## SOLUTIONS TO CONCEPTS circular motion;; CHAPTER 7

1. Distance between Earth \& Moon
$r=3.85 \times 10^{5} \mathrm{~km}=3.85 \times 10^{8} \mathrm{~m}$
$\mathrm{T}=27.3$ days $=24 \times 3600 \times(27.3) \mathrm{sec}=2.36 \times 10^{6} \mathrm{sec}$
$v=\frac{2 \pi r}{T}=\frac{2 \times 3.14 \times 3.85 \times 10^{8}}{2.36 \times 10^{6}}=1025.42 \mathrm{~m} / \mathrm{sec}$
$a=\frac{v^{2}}{r}=\frac{(1025.42)^{2}}{3.85 \times 10^{8}}=0.00273 \mathrm{~m} / \mathrm{sec}^{2}=2.73 \times 10^{-3} \mathrm{~m} / \mathrm{sec}^{2}$
2. Diameter of earth $=12800 \mathrm{~km}$

Radius $\mathrm{R}=6400 \mathrm{~km}=64 \times 10^{5} \mathrm{~m}$
$V=\frac{2 \pi R}{T}=\frac{2 \times 3.14 \times 64 \times 10^{5}}{24 \times 3600} \mathrm{~m} / \mathrm{sec}=465.185$
$a=\frac{V^{2}}{R}=\frac{(46.5185)^{2}}{64 \times 10^{5}}=0.0338 \mathrm{~m} / \mathrm{sec}^{2}$
3. $V=2 t, \quad r=1 \mathrm{~cm}$
a) Radial acceleration at $t=1 \mathrm{sec}$.
$a=\frac{v^{2}}{r}=\frac{2^{2}}{1}=4 \mathrm{~cm} / \mathrm{sec}^{2}$
b) Tangential acceleration at $\mathrm{t}=1 \mathrm{sec}$.
$\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}(2 \mathrm{t})=2 \mathrm{~cm} / \mathrm{sec}^{2}$
c) Magnitude of acceleration at $t=1 \mathrm{sec}$
$a=\sqrt{4^{2}+2^{2}}=\sqrt{20} \mathrm{~cm} / \mathrm{sec}^{2}$
4. Given that $\mathrm{m}=150 \mathrm{~kg}$,
$\mathrm{v}=36 \mathrm{~km} / \mathrm{hr}=10 \mathrm{~m} / \mathrm{sec}, \quad \mathrm{r}=30 \mathrm{~m}$
Horizontal force needed is $\frac{\mathrm{mv}^{2}}{r}=\frac{150 \times(10)^{2}}{30}=\frac{150 \times 100}{30}=500 \mathrm{~N}$
5. in the diagram
$\mathrm{R} \cos \theta=\mathrm{mg}$
..(i)
$R \sin \theta=\frac{m v^{2}}{r}$
Dividing equation (i) with equation (ii)
$\operatorname{Tan} \theta=\frac{\mathrm{mv}^{2}}{\mathrm{rmg}}=\frac{\mathrm{v}^{2}}{\mathrm{rg}}$

$\mathrm{v}=36 \mathrm{~km} / \mathrm{hr}=10 \mathrm{~m} / \mathrm{sec}, \quad \mathrm{r}=30 \mathrm{~m}$
Tan $\theta=\frac{\mathrm{v}^{2}}{\mathrm{rg}}=\frac{100}{30 \times 10}=(1 / 3)$
$\Rightarrow \theta=\tan ^{-1}(1 / 3)$
6. Radius of Park $=r=10 \mathrm{~m}$
speed of vehicle $=18 \mathrm{~km} / \mathrm{hr}=5 \mathrm{~m} / \mathrm{sec}$
Angle of banking $\tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{rg}}$
$\Rightarrow \theta=\tan ^{-1} \frac{\mathrm{v}^{2}}{\mathrm{rg}}=\tan ^{-1} \frac{25}{100}=\tan ^{-1}(1 / 4)$
7. The road is horizontal (no banking)
$\frac{m v^{2}}{R}=\mu \mathrm{N}$
and $N=m g$
So $\frac{m v^{2}}{R}=\mu \mathrm{mg} \quad v=5 \mathrm{~m} / \mathrm{sec}, \quad R=10 \mathrm{~m}$

8. Angle of banking $=\theta=30^{\circ}$

Radius $=r=50 \mathrm{~m}$
$\tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{rg}} \Rightarrow \tan 30^{\circ}=\frac{\mathrm{v}^{2}}{\mathrm{rg}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{v^{2}}{r g} \Rightarrow v^{2}=\frac{r g}{\sqrt{3}}=\frac{50 \times 10}{\sqrt{3}}$
$\Rightarrow v=\sqrt{\frac{500}{\sqrt{3}}}=17 \mathrm{~m} / \mathrm{sec}$.
9. Electron revolves around the proton in a circle having proton at the centre.

