{2}}} \Rightarrow \frac{293}{f_{2}}=\frac{\sqrt{293}}{\sqrt{295}}$
$\Rightarrow \mathrm{f}_{2}=\frac{293 \times \sqrt{295}}{\sqrt{293}}=294$
52. $\mathrm{V}_{\text {rod }}=$?, $\mathrm{V}_{\text {air }}=340 \mathrm{~m} / \mathrm{s}, \mathrm{L}_{\mathrm{r}}=25 \times 10^{-2}, \mathrm{~d}_{2}=5 \times 10^{-2}$ metres $\frac{V_{r}}{V_{a}}=\frac{2 L_{r}}{D_{a}} \Rightarrow V_{r}=\frac{340 \times 25 \times 10^{-2} \times 2}{5 \times 10^{-2}}=3400 \mathrm{~m} / \mathrm{s}$.
53. a) Here given, $L_{r}=1.0 / 2=0.5 \mathrm{~m}, \mathrm{~d}_{\mathrm{a}}=6.5 \mathrm{~cm}=6.5 \times 10^{-2} \mathrm{~m}$

As Kundt's tube apparatus is a closed organ pipe, its fundamental frequency
$\Rightarrow \mathrm{n}=\frac{\mathrm{V}_{\mathrm{r}}}{4 \mathrm{~L}_{\mathrm{r}}} \Rightarrow \mathrm{V}_{\mathrm{r}}=2600 \times 4 \times 0.5=5200 \mathrm{~m} / \mathrm{s}$.
b) $\frac{\mathrm{V}_{\mathrm{r}}}{\mathrm{V}_{\mathrm{a}}}=\frac{2 \mathrm{~L}_{\mathrm{r}}}{\mathrm{d}_{\mathrm{a}}} \Rightarrow \mathrm{V}_{\mathrm{a}}=\frac{5200 \times 6.5 \times 10^{-2}}{2 \times 0.5}=338 \mathrm{~m} / \mathrm{s}$.
54. As the tunning fork produces 2 beats with the adjustable frequency the frequency of the tunning fork will be $\Rightarrow \mathrm{n}=(476+480) / 2=478$.
55. A tuning fork produces 4 beats with a known tuning fork whose frequency $=256 \mathrm{~Hz}$

So the frequency of unknown tuning fork = either $256-4=252$ or $256+4=260 \mathrm{~Hz}$
Now as the first one is load its mass/unit length increases. So, its frequency decreases.
As it produces 6 beats now original frequency must be 252 Hz .
260 Hz is not possible as on decreasing the frequency the beats decrease which is not allowed here.
56. Group - I

Group - II
Given V $=350$
$v=350$
$\lambda_{1}=32 \mathrm{~cm}$
$\lambda_{2}=32.2 \mathrm{~cm}$
$=32 \times 10^{-2} \mathrm{~m}$
$=32.2 \times 10^{-2} \mathrm{~m}$
So $\eta_{1}=$ frequency $=1093 \mathrm{~Hz} \quad \eta_{2}=350 / 32.2 \times 10^{-2}=1086 \mathrm{~Hz}$
So beat frequency $=1093-1086=7 \mathrm{~Hz}$.
57. Given length of the closed organ pipe, $I=40 \mathrm{~cm}=40 \times 10^{-2} \mathrm{~m}$

$$
V_{\mathrm{air}}=320
$$

So, its frequency $\rho=\frac{V}{4 I}=\frac{320}{4 \times 40 \times 10^{-2}}=200$ Hertz.
As the tuning fork produces 5 beats with the closed pipe, its frequency must be 195 Hz or 205 Hz .
Given that, as it is loaded its frequency decreases.
So, the frequency of tuning fork $=205 \mathrm{~Hz}$.
58. Here given $\mathrm{n}_{\mathrm{B}}=600=\frac{1}{2 \mathrm{I}} \sqrt{\frac{\mathrm{TB}}{14}}$

