SOLUTIONS TO CONCEPTS

CHAPTER - 2

1. As shown in the figure,

The angle between \vec{A} and $\vec{B}=110^{\circ}-20^{\circ}=90^{\circ}$
$|\vec{A}|=3$ and $|\vec{B}|=4 m$
Resultant $R=\sqrt{A^{2}+B^{2}+2 A B \cos \theta}=5 m$
Let β be the angle between \vec{R} and \vec{A}
$\beta=\tan ^{-1}\left(\frac{4 \sin 90^{\circ}}{3+4 \cos 90^{\circ}}\right)=\tan ^{-1}(4 / 3)=53^{\circ}$
\therefore Resultant vector makes angle $\left(53^{\circ}+20^{\circ}\right)=73^{\circ}$ with x -axis.
2. Angle between \vec{A} and \vec{B} is $\theta=60^{\circ}-30^{\circ}=30^{\circ}$
$|\vec{A}|$ and $|\vec{B}|=10$ unit
$R=\sqrt{10^{2}+10^{2}+2 \cdot 10 \cdot 10 \cdot \cos 30^{\circ}}=19.3$
β be the angle between \vec{R} and \vec{A}

$\beta=\tan ^{-1}\left(\frac{10 \sin 30^{\circ}}{10+10 \cos 30^{\circ}}\right)=\tan ^{-1}\left(\frac{1}{2+\sqrt{3}}\right)=\tan ^{-1}(0.26795)=15^{\circ}$
\therefore Resultant makes $15^{\circ}+30^{\circ}=45^{\circ}$ angle with x -axis.
3. x component of $\vec{A}=100 \cos 45^{\circ}=100 / \sqrt{2}$ unit
x component of $\vec{B}=100 \cos 135^{\circ}=100 / \sqrt{2}$
x component of $\vec{C}=100 \cos 315^{\circ}=100 / \sqrt{2}$
Resultant x component $=100 / \sqrt{2}-100 / \sqrt{2}+100 / \sqrt{2}=100 / \sqrt{2}$
y component of $\vec{A}=100 \sin 45^{\circ}=100 / \sqrt{2}$ unit
y component of $\vec{B}=100 \sin 135^{\circ}=100 / \sqrt{2}$

y component of $\vec{C}=100 \sin 315^{\circ}=-100 / \sqrt{2}$
Resultant y component $=100 / \sqrt{2}+100 / \sqrt{2}-100 / \sqrt{2}=100 / \sqrt{2}$
Resultant $=100$
Tan $\alpha=\frac{\mathrm{y} \text { component }}{\mathrm{x} \text { component }}=1$
$\Rightarrow \alpha=\tan ^{-1}(1)=45^{\circ}$
The resultant is 100 unit at 45° with x -axis.
4. $\vec{a}=4 \vec{i}+3 \vec{j}, \vec{b}=3 \vec{i}+4 \vec{j}$
a) $|\vec{a}|=\sqrt{4^{2}+3^{2}}=5$
b) $|\vec{b}|=\sqrt{9+16}=5$
c) $|\vec{a}+\vec{b}|=|7 \vec{i}+7 \vec{j}|=7 \sqrt{2}$
d) $\vec{a}-\vec{b}=(-3+4) \hat{i}+(-4+3) \hat{j}=\hat{i}-\hat{j}$

$$
|\vec{a}-\vec{b}|=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2} .
$$

5. x component of $\overrightarrow{\mathrm{OA}}=2 \cos 30^{\circ}=\sqrt{3}$
x component of $\overrightarrow{B C}=1.5 \cos 120^{\circ}=-0.75$
x component of $\overrightarrow{D E}=1 \cos 270^{\circ}=0$
y component of $\overrightarrow{\mathrm{OA}}=2 \sin 30^{\circ}=1$