Centripetal force is provided by coulomb attraction.
$r=5.3 \rightarrow t 10^{-11} \mathrm{~m} \quad \mathrm{~m}=$ mass of electron $=9.1 \times 10^{-3} \mathrm{~kg}$.
charge of electron $=1.6 \times 10^{-19} \mathrm{c}$.
$\frac{m v^{2}}{r}=k \frac{q^{2}}{r^{2}} \Rightarrow v^{2}=\frac{\mathrm{kq}^{2}}{\mathrm{rm}}=\frac{9 \times 10^{9} \times 1.6 \times 1.6 \times 10^{-38}}{5.3 \times 10^{-11} \times 9.1 \times 10^{-31}}=\frac{23.04}{48.23} \times 10^{13}$
$\Rightarrow v^{2}=0.477 \times 10^{13}=4.7 \times 10^{12}$
$\Rightarrow v=\sqrt{4.7 \times 10^{12}}=2.2 \times 10^{6} \mathrm{~m} / \mathrm{sec}$
10. At the highest point of a vertical circle
$\frac{m v^{2}}{R}=m g$
$\Rightarrow v^{2}=R g \Rightarrow v=\sqrt{R g}$
11. A celling fan has a diameter $=120 \mathrm{~cm}$.
$\therefore$ Radius $=r=60 \mathrm{~cm}=0 / 6 \mathrm{~m}$
Mass of particle on the outer end of a blade is 1 g .
$\mathrm{n}=1500 \mathrm{rev} / \mathrm{min}=25 \mathrm{rev} / \mathrm{sec}$
$\omega=2 \pi n=2 \pi \times 25=157.14$
Force of the particle on the blade $=\operatorname{Mr} \omega^{2}=(0.001) \times 0.6 \times(157.14)=14.8 \mathrm{~N}$
The fan runs at a full speed in circular path. This exerts the force on the particle (inertia). The particle also exerts a force of 14.8 N on the blade along its surface.
12. A mosquito is sitting on an L.P. record disc \& rotating on a turn table at $33 \frac{1}{3} \mathrm{rpm}$.
$\mathrm{n}=33 \frac{1}{3} \mathrm{rpm}=\frac{100}{3 \times 60} \mathrm{rps}$
$\therefore \omega=2 \pi \mathrm{n}=2 \pi \times \frac{100}{180}=\frac{10 \pi}{9} \mathrm{rad} / \mathrm{sec}$
$r=10 \mathrm{~cm}=0.1 \mathrm{~m}, \quad \mathrm{~g}=10 \mathrm{~m} / \mathrm{sec}^{2}$
$\mu \mathrm{mg} \geq \mathrm{mr} \omega^{2} \Rightarrow \mu=\frac{\mathrm{r} \omega^{2}}{\mathrm{~g}} \geq \frac{0.1 \times\left(\frac{10 \pi}{9}\right)^{2}}{10}$
$\Rightarrow \mu \geq \frac{\pi^{2}}{81}$
13. A pendulum is suspended from the ceiling of a car taking a turn
$r=10 \mathrm{~m}, \quad v=36 \mathrm{~km} / \mathrm{hr}=10 \mathrm{~m} / \mathrm{sec}, \quad \mathrm{g}=10 \mathrm{~m} / \mathrm{sec}^{2}$
From the figure $\mathrm{T} \sin \theta=\frac{m v^{2}}{r}$

$$
\begin{equation*}
\mathrm{T} \cos \theta=\mathrm{mg} \tag{i}
\end{equation*}
$$