As the tension increases frequency increases
It is given that 6 beats are produces when tension in A is increases.
So, $n_{A} \Rightarrow 606=\frac{1}{21} \sqrt{\frac{T A}{M}}$
$\Rightarrow \frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}_{\mathrm{B}}}=\frac{600}{606}=\frac{(1 / 2 \mathrm{I}) \sqrt{(\mathrm{TB} / \mathrm{M})}}{(1 / 21) \sqrt{(\mathrm{TA} / \mathrm{M})}}=\frac{\sqrt{\mathrm{TB}}}{\sqrt{\mathrm{TA}}}$
$\Rightarrow \frac{\sqrt{T_{A}}}{\sqrt{T_{B}}}=\frac{606}{600}=1.01 \quad \Rightarrow \frac{T_{A}}{T_{B}}=1.02$.
59. Given that, $I=25 \mathrm{~cm}=25 \times 10^{-2} \mathrm{~m}$

By shortening the wire the frequency increases, $[f=(1 / 21) \sqrt{(T B / M)}]$
As the vibrating wire produces 4 beats with 256 Hz , its frequency must be 252 Hz or 260 Hz . Its frequency must be 252 Hz , because beat frequency decreases by shortening the wire.
So, $252=\frac{1}{2 \times 25 \times 10^{-2}} \sqrt{\frac{T}{M}}$
Let length of the wire will be I, after it is slightly shortened,
$\Rightarrow 256=\frac{1}{2 \times l_{1}} \sqrt{\frac{T}{M}}$
Dividing (1) by (2) we get

$$
\frac{252}{256}=\frac{\mathrm{I}_{1}}{2 \times 25 \times 10^{-2}} \Rightarrow \mathrm{I}_{1}=\frac{252 \times 2 \times 25 \times 10^{-2}}{260}=0.2431 \mathrm{~m}
$$

So, it should be shorten by $(25-24.61)=0.39 \mathrm{~cm}$.
60. Let $u=$ velocity of sound; $\quad V_{m}=$ velocity of the medium;
$v_{o}=$ velocity of the observer; $\quad v_{a}=$ velocity of the sources.
$f=\left(\frac{\vec{u}+\vec{v}_{m}-\vec{v}_{o}}{v+V_{m}-v_{s}}\right) F$

using sign conventions in Doppler's effect,
$\mathrm{V}_{\mathrm{m}}=0, \mathrm{u}=340 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{s}}=0$ and $\overrightarrow{\mathrm{v}}_{\mathrm{o}}=-10 \mathrm{~m}(36 \mathrm{~km} / \mathrm{h}=10 \mathrm{~m} / \mathrm{s})$
$=\left(\frac{340+0-(-10)}{340+0-0}\right) \times 2 \mathrm{KHz}=350 / 340 \times 2 \mathrm{KHz}=2.06 \mathrm{KHz}$.
61. $f^{1}=\left(\frac{\vec{u}+\vec{v}_{m}-\vec{v}_{o}}{\vec{u}+\vec{v}_{m}-\vec{v}_{s}}\right) f \quad[18 \mathrm{~km} / \mathrm{h}=5 \mathrm{~m} / \mathrm{s}]$
using sign conventions,

app. Frequency $=\left(\frac{340+0-0}{340+0-5}\right) \times 2400=2436 \mathrm{~Hz}$.
62.

a) Given $\mathrm{v}_{\mathrm{s}}=72 \mathrm{~km} / \mathrm{hour}=20 \mathrm{~m} / \mathrm{s}, \rho=1250$

$$
\text { apparent frequency }=\frac{340+0+0}{340+0-20} \times 1250=1328 \mathrm{H}_{2}
$$

b) For second case apparent frequency will be $=\frac{340+0+0}{340+0-(-20)} \times 1250=1181 \mathrm{~Hz}$.
63. Here given, apparent frequency $=1620 \mathrm{~Hz}$

So original frequency of the train is given by
$1620=\left(\frac{332+0+0}{332-15}\right) \mathrm{f} \Rightarrow \mathrm{f}=\left(\frac{1620 \times 317}{332}\right) \mathrm{Hz}$
So, apparent frequency of the train observed by the observer in
$f^{1}=\left(\frac{332+0+0}{332+15}\right) f \times\left(\frac{1620 \times 317}{332}\right)=\frac{317}{347} \times 1620=1480 \mathrm{~Hz}$.
64. Let, the bat be flying between the walls W_{1} and W_{2}.

