SOLUTIONS TO CONCEPTS

CHAPTER 22

1. Radiant Flux $=\frac{\text { Total energy emitted }}{\text { Time }}=\frac{45}{15 \mathrm{~s}}=3 \mathrm{~W}$
2. To get equally intense lines on the photographic plate, the radiant flux (energy) should be same.

S0, $10 \mathrm{~W} \times 12 \mathrm{sec}=12 \mathrm{~W} \times \mathrm{t}$
$\Rightarrow \mathrm{t}=\frac{10 \mathrm{~W} \times 12 \mathrm{sec}}{12 \mathrm{~W}}=10 \mathrm{sec}$.
3. it can be found out from the graph by the student.
4. Relative luminousity $=\frac{\text { Luminous flux of a source of given wavelength }}{\text { Lumin ous flux of a source of } 555 \mathrm{~nm} \text { of same power }}$

Let the radiant flux needed be P watt.
Ao, $0.6=\frac{\text { Lumin ous flux of source 'P' watt }}{685 \mathrm{P}}$
\therefore Luminous flux of the source $=(685 P) \times 0.6=120 \times 685$
$\Rightarrow P=\frac{120}{0.6}=200 \mathrm{~W}$
5. The luminous flux of the given source of 1 W is 450 lumen/watt
\therefore Relative luminosity $=\frac{\text { Lumin ous flux of the source of given wavelength }}{\text { Lumin ous flux of } 555 \mathrm{~nm} \text { source of same power }}=\frac{450}{685}=66 \%$
[\therefore Since, luminous flux of 555 nm source of $1 \mathrm{~W}=685$ lumen]
6. The radiant flux of 555 nm part is 40 W and of the 600 nm part is 30 W
(a) Total radiant flux $=40 \mathrm{~W}+30 \mathrm{~W}=70 \mathrm{~W}$
(b) Luminous flux $=(\text { L.Fllux })_{555 \mathrm{~nm}}+(\text { L.Flux })_{600 \mathrm{~nm}}$

$$
=1 \times 40 \times 685+0.6 \times 30 \times 685=39730 \text { lumen }
$$

(c) Luminous efficiency $=\frac{\text { Total lumin ous flux }}{\text { Total radiant flux }}=\frac{39730}{70}=567.6$ lumen $/ \mathrm{W}$
7. Overall luminous efficiency $=\frac{\text { Totallumin ous flux }}{\text { Power input }}=\frac{35 \times 685}{100}=239.75$ lumen/W
8. Radiant flux $=31.4 \mathrm{~W}$, Solid angle $=4 \pi$

Luminous efficiency $=60$ lumen $/ \mathrm{W}$
So, Luminous flux $=60 \times 31.4$ lumen
And luminous intensity $=\frac{\text { Lumin ous Flux }}{4 \pi}=\frac{60 \times 31.4}{4 \pi}=150$ candela
9. $\mathrm{I}=$ luminous intensity $=\frac{628}{4 \pi}=50$ Candela
$\mathrm{r}=1 \mathrm{~m}, \quad \theta=37^{\circ}$
So, illuminance, $E=\frac{\operatorname{I} \cos \theta}{r^{2}}=\frac{50 \times \cos 37^{\circ}}{1^{2}}=40$ lux

10. Let, I = Luminous intensity of source
$E_{A}=900$ lumen $/ \mathrm{m}^{2}$
$\mathrm{E}_{\mathrm{B}}=400$ lumen $/ \mathrm{m}^{2}$
Now, $E_{a}=\frac{I \cos \theta}{x^{2}}$ and $E_{B}=\frac{I \cos \theta}{(x+10)^{2}}$
So, $I=\frac{E_{A} x^{2}}{\cos \theta}=\frac{E_{B}(x+10)^{2}}{\cos \theta}$

$\Rightarrow 900 \mathrm{x}^{2}=400(\mathrm{x}+10)^{2} \Rightarrow \frac{\mathrm{x}}{\mathrm{x}+10}=\frac{2}{3} \Rightarrow 3 \mathrm{x}=2 \mathrm{x}+20 \Rightarrow \mathrm{x}=20 \mathrm{~cm}$
So, The distance between the source and the original position is 20 cm .
11. Given that, $\mathrm{E}_{\mathrm{a}}=15 \mathrm{lux}=\frac{\mathrm{I}_{0}}{60^{2}}$
$\Rightarrow I_{0}=15 \times(0.6)^{2}=5.4$ candela
So, $E_{B}=\frac{I_{0} \cos \theta}{(O B)^{2}}=\frac{5.4 \times\left(\frac{3}{5}\right)}{1^{2}}=3.24$ lux

12. The illuminance will not change.
13. Let the height of the source is ' h ' and the luminous intensity in the normal direction is I_{0}. So, illuminance at the book is given by,
$E=\frac{I_{0} \cos \theta}{r^{2}}=\frac{I_{0} h}{r^{3}}=\frac{I_{0} h}{\left(r^{2}+h^{2}\right)^{3 / 2}}$
For maximum $E, \frac{d E}{d h}=0 \Rightarrow \frac{I_{0}\left[\left(R^{2}+h^{2}\right)^{3 / 2}-\frac{3}{2} h \times\left(R^{2}+h^{2}\right)^{1 / 2} \times 2 h\right]}{\left(R^{2}+h^{2}\right)^{3}}$

$\Rightarrow\left(R^{2}+h^{2}\right)^{1 / 2}\left[R^{2}+h^{2}-3 h^{2}\right]=0$
$\Rightarrow R^{2}-2 h^{2}=0 \Rightarrow h=\frac{R}{\sqrt{2}}$