y component of $\overrightarrow{B C}=1.5 \sin 120^{\circ}=1.3$
y component of $\overrightarrow{D E}=1 \sin 270^{\circ}=-1$
$R_{x}=x$ component of resultant $=\sqrt{3}-0.75+0=0.98 \mathrm{~m}$
$R_{y}=$ resultant y component $=1+1.3-1=1.3 \mathrm{~m}$
So, $R=$ Resultant $=1.6 \mathrm{~m}$
If it makes and angle α with positive x-axis
Tan $\alpha=\frac{y \text { component }}{x \text { component }}=1.32$
$\Rightarrow \alpha=\tan ^{-1} 1.32$
6. $\quad|\vec{a}|=3 m|\vec{b}|=4$
a) If $R=1$ unit $\Rightarrow \sqrt{3^{2}+4^{2}+2 \cdot 3 \cdot 4 \cdot \cos \theta}=1$
$\theta=180^{\circ}$
b) $\sqrt{3^{2}+4^{2}+2 \cdot 3 \cdot 4 \cdot \cos \theta}=5$
$\theta=90^{\circ}$
c) $\sqrt{3^{2}+4^{2}+2 \cdot 3 \cdot 4 \cdot \cos \theta}=7$
$\theta=0^{\circ}$
Angle between them is 0°.
7. $\overrightarrow{\mathrm{AD}}=2 \hat{i}+0.5 \hat{\jmath}+4 \hat{\mathrm{~K}}=6 \hat{\mathbf{i}}+0.5 \hat{j}$
$A D=\sqrt{A E^{2}+D^{2}}=6.02 \mathrm{KM}$
Tan $\theta=D E / A E=1 / 12$
$\theta=\tan ^{-1}$ (1/12)

The displacement of the car is 6.02 km along the distance $\tan ^{-1}(1 / 12)$ with positive x-axis.
8. In $\triangle \mathrm{ABC}, \tan \theta=\mathrm{x} / 2$ and in $\triangle \mathrm{DCE}, \tan \theta=(2-\mathrm{x}) / 4 \tan \theta=(\mathrm{x} / 2)=(2-\mathrm{x}) / 4=4 \mathrm{x}$
$\Rightarrow 4-2 \mathrm{x}=4 \mathrm{x}$
$\Rightarrow 6 \mathrm{x}=4 \Rightarrow \mathrm{x}=2 / 3 \mathrm{ft}$
a) $\operatorname{In} \triangle A B C, A C=\sqrt{A B^{2}+B C^{2}}=\frac{2}{3} \sqrt{10} \mathrm{ft}$
b) $\ln \triangle C D E, D E=1-(2 / 3)=4 / 3 \mathrm{ft}$
$C D=4 \mathrm{ft}$. So, $C E=\sqrt{C D^{2}+D E^{2}}=\frac{4}{3} \sqrt{10} \mathrm{ft}$

c) In $\triangle A G E, A E=\sqrt{A G^{2}+G E^{2}}=2 \sqrt{2} \mathrm{ft}$.
9. Here the displacement vector $\overrightarrow{\mathrm{r}}=7 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+3 \hat{k}$
a) magnitude of displacement $=\sqrt{74} \mathrm{ft}$
b) the components of the displacement vector are $7 \mathrm{ft}, 4 \mathrm{ft}$ and 3 ft .

10. \vec{a} is a vector of magnitude 4.5 unit due north.
a) $3|\vec{a}|=3 \times 4.5=13.5$
$3 \vec{a}$ is along north having magnitude 13.5 units.
b) $-4|\vec{a}|=-4 \times 1.5=-6$ unit
$-4 \vec{a}$ is a vector of magnitude 6 unit due south.
11. $|\vec{a}|=2 \mathrm{~m},|\vec{b}|=3 \mathrm{~m}$
angle between them $\theta=60^{\circ}$
a) $\vec{a} \cdot \vec{b}=|\vec{a}| \cdot|\vec{b}| \cos 60^{\circ}=2 \times 3 \times 1 / 2=3 \mathrm{~m}^{2}$
b) $|\vec{a} \times \vec{b}|=|\vec{a}| \cdot|\vec{b}| \sin 60^{\circ}=2 \times 3 \times \sqrt{3 / 2}=3 \sqrt{3} \mathrm{~m}^{2}$.
12. We know that according to polygon law of vector addition, the resultant of these six vectors is zero.
Here $A=B=C=D=E=F$ (magnitude)
So, $R x=A \cos \theta+A \cos \pi / 3+A \cos 2 \pi / 3+A \cos 3 \pi / 3+A \cos 4 \pi / 4+$ $\mathrm{A} \cos 5 \pi / 5=0$
[As resultant is zero. X component of resultant $R_{x}=0$]
$=\cos \theta+\cos \pi / 3+\cos 2 \pi / 3+\cos 3 \pi / 3+\cos 4 \pi / 3+\cos 5 \pi / 3=0$