$\Rightarrow \frac{\sin \theta}{\cos \theta}=\frac{m v^{2}}{\mathrm{rmg}} \Rightarrow \tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{rg}} \Rightarrow \theta=\tan ^{-1}\left(\frac{\mathrm{v}^{2}}{\mathrm{rg}}\right)$

$$
=\tan ^{-1} \frac{100}{10 \times 10}=\tan ^{-1}(1) \Rightarrow \theta=45^{\circ}
$$

14. At the lowest pt.
$T=m g+\frac{m v^{2}}{r}$
Here $m=100 \mathrm{~g}=1 / 10 \mathrm{~kg}, \quad r=1 \mathrm{~m}, \quad v=1.4 \mathrm{~m} / \mathrm{sec}$
$\mathrm{T}=\mathrm{mg}+\frac{\mathrm{mv}^{2}}{\mathrm{r}}=\frac{1}{10} \times 9.8 \times \frac{(1.4)^{2}}{10}=0.98+0.196=1.176=1.2 \mathrm{~N}$

15. Bob has a velocity $1.4 \mathrm{~m} / \mathrm{sec}$, when the string makes an angle of 0.2 radian.
$m=100 \mathrm{~g}=0.1 \mathrm{~kg}, \quad r=1 \mathrm{~m}, \mathrm{v}=1.4 \mathrm{~m} / \mathrm{sec}$.
From the diagram,
$\mathrm{T}-\mathrm{mg} \cos \theta=\frac{m v^{2}}{\mathrm{R}}$
$\Rightarrow \mathrm{T}=\frac{\mathrm{mv}^{2}}{\mathrm{R}}+\mathrm{mg} \cos \theta$
$\Rightarrow \mathrm{T}=\frac{0.1 \times(1.4)^{2}}{1}+(0.1) \times 9.8 \times\left(1-\frac{\theta^{2}}{2}\right)$
$\Rightarrow \mathrm{T}=0.196+9.8 \times\left(1-\frac{(.2)^{2}}{2}\right) \quad\left(\therefore \cos \theta=1-\frac{\theta^{2}}{2}\right.$ for small $\left.\theta\right)$
$\Rightarrow \mathrm{T}=0.196+(0.98) \times(0.98)=0.196+0.964=1.156 \mathrm{~N} \approx 1.16 \mathrm{~N}$
16. At the extreme position, velocity of the pendulum is zero.

So there is no centrifugal force.
So $T=m g \cos \theta_{0}$
17. a) Net force on the spring balance.

$R=m g-m \omega^{2} r$
So, fraction less than the true weight $(3 \mathrm{mg})$ is
$=\frac{\mathrm{mg}-\left(\mathrm{mg}-\mathrm{m} \omega^{2} \mathrm{r}\right)}{\mathrm{mg}}=\frac{\omega^{2}}{\mathrm{~g}}=\left(\frac{2 \pi}{24 \times 3600}\right)^{2} \times \frac{6400 \times 10^{3}}{10}=3.5 \times 10^{-3}$
b) When the balance reading is half the true weight,

$\frac{m g-\left(m g-m \omega^{2} r\right)}{m g}=1 / 2$
$\omega^{2} r=g / 2 \Rightarrow \omega=\sqrt{\frac{g}{2 r}}=\sqrt{\frac{10}{2 \times 6400 \times 10^{3}}} \mathrm{rad} / \mathrm{sec}$
$\therefore$ Duration of the day is
$\mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \times \sqrt{\frac{2 \times 6400 \times 10^{3}}{9.8}} \mathrm{sec}=2 \pi \times \sqrt{\frac{64 \times 10^{6}}{49}} \mathrm{sec}=\frac{2 \pi \times 8000}{7 \times 3600} \mathrm{hr}=2 \mathrm{hr}$
18. Given, $v=36 \mathrm{~km} / \mathrm{hr}=10 \mathrm{~m} / \mathrm{s}, \quad \mathrm{r}=20 \mathrm{~m}, \quad \mu=0.4$

The road is banked with an angle,
$\theta=\tan ^{-1}\left(\frac{\mathrm{v}^{2}}{\mathrm{rg}}\right)=\tan ^{-1}\left(\frac{100}{20 \times 10}\right)=\tan ^{-1}\left(\frac{1}{2}\right)$ or $\tan \theta=0.5$
When the car travels at max. speed so that it slips upward, $\mu \mathrm{R}_{1}$ acts downward as shown in Fig. 1