So it will listen two frequency reflecting from walls W_{2} and W_{1}.
So, apparent frequency, as received by wall $W=f w_{2}=\frac{330+0+0}{330-6} \times f=330 / 324$
Therefore, apparent frequency received by the bat from wall W_{2} is given by
$\mathrm{F}_{\mathrm{B}_{2}}$ of wall $\mathrm{W}_{1}=\left(\frac{330+0-(-6)}{330+0+0}\right) \mathrm{f}_{\mathrm{w}_{2}}=\left(\frac{336}{330}\right) \times\left(\frac{330}{324}\right) \mathrm{f}$

Similarly the apparent frequency received by the bat from wall W_{1} is
$\mathrm{f}_{\mathrm{B}_{1}}=(324 / 336) \mathrm{f}$
So the beat frequency heard by the bat will be $=4.47 \times 10^{4}=4.3430 \times 10^{4}=3270 \mathrm{~Hz}$.
65. Let the frequency of the bullet will be f

Given, $u=330 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{s}}=220 \mathrm{~m} / \mathrm{s}$
a) Apparent frequency before crossing $=f^{\prime}=\left(\frac{330}{330-220}\right) f=3 f$
b) Apparent frequency after crossing $=f^{\prime \prime}=\left(\frac{330}{530+220}\right) f=0.6 \mathrm{f}$

So, $\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)=\frac{0.6 f}{3 f}=0.2$
Therefore, fractional change $=1-0.2=0.8$.
66. The person will receive, the sound in the directions BA and CA making an angle θ with the track.

Here, $\theta=\tan ^{-1}(0.5 / 2.4)=22^{\circ}$
So the velocity of the sources will be ' $v \cos \theta$ ' when heard by the observer.
So the apparent frequency received by the man from train B.
$f^{\prime}=\left(\frac{340+0+0}{340-v \cos 22^{\circ}}\right) 500=529 \mathrm{~Hz}$
And the apparent frequency heard but the man from train C ,

$\mathrm{f}^{\prime \prime}=\left(\frac{340+0+0}{340-v \cos 22^{\circ}}\right) \times 500=476 \mathrm{~Hz}$.
67. Let the velocity of the sources is $=v_{s}$
a) The beat heard by the standing man $=4$

So, frequency $=440+4=444 \mathrm{~Hz}$ or 436 Hz

$\Rightarrow 440=\left(\frac{340+0+0}{340-v_{\mathrm{s}}}\right) \times 400$
On solving we get $\mathrm{V}_{\mathrm{s}}=3.06 \mathrm{~m} / \mathrm{s}=11 \mathrm{~km} / \mathrm{hour}$.
b) The sitting man will listen less no.of beats than 4.
68. Here given velocity of the sources $\mathrm{v}_{\mathrm{s}}=0$

Velocity of the observer $\mathrm{v}_{0}=3 \mathrm{~m} / \mathrm{s}$
So, the apparent frequency heard by the $\operatorname{man}=\left(\frac{332+3}{332}\right) \times 256=258.3 \mathrm{~Hz}$.

from the approaching tuning form $=\mathrm{f}^{\prime}$
$\mathrm{f}^{\prime \prime}=[(332-3) / 332] \times 256=253.7 \mathrm{~Hz}$.
So, beat produced by them $=258.3-253.7=4.6 \mathrm{~Hz}$.
69. According to the data, $\mathrm{V}_{\mathrm{s}}=5.5 \mathrm{~m} / \mathrm{s}$ for each turning fork.

So, the apparent frequency heard from the tuning fork on the left,
$f^{\prime}=\left(\frac{330}{330-5.5}\right) \times 512=527.36 \mathrm{~Hz}=527.5 \mathrm{~Hz}$
similarly, apparent frequency from the tunning fork on the right,

$\mathrm{f}^{\prime \prime}=\left(\frac{330}{330+5.5}\right) \times 512=510 \mathrm{~Hz}$
So, beats produced $527.5-510=17.5 \mathrm{~Hz}$.
70. According to the given data

Radius of the circle $=100 / \pi \times 10^{-2} \mathrm{~m}=(1 / \pi)$ metres; $\omega=5 \mathrm{rev} / \mathrm{sec}$.
So the linear speed $v=\omega r=5 / \pi=1.59$
So, velocity of the source $\mathrm{V}_{\mathrm{s}}=1.59 \mathrm{~m} / \mathrm{s}$
As shown in the figure at the position A the observer will listen maximum and at the position B it will listen minimum frequency.