Note : Similarly it can be proved that,

$$
\sin \theta+\sin \pi / 3+\sin 2 \pi / 3+\sin 3 \pi / 3+\sin 4 \pi / 3+\sin 5 \pi / 3=0
$$

13. $\vec{a}=2 \vec{i}+3 \vec{j}+4 \vec{k} ; \vec{b}=3 \vec{i}+4 \vec{j}+5 \vec{k}$
$\vec{a} \cdot \vec{b}=a b \cos \theta \Rightarrow \theta=\cos ^{-1} \frac{\vec{a} \cdot \vec{b}}{a b}$
$\Rightarrow \cos ^{-1} \frac{2 \times 3+3 \times 4+4 \times 5}{\sqrt{2^{2}+3^{2}+4^{2}} \sqrt{3^{2}+4^{2}+5^{2}}}=\cos ^{-1}\left(\frac{38}{\sqrt{1450}}\right)$
14. $\vec{A} \cdot(\vec{A} \times \vec{B})=0$ (claim)

As, $\vec{A} \times \vec{B}=A B \sin \theta \hat{n}$
$A B \sin \theta \hat{n}$ is a vector which is perpendicular to the plane containing \vec{A} and \vec{B}, this implies that it is also perpendicular to \vec{A}. As dot product of two perpendicular vector is zero.
Thus $\vec{A} \cdot(\vec{A} \times \vec{B})=0$.
15. $\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{B}=4 \hat{i}+3 \hat{j}+2 \hat{k}$
$\vec{A} \times \vec{B}=\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 4 & 3 & 2\end{array}\right| \Rightarrow \hat{i}(6-12)-\hat{j}(4-16)+\hat{k}(6-12)=-6 \hat{i}+12 \hat{j}-6 \hat{k}$.
16. Given that \vec{A}, \vec{B} and \vec{C} are mutually perpendicular
$\vec{A} \times \vec{B}$ is a vector which direction is perpendicular to the plane containing \vec{A} and \vec{B}.
Also \vec{C} is perpendicular to \vec{A} and \vec{B}
\therefore Angle between \vec{C} and $\vec{A} \times \vec{B}$ is 0° or 180° (fig.1)
So, $\vec{C} \times(\vec{A} \times \vec{B})=0$
The converse is not true.
For example, if two of the vector are parallel, (fig.2), then also

$\vec{C} \times(\vec{A} \times \vec{B})=0$
So, they need not be mutually perpendicular.
17. The particle moves on the straight line PP' at speed v.

From the figure,

$$
\overrightarrow{\mathrm{OP}} \times v=(O P) v \sin \theta \hat{n}=v(O P) \sin \theta \hat{n}=v(O Q) \hat{n}
$$

It can be seen from the figure, $\mathrm{OQ}=\mathrm{OP} \sin \theta=\mathrm{OP} \sin \theta^{\prime}$
So, whatever may be the position of the particle, the magnitude and
 direction of $\overrightarrow{\mathrm{OP}} \times \overrightarrow{\mathrm{v}}$ remain constant.
$\therefore \overrightarrow{\mathrm{OP}} \times \overrightarrow{\mathrm{v}}$ is independent of the position P.
18. Give $\vec{F}=q \vec{E}+q(\vec{v} \times \vec{B})=0$

$$
\Rightarrow \overrightarrow{\mathrm{E}}=-(\overrightarrow{\mathrm{V}} \times \overrightarrow{\mathrm{B}})
$$

So, the direction of $\vec{V} \times \vec{B}$ should be opposite to the direction of \vec{E}. Hence, \vec{v} should be in the positive yz-plane.
Again, $E=v B \sin \theta \Rightarrow v=\frac{E}{B \sin \theta}$
For v to be minimum, $\theta=90^{\circ}$ and so $v_{\text {min }}=F / B$