So, $\mathrm{R}_{1}-\mathrm{mg} \cos \theta-\frac{m v_{1}{ }^{2}}{r} \sin \theta=0$
And $\mu \mathrm{R}_{1}+\mathrm{mg} \sin \theta-\frac{\mathrm{mv}_{1}{ }^{2}}{\mathrm{r}} \cos \theta=0$
Solving the equation we get,
$\mathrm{V}_{1}=\sqrt{\mathrm{rg} \frac{\tan \theta-\mu}{1+\mu \tan \theta}}=\sqrt{20 \times 10 \times \frac{0.1}{1.2}}=4.082 \mathrm{~m} / \mathrm{s}=14.7 \mathrm{~km} / \mathrm{hr}$


So, the possible speeds are between $14.7 \mathrm{~km} / \mathrm{hr}$ and $54 \mathrm{~km} / \mathrm{hr}$.
19. $R=$ radius of the bridge
$L=$ total length of the over bridge
a) At the highest pt.
$m g=\frac{m v^{2}}{R} \Rightarrow v^{2}=R g \Rightarrow v=\sqrt{R g}$
b) Given, $v=\frac{1}{\sqrt{2}} \sqrt{\mathrm{Rg}}$

suppose it loses contact at $B$. So, at $B, m g \cos \theta=\frac{m v^{2}}{R}$
$\Rightarrow \mathrm{v}^{2}=\mathrm{Rg}_{2} \cos \theta$
$\Rightarrow\left(\sqrt{\frac{\mathrm{Rv}}{2}}\right)^{2}=\mathrm{Rg} \cos \theta \Rightarrow \frac{\mathrm{Rg}}{2}=\mathrm{Rg} \cos \theta \Rightarrow \cos \theta=1 / 2 \Rightarrow \theta=60^{\circ}=\pi / 3$

$\theta=\frac{\ell}{r} \rightarrow \ell=r \theta=\frac{\pi R}{3}$
So, it will lose contact at distance $\frac{\pi R}{3}$ from highest point
c) Let the uniform speed on the bridge be $v$.

The chances of losing contact is maximum at the end of the bridge for which $\alpha=\frac{L}{2 R}$.
So, $\frac{m v^{2}}{R}=m g \cos \alpha \Rightarrow v=\sqrt{g R \cos \left(\frac{L}{2 R}\right)}$
20. Since the motion is nonuniform, the acceleration has both radial \& tangential
 component
$a_{r}=\frac{v^{2}}{r}$
$a_{t}=\frac{d v}{d t}=a$
Resultant magnitude $=\sqrt{\left(\frac{v^{2}}{r}\right)^{2}+a^{2}}$
Now $\mu \mathrm{N}=\mathrm{m} \sqrt{\left(\frac{v^{2}}{r}\right)^{2}+a^{2}} \Rightarrow \mu \mathrm{mg}=\mathrm{m} \sqrt{\left(\frac{v^{2}}{r}\right)^{2}+a^{2}} \Rightarrow \mu^{2} g^{2}=\left(\frac{v^{4}}{r 2}\right)+a^{2}$
$\Rightarrow v^{4}=\left(\mu^{2} g^{2}-a^{2}\right) r^{2} \Rightarrow v=\left[\left(\mu^{2} g^{2}-a^{2}\right) r^{2}\right]^{1 / 4}$
21. a) When the ruler makes uniform circular motion in the horizontal plane, (fig-a)
$\mu \mathrm{mg}=\mathrm{m} \omega_{1}{ }^{2} \mathrm{~L}$
$\omega_{1}=\sqrt{\frac{\mu \mathrm{g}}{\mathrm{L}}}$
b) When the ruler makes uniformly accelerated circular motion,(fig-b)

$\mu \mathrm{mg}=\sqrt{\left(\mathrm{m} \omega_{2}{ }^{2} \mathrm{~L}\right)^{2}+(\mathrm{mL} \alpha)^{2}} \Rightarrow \omega_{2}{ }^{4}+\alpha^{2}=\frac{\mu^{2} \mathrm{~g}^{2}}{\mathrm{~L}^{2}} \Rightarrow \omega_{2}=\left[\left(\frac{\mu \mathrm{g}}{\mathrm{L}}\right)^{2}-\alpha^{2}\right]^{1 / 4}$
(When viewed from top)
22. Radius of the curves $=100 \mathrm{~m}$