So, apparent frequency at $A=\frac{332}{332-1.59} \times 500=515 \mathrm{~Hz}$
Apparent frequency at $B=\frac{332}{332+1.59} \times 500=485 \mathrm{~Hz}$.
71. According to the given data $\mathrm{V}_{\mathrm{s}}=90 \mathrm{~km} / \mathrm{hour}=25 \mathrm{~m} / \mathrm{sec}$.
$\mathrm{v}_{0}=25 \mathrm{~m} / \mathrm{sec}$
So, apparent frequency heard by the observer in train B or observer in $=\left(\frac{350+25}{350-25}\right) \times 500=577 \mathrm{~Hz}$.

72. Here given $\mathrm{f}_{\mathrm{s}}=16 \times 10^{3} \mathrm{~Hz}$

Apparent frequency $\mathrm{f}^{\prime}=20 \times 10^{3} \mathrm{~Hz}$ (greater than that value)
Let the velocity of the observer $=\mathrm{v}_{\mathrm{o}}$
Given $v_{s}=0$
So $20 \times 10^{3}=\left(\frac{330+v_{0}}{330+0}\right) \times 16 \times 10^{3}$
$\Rightarrow\left(330+\mathrm{v}_{\mathrm{o}}\right)=\frac{20 \times 330}{16}$
$\Rightarrow \mathrm{v}_{\mathrm{o}}=\frac{20 \times 330-16 \times 330}{4}=\frac{330}{4} \mathrm{~m} / \mathrm{s}=297 \mathrm{~km} / \mathrm{h}$
b) This speed is not practically attainable ordinary cars.
73. According to the questions velocity of $\operatorname{car} A=V_{A}=108 \mathrm{~km} / \mathrm{h}=30 \mathrm{~m} / \mathrm{s}$
$V_{B}=72 \mathrm{~km} / \mathrm{h}=20 \mathrm{~m} / \mathrm{s}, \mathrm{f}=800 \mathrm{~Hz}$
So, the apparent frequency heard by the car B is given by, $f^{\prime}=\left(\frac{330-20}{330-30}\right) \times 800 \Rightarrow 826.9=827 \mathrm{~Hz}$.

74. a) According to the questions, $v=1500 \mathrm{~m} / \mathrm{s}, \mathrm{f}=2000 \mathrm{~Hz}, \mathrm{v}_{\mathrm{s}}=10 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{o}}=15 \mathrm{~m} / \mathrm{s}$

So, the apparent frequency heard by the submarine B,

$$
=\left(\frac{1500+15}{1500-10}\right) \times 2000=2034 \mathrm{~Hz}
$$

b) Apparent frequency received by submarine A,

$$
=\left(\frac{1500+10}{1500-15}\right) \times 2034=2068 \mathrm{~Hz}
$$

75. Given that, $\mathrm{r}=0.17 \mathrm{~m}, \mathrm{~F}=800 \mathrm{~Hz}, \mathrm{u}=340 \mathrm{~m} / \mathrm{s}$

Frequency band $=f_{1}-f_{2}=6 \mathrm{~Hz}$
Where f_{1} and f_{2} correspond to the maximum and minimum apparent frequencies (both will occur at the mean position because the velocity is maximum).
Now, $f_{1}=\left(\frac{340}{340-v_{s}}\right) f$ and $f_{2}=\left(\frac{340}{340+v_{s}}\right) f$
$\therefore \mathrm{f}_{1}-\mathrm{f}_{2}=8$
$\Rightarrow 340 \mathrm{f}\left(\frac{1}{340-v_{\mathrm{s}}}-\frac{1}{340+\mathrm{v}_{\mathrm{s}}}\right)=8$
$\Rightarrow \frac{2 \mathrm{v}_{\mathrm{s}}}{340^{2}-\mathrm{v}_{\mathrm{s}}{ }^{2}}=\frac{8}{340 \times 800}$
$\Rightarrow 340^{2}-v_{\mathrm{s}}{ }^{2}=68000 \mathrm{v}_{\mathrm{s}}$
Solving for v_{s} we get, $\mathrm{v}_{\mathrm{s}}=1.695 \mathrm{~m} / \mathrm{s}$
For SHM, $v_{s}=r \omega \Rightarrow \omega=(1.695 / 0.17)=10$
So, $T=2 \pi / \omega=\pi / 5=0.63 \mathrm{sec}$.
76. $u=334 \mathrm{~m} / \mathrm{s}, v_{b}=4 \sqrt{2} \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{o}}=0$
so, $v_{s}=V_{b} \cos \theta=4 \sqrt{2} \times(1 / \sqrt{2})=4 \mathrm{~m} / \mathrm{s}$.
so, the apparent frequency $f^{\prime}=\left(\frac{u+0}{u-v_{b} \cos \theta}\right) f=\left(\frac{334}{334-4}\right) \times 1650=1670 \mathrm{~Hz}$.