So, the particle must be projected at a minimum speed of E / B along +ve z-axis $\left(\theta=90^{\circ}\right)$ as shown in the figure, so that the force is zero.
19. For example, as shown in the figure,

$\vec{A} \perp \vec{B}$	\vec{B} along west
$\vec{B} \perp \vec{C}$	\vec{A} along south
	\vec{C} along north

$\vec{A} \cdot \vec{B}=0 \quad \therefore \vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{C}$
$\vec{B} \cdot \vec{C}=0 \quad$ But $\vec{B} \neq \vec{C}$
20. The graph $y=2 x^{2}$ should be drawn by the student on a graph paper for exact results.
To find slope at any point, draw a tangent at the point and extend the line to meet x-axis. Then find $\tan \theta$ as shown in the figure.

It can be checked that,

Slope $=\tan \theta=\frac{d y}{d x}=\frac{d}{d x}\left(2 x^{2}\right)=4 x$
Where $x=$ the x-coordinate of the point where the slope is to be measured.
21. $y=\sin x$

So, $y+\Delta y=\sin (x+\Delta x)$
$\Delta y=\sin (x+\Delta x)-\sin x$
$=\left(\frac{\pi}{3}+\frac{\pi}{100}\right)-\sin \frac{\pi}{3}=0.0157$.

22. Given that, $i=i_{0} e^{-t / R C}$
\therefore Rate of change of current $=\frac{d i}{d t}=\frac{d}{d t} \mathrm{i}_{0} e^{-i / R C}=\mathrm{i}_{0} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{e}^{-\mathrm{t} / R C}=\frac{-\mathrm{i}_{0}}{R C} \times \mathrm{e}^{-\mathrm{t} / R C}$
When
a) $t=0, \frac{d i}{d t}=\frac{-i}{R C}$
b) when $t=R C, \frac{d i}{d t}=\frac{-i}{R C e}$
c) when $t=10 \mathrm{RC}, \frac{\mathrm{di}}{\mathrm{dt}}=\frac{-\mathrm{i}_{0}}{\mathrm{RCe}^{10}}$
23. Equation $i=i_{0} e^{-t / R C}$

$$
i_{0}=2 A, R=6 \times 10^{-5} \Omega, C=0.0500 \times 10^{-6} \mathrm{~F}=5 \times 10^{-7} \mathrm{~F}
$$

a) $i=2 \times e^{\left(\frac{-0.3}{6 \times 0^{3} \times 5 \times 10^{-7}}\right)}=2 \times e^{\left(\frac{-0.3}{0.3}\right)}=\frac{2}{e} \mathrm{amp}$.
b) $\frac{d i}{d t}=\frac{-\mathrm{i}_{0}}{R C} \mathrm{e}^{-\mathrm{t} / \mathrm{RC}}$ when $\mathrm{t}=0.3 \mathrm{sec} \Rightarrow \frac{\mathrm{di}}{\mathrm{dt}}=-\frac{2}{0.30} \mathrm{e}^{(-0.3 / 0.3)}=\frac{-20}{3 \mathrm{e}} \mathrm{Amp} / \mathrm{sec}$
c) At $t=0.31 \mathrm{sec}, \mathrm{i}=2 \mathrm{e}^{(-0.3 / 0.3)}=\frac{5.8}{3 \mathrm{e}} \mathrm{Amp}$.
24. $y=3 x^{2}+6 x+7$
\therefore Area bounded by the curve, x axis with coordinates with $\mathrm{x}=5$ and $\mathrm{x}=10$ is given by,
Area $\left.\left.\left.=\int_{0}^{y} d y=\int_{5}^{10}\left(3 x^{2}+6 x+7\right) d x=3 \frac{x^{3}}{3}\right]_{5}^{10}+5 \frac{x^{2}}{3}\right]_{5}^{10}+7 x\right]_{5}^{10}=1135$ sq.units.

25. Area $=\int_{0}^{y} d y=\int_{0}^{\pi} \sin x d x=-[\cos x]_{0}^{\pi}=2$

26. The given function is $y=e^{-x}$

When $x=0, y=e^{-0}=1$
x increases, y value deceases and only at $x=\infty, y=0$.
So, the required area can be found out by integrating the function from 0 to ∞.