Weight $=100 \mathrm{~kg}$
Velocity $=18 \mathrm{~km} / \mathrm{hr}=5 \mathrm{~m} / \mathrm{sec}$
a) at $B m g-\frac{m v^{2}}{R}=N \Rightarrow N=(100 \times 10)-\frac{100 \times 25}{100}=1000-25=975 N$

At $d, N=m g+\frac{m v^{2}}{R}=1000+25=1025 N$

b) At $B \& D$ the cycle has no tendency to slide. So at $B \& D$, frictional force is zero.

At ' $C$ ', $m g \sin \theta=F \Rightarrow F=1000 \times \frac{1}{\sqrt{2}}=707 \mathrm{~N}$
c) (i) Before ' $C$ ' $m g \cos \theta-N=\frac{m v^{2}}{R} \Rightarrow N=m g \cos \theta-\frac{m v^{2}}{R}=707-25=683 N$

(ii) $\mathrm{N}-\mathrm{mg} \cos \theta=\frac{m v^{2}}{\mathrm{R}} \Rightarrow \mathrm{N}=\frac{m v^{2}}{\mathrm{R}}+\mathrm{mg} \cos \theta=25+707=732 \mathrm{~N}$
d) To find out the minimum desired coeff. of friction, we have to consider a point just before C. (where N is minimum)
Now, $\mu \mathrm{N}=\mathrm{mg} \sin \theta \Rightarrow \mu \times 682=707$
So, $\mu=1.037$
23. $d=3 m \Rightarrow R=1.5 m$
$R=$ distance from the centre to one of the kids
$N=20$ rev per min $=20 / 60=1 / 3$ rev per sec
$\omega=2 \pi r=2 \pi / 3$
$\mathrm{m}=15 \mathrm{~kg}$

$\therefore$ Frictional force $\mathrm{F}=\mathrm{mr} \omega^{2}=15 \times(1.5) \times \frac{(2 \pi)^{2}}{9}=5 \times(0.5) \times 4 \pi^{2}=10 \pi^{2}$
$\therefore$ Frictional force on one of the kids is $10 \pi^{2}$
24. If the bowl rotates at maximum angular speed, the block tends to slip upwards. So, the frictional force acts downward.
Here, $r=R \sin \theta$
From FBD -1
$R_{1}-m g \cos \theta-m \omega_{1}{ }^{2}(R \sin \theta) \sin \theta=0 \quad$..(i) [because $r=R \sin \theta$ ]
and $\mu \mathrm{R}_{1} \mathrm{mg} \sin \theta-m \omega_{1}{ }^{2}(\mathrm{R} \sin \theta) \cos \theta=0$
Substituting the value of $R_{1}$ from $E q$ (i) in $E q(i i)$, it can be found out that
$\omega_{1}=\left[\frac{g(\sin \theta+\mu \cos \theta)}{R \sin \theta(\cos \theta-\mu \sin \theta)}\right]^{1 / 2}$
Again, for minimum speed, the frictional force $\mu R_{2}$ acts upward. From FBD-2, it can be proved that,

(FBD - 1)

(FBD - 2)
$\omega_{2}=\left[\frac{g(\sin \theta-\mu \cos \theta)}{R \sin \theta(\cos \theta+\mu \sin \theta)}\right]^{1 / 2}$
$\therefore$ the range of speed is between $\omega_{1}$ and $\omega_{2}$
25. Particle is projected with speed ' $u$ ' at an angle $\theta$. At the highest pt. the vertical component of velocity is ' 0 '
So, at that point, velocity $=u \cos \theta$
centripetal force $=m u^{2} \cos ^{2}\left(\frac{\theta}{r}\right)$
At highest pt.
$\mathrm{mg}=\frac{\mathrm{mv}}{} \mathrm{r}^{2} \Rightarrow \mathrm{r}=\frac{\mathrm{u}^{2} \cos ^{2} \theta}{\mathrm{~g}}$

26. Let ' $u$ ' the velocity at the pt where it makes an angle $\theta / 2$ with horizontal. The horizontal component remains unchanged

$$
\begin{equation*}
\text { So, } v \cos \theta / 2=\omega \cos \theta \Rightarrow v=\frac{u \cos \theta}{\cos \left(\frac{\theta}{2}\right)} \tag{i}
\end{equation*}
$$