77. $u=330 \mathrm{~m} / \mathrm{s}, \quad v_{0}=26 \mathrm{~m} / \mathrm{s}$
a) Apparent frequency at, $y=-336$
$m=\left(\frac{v}{v-u \sin \theta}\right) \times f$
$=\left(\frac{330}{330-26 \sin 23^{\circ}}\right) \times 660$

[because, $\theta=\tan ^{-1}(140 / 336)=23^{\circ}$] $=680 \mathrm{~Hz}$.
b) At the point $y=0$ the source and listener are on a x-axis so no apparent change in frequency is seen. So, $\mathrm{f}=660 \mathrm{~Hz}$.
c) As shown in the figure $\theta=\tan ^{-1}(140 / 336)=23^{\circ}$ Here given, $=330 \mathrm{~m} / \mathrm{s} ; \mathrm{v}=\mathrm{V} \sin 23^{\circ}=10.6 \mathrm{~m} / \mathrm{s}$

$$
\text { So, } F^{\prime \prime}=\frac{u}{u+v \sin 23^{\circ}} \times 660=640 \mathrm{~Hz}
$$

78. $V_{\text {train }}$ or $V_{s}=108 \mathrm{~km} / \mathrm{h}=30 \mathrm{~m} / \mathrm{s} ; u=340 \mathrm{~m} / \mathrm{s}$
a) The frequency by the passenger sitting near the open window is 500 Hz , he is inside the train and does not hair any relative motion.
b) After the train has passed the apparent frequency heard by a person standing near the track will be, so $f^{\prime \prime}=\left(\frac{340+0}{340+30}\right) \times 500=459 \mathrm{~Hz}$
c) The person inside the source will listen the original frequency of the train.

Here, given $V_{m}=10 \mathrm{~m} / \mathrm{s}$
For the person standing near the track
Apparent frequency $=\frac{u+V_{m}+0}{u+V_{m}-\left(-V_{s}\right)} \times 500=458 \mathrm{~Hz}$.

79. To find out the apparent frequency received by the wall,
a) $V_{\mathrm{s}}=12 \mathrm{~km} / \mathrm{h}=10 / 3=\mathrm{m} / \mathrm{s}$
$\mathrm{V}_{\mathrm{o}}=0, \mathrm{u}=330 \mathrm{~m} / \mathrm{s}$
So, the apparent frequency is given by $=f^{\prime}=\left(\frac{330}{330-10 / 3}\right) \times 1600=1616 \mathrm{~Hz} \quad \begin{array}{ll}\text { 亿oc } & \square\end{array}$
b) The reflected sound from the wall whistles now act as a sources whose frequency is 1616 Hz .

So, $u=330 \mathrm{~m} / \mathrm{s}, V_{s}=0, V_{0}=10 / 3 \mathrm{~m} / \mathrm{s}$
So, the frequency by the man from the wall,

$$
\Rightarrow \mathrm{f}^{\prime \prime}=\left(\frac{330+10 / 3}{330}\right) \times 1616=1632 \mathrm{~m} / \mathrm{s}
$$

80. Here given, $u=330 \mathrm{~m} / \mathrm{s}, \mathrm{f}=1600 \mathrm{~Hz}$

So, apparent frequency received by the car
$f^{\prime}=\left(\frac{u-V_{0}}{u-V_{s}}\right) f=\left(\frac{330-20}{330}\right) \times 1600 \mathrm{~Hz} \ldots\left[V_{o}=20 \mathrm{~m} / \mathrm{s}, V_{\mathrm{s}}=0\right]$