So, Area $=\int_{0}^{\infty} e^{-x} d x=-\left[e^{-x}\right]_{0}^{\infty}=1$.
27. $\rho=\frac{\text { mass }}{\text { length }}=a+b x$
a) S.I. unit of ' a ' $=\mathrm{kg} / \mathrm{m}$ and SI unit of ' b ' $=\mathrm{kg} / \mathrm{m}^{2}$ (from principle of homogeneity of dimensions)
b) Let us consider a small element of length ' $d x$ ' at a distance x from the origin as shown in the figure.
$\therefore \mathrm{dm}=$ mass of the element $=\rho \mathrm{dx}=(\mathrm{a}+\mathrm{bx}) \mathrm{dx}$
So, mass of the rod $=m=\int d m=\int_{0}^{L}(a+b x) d x=\left[a x+\frac{b x^{2}}{2}\right]_{0}^{L}=a L+\frac{b L^{2}}{2}$
28. $\frac{\mathrm{dp}}{\mathrm{dt}}=(10 \mathrm{~N})+(2 \mathrm{~N} / \mathrm{S}) \mathrm{t}$
momentum is zero at $\mathrm{t}=0$
\therefore momentum at $\mathrm{t}=10 \mathrm{sec}$ will be
$d p=[(10 N)+2 N s t] d t$
$\left.\left.\int_{0}^{\mathrm{p}} \mathrm{dp}=\int_{0}^{10} 10 \mathrm{dt}+\int_{0}^{10}(2 \mathrm{tdt})=10 \mathrm{t}\right]_{0}^{10}+2 \frac{\mathrm{t}^{2}}{2}\right]_{0}^{10}=200 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$.
29. The change in a function of y and the independent variable x are related as $\frac{d y}{d x}=x^{2}$.
$\Rightarrow d y=x^{2} d x$
Taking integration of both sides,
$\int d y=\int x^{2} d x \Rightarrow y=\frac{x^{3}}{3}+c$
$\therefore \mathrm{y}$ as a function of x is represented by $\mathrm{y}=\frac{\mathrm{x}^{3}}{3}+\mathrm{c}$.
30. The number significant digits
a) 100
No.of significant digits $=4$
b) $100.1 \quad$ No.of significant digits $=4$
c) $100.10 \quad$ No.of significant digits $=5$
d) $0.001001 \quad$ No.of significant digits $=4$
31. The metre scale is graduated at every millimeter.

$$
1 \mathrm{~m}=100 \mathrm{~mm}
$$

The minimum no.of significant digit may be 1 (e.g. for measurements like $5 \mathrm{~mm}, 7 \mathrm{~mm}$ etc) and the maximum no.of significant digits may be 4 (e.g. 1000 mm)
So, the no.of significant digits may be $1,2,3$ or 4 .
32. a) In the value 3472 , after the digit 4,7 is present. Its value is greater than 5 .

So, the next two digits are neglected and the value of 4 is increased by 1.
\therefore value becomes 3500
b) value $=84$
c) 2.6
d) value is 28 .
33. Given that, for the cylinder

Length $=\mathrm{I}=4.54 \mathrm{~cm}$, radius $=r=1.75 \mathrm{~cm}$
Volume $=\pi r^{2} I=\pi \times(4.54) \times(1.75)^{2}$
Since, the minimum no.of significant digits on a particular term is 3 , the result should have 3 significant digits and others rounded off.
So, volume $V=\pi r^{2} I=(3.14) \times(1.75) \times(1.75) \times(4.54)=43.6577 \mathrm{~cm}^{3}$
Since, it is to be rounded off to 3 significant digits, $V=43.7 \mathrm{~cm}^{3}$.
34. We know that,

Average thickness $=\frac{2.17+2.17+2.18}{3}=2.1733 \mathrm{~mm}$
Rounding off to 3 significant digits, average thickness $=2.17 \mathrm{~mm}$.
35. As shown in the figure,

Actual effective length $=(90.0+2.13) \mathrm{cm}$
But, in the measurement 90.0 cm , the no. of significant digits is only 2.
So, the addition must be done by considering only 2 significant digits of each measurement.
So, effective length $=90.0+2.1=92.1 \mathrm{~cm}$.