From figure

$m g \cos (\theta / 2)=\frac{m v^{2}}{r} \Rightarrow r=\frac{v^{2}}{g \cos (\theta / 2)}$
putting the value of ' $v$ ' from equn(i)
$r=\frac{u^{2} \cos ^{2} \theta}{g \cos ^{3}(\theta / 2)}$
27. A block of mass ' $m$ ' moves on a horizontal circle against the wall of a cylindrical room of radius ' $R$ ' Friction coefficient between wall \& the block is $\mu$.
a) Normal reaction by the wall on the block is $=\frac{m v^{2}}{R}$
b) $\therefore$ Frictional force by wall $=\frac{\mu m v^{2}}{R}$
c) $\frac{\mu m v^{2}}{R}=m a \Rightarrow a=-\frac{\mu v^{2}}{R}$ (Deceleration)

d) Now, $\frac{d v}{d t}=v \frac{d v}{d s}=-\frac{\mu v^{2}}{R} \Rightarrow d s=-\frac{R}{\mu} \frac{d v}{v}$
$\Rightarrow s=-\frac{R \mu}{} \ln V+c$
At $s=0, v=v_{0}$
Therefore, $\mathrm{c}=\frac{\mathrm{R}}{\mu} \ln \mathrm{V}_{0}$

so, $s=-\frac{R}{\mu} \ln \frac{v}{v_{0}} \Rightarrow \frac{v}{v_{0}}=e^{-\mu s / R}$
For, one rotation $s=2 \pi R$, so $v=v_{0} e^{-2 \pi \mu}$
28. The cabin rotates with angular velocity $\omega$ \& radius $R$
$\therefore$ The particle experiences a force $\mathrm{mR} \omega^{2}$.
The component of $m R \omega^{2}$ along the groove provides the required force to the particle to move along $A B$.
$\therefore \mathrm{mR} \omega^{2} \cos \theta=\mathrm{ma} \Rightarrow \mathrm{a}=\mathrm{R} \omega^{2} \cos \theta$
length of groove $=L$
$L=u t+1 / 2$ at $^{2} \Rightarrow L=1 / 2 R \omega^{2} \cos \theta t^{2}$
$\Rightarrow t^{2}=\frac{2 L}{R \omega^{2} \cos \theta}=t=1 \sqrt{\frac{2 L}{R \omega^{2} \cos \theta}}$

29. $v=$ Velocity of car $=36 \mathrm{~km} / \mathrm{hr}=10 \mathrm{~m} / \mathrm{s}$
$r=$ Radius of circular path $=50 \mathrm{~m}$
$\mathrm{m}=$ mass of small body $=100 \mathrm{~g}=0.1 \mathrm{~kg}$.
$\mu=$ Friction coefficient between plate $\&$ body $=0.58$
a) The normal contact force exerted by the plate on the block
$\mathrm{N}=\frac{\mathrm{mv}}{}{ }^{2} \mathrm{r}^{2}=\frac{0.1 \times 100}{50}=0.2 \mathrm{~N}$
b) The plate is turned so the angle between the normal to the plate \& the radius of the road slowly increases
$N=\frac{m v^{2}}{r} \cos \theta$
$\mu N=\frac{m v^{2}}{r} \sin \theta$
Putting value of N from (i)
$\mu \frac{m v^{2}}{r} \cos \theta=\frac{m v^{2}}{r} \sin \theta \Rightarrow \mu=\tan \theta \Rightarrow \theta=\tan ^{-1} \mu=\tan ^{-1}(0.58)=30^{\circ}$
30. Let the bigger mass accelerates towards right with 'a'.

From the free body diagrams,
$T-m a-m \omega^{2} R=0$
$T+2 m a-2 m \omega^{2} R=0$
Eq (i) -Eq (ii) $\Rightarrow 3 m a=m \omega^{2} R$

$\Rightarrow \mathrm{a}=\frac{\mathrm{m} \omega^{2} \mathrm{R}}{3}$
Substituting the value of $a$ in Equation (i), we get $T=4 / 3 \mathrm{~m} \omega^{2} R$.