The reflected sound from the car acts as the source for the person.
Here, $V_{\mathrm{s}}=-20 \mathrm{~m} / \mathrm{s}, \mathrm{V}_{\mathrm{o}}=0$
So $f^{\prime \prime}=\left(\frac{330-0}{330+20}\right) \times f^{\prime}=\frac{330}{350} \times \frac{310}{330} \times 160=1417 \mathrm{~Hz}$.
\therefore This is the frequency heard by the person from the car.
81. a) $f=400 \mathrm{~Hz},, u=335 \mathrm{~m} / \mathrm{s}$
$\Rightarrow \lambda(\mathrm{v} / \mathrm{f})=(335 / 400)=0.8 \mathrm{~m}=80 \mathrm{~cm}$
b) The frequency received and reflected by the wall,

$$
f^{\prime}=\left(\frac{u-V_{0}}{u-V_{s}}\right) \times f=\frac{335}{320} \times 400 \ldots\left[V_{s}=54 \mathrm{~m} / \mathrm{s} \text { and } V_{o}=0\right]
$$

$\Rightarrow x^{\prime}=(v / f)=\frac{320 \times 335}{335 \times 400}=0.8 \mathrm{~m}=80 \mathrm{~cm}$
c) The frequency received by the person sitting inside the car from reflected wave,

$$
f^{\prime}=\left(\frac{335-0}{335-15}\right) f=\frac{335}{320} \times 400=467 \quad\left[V_{s}=0 \text { and } V_{o}=-15 \mathrm{~m} / \mathrm{s}\right]
$$

d) Because, the difference between the original frequency and the apparent frequency from the wall is very high ($437-440=37 \mathrm{~Hz}$), he will not hear any beats.mm)
82. $f=400 \mathrm{~Hz}, \mathrm{u}=324 \mathrm{~m} / \mathrm{s}, \mathrm{f}^{\prime}=\frac{\mathrm{u}-(-\mathrm{v})}{\mathrm{u}-(0)} \mathrm{f}=\frac{324+\mathrm{v}}{324} \times 400$
for the reflected wave,
$f^{\prime \prime}=410=\frac{u-0}{u-v} f^{\prime}$

$\Rightarrow 410=\frac{324}{324-v} \times \frac{324+v}{324} \times 400$
$\Rightarrow 810 \mathrm{v}=324 \times 10$
$\Rightarrow v=\frac{324 \times 10}{810}=4 \mathrm{~m} / \mathrm{s}$.
83. $f=2 \mathrm{kHz}, \mathrm{v}=330 \mathrm{~m} / \mathrm{s}, \mathrm{u}=22 \mathrm{~m} / \mathrm{s}$

At $t=0$, the source crosses P
a) Time taken to reach at Q is
$t=\frac{S}{v}=\frac{330}{330}=1 \mathrm{sec}$
b) The frequency heard by the listner is

$f^{\prime}=f\left(\frac{v}{v-u \cos \theta}\right)$
since, $\theta=90^{\circ}$
$\mathrm{f}^{\prime}=2 \times(\mathrm{v} / \mathrm{u})=2 \mathrm{KHz}$.
c) After 1 sec , the source is at 22 m from P towards right.
84. $t=4000 \mathrm{~Hz}, \mathrm{u}=22 \mathrm{~m} / \mathrm{s}$

Let ' t ' be the time taken by the source to reach at ' O '. Since observer hears the sound at the instant it crosses the ' O ', ' t ' is also time taken to the sound to reach at P .
$\therefore \mathrm{OQ}=\mathrm{ut}$ and $\mathrm{QP}=\mathrm{vt}$
$\operatorname{Cos} \theta=u / v$
Velocity of the sound along QP is $(u \cos \theta)$.
$f^{\prime}=f\left(\frac{v-0}{v-u \cos \theta}\right)=f\left(\frac{v}{v-\frac{u^{2}}{v}}\right)=f\left(\frac{v^{2}}{v^{2}-u^{2}}\right)$

Putting the values in the above equation, $\mathrm{f}^{\prime}=4000 \times \frac{330^{2}}{330^{2}-22^{2}}=4017.8=4018 \mathrm{~Hz}$.
85. a) Given that, $\mathrm{f}=1200 \mathrm{~Hz}, \mathrm{u}=170 \mathrm{~m} / \mathrm{s}, \mathrm{L}=200 \mathrm{~m}, \mathrm{v}=340 \mathrm{~m} / \mathrm{s}$

From Doppler's equation (as in problem no.84)
$f^{\prime}=f\left(\frac{v^{2}}{v^{2}-u^{2}}\right)=1200 \times \frac{340^{2}}{340^{2}-170^{2}}=1600 \mathrm{~Hz}$.
b) $v=$ velocity of sound, $u=$ velocity of source
let, t be the time taken by the sound to reach at D
$\mathrm{DO}=\mathrm{vt} \mathrm{t}^{\prime}=\mathrm{L}$, and $\mathrm{S}^{\prime} \mathrm{O}=\mathrm{ut}^{\prime}$
$\mathrm{t}^{\prime}=\mathrm{L} / \mathrm{V}$
(Detector)

$$
\mathrm{t}^{\prime}=\mathrm{L} / \mathrm{V}
$$

$S^{\prime} D=\sqrt{S^{\prime} O^{2}+D O^{2}}=\sqrt{u^{2} \frac{L^{2}}{v^{2}}+L^{2}}=\frac{L}{v} \sqrt{u^{2}+v^{2}}$
Putting the values in the above equation, we get
$S^{\prime} D=\frac{220}{340} \sqrt{170^{2}+340^{2}}=223.6 \mathrm{~m}$.
86. Given that, $r=1.6 \mathrm{~m}, \mathrm{f}=500 \mathrm{~Hz}, \mathrm{u}=330 \mathrm{~m} / \mathrm{s}$
a) At A, velocity of the particle is given by
$v_{A}=\sqrt{r g}=\sqrt{1.6 \times 10}=4 \mathrm{~m} / \mathrm{s}$
and at $\mathrm{C}, \mathrm{v}_{\mathrm{c}}=\sqrt{5 \mathrm{rg}}=\sqrt{5 \times 1.6 \times 10}=8.9 \mathrm{~m} / \mathrm{s}$
So, maximum frequency at C ,

$\mathrm{f}_{\mathrm{c}}{ }_{\mathrm{c}}=\frac{\mathrm{u}}{\mathrm{u}-\mathrm{v}_{\mathrm{s}}} \mathrm{f}=\frac{330}{330-8.9} \times 500=513.85 \mathrm{~Hz}$.
Similarly, maximum frequency at A is given by $f_{A}^{\prime}=\frac{u}{u-\left(-v_{s}\right)} f=\frac{330}{330+4}(500)=494 \mathrm{~Hz}$.
b) Velocity at $B=\sqrt{3 \mathrm{rg}}=\sqrt{3 \times 1.6 \times 10}=6.92 \mathrm{~m} / \mathrm{s}$

So, frequency at B is given by,
$f_{B}=\frac{u}{u+v_{s}} \times f=\frac{330}{330+6.92} \times 500=490 \mathrm{~Hz}$
and frequency at D is given by,
$f_{D}=\frac{u}{u-v_{s}} \times f=\frac{330}{330-6.92} \times 500$

87. Let the distance between the source and the observer is ' x ' (initially)

So, time taken for the first pulse to reach the observer is $\mathrm{t}_{1}=\mathrm{x} / \mathrm{v}$
and the second pulse starts after T (where, $T=1 / \mathrm{v}$)
and it should travel a distance $\left(x-\frac{1}{2} a T^{2}\right)$.
So, $t_{2}=T+\frac{x-1 / 2 a T^{2}}{v}$

$t_{2}-t_{1}=T+\frac{x-1 / 2 a T^{2}}{v}=\frac{x}{v}=T-\frac{1}{2} \frac{a T^{2}}{v}$
Putting $=T=1 / v$, we get
$\mathrm{t}_{2}-\mathrm{t}_{1}=\frac{2 \mathrm{uv}-\mathrm{a}}{2 \mathrm{vv}^{2}}$
so, frequency heard $=\frac{2 v^{2}}{2 u v-a}$ (because, $f=\frac{1}{t_{2}-t_{1}}$)

