SOLUTIONS TO CONCEPTS

CHAPTER 9

1. $m_{1}=1 \mathrm{~kg}, m_{2}=2 \mathrm{~kg}, \quad m_{3}=3 \mathrm{~kg}$,
$x_{1}=0, \quad x_{2}=1, \quad x_{3}=1 / 2$
$\mathrm{y}_{1}=0, \quad \mathrm{y}_{2}=0, \quad \mathrm{y}_{3}=\sqrt{3} / 2$
The position of centre of mass is
$C . M=\left(\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}, \frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}}{m_{1}+m_{2}+m_{3}}\right)$
$=\left(\frac{(1 \times 0)+(2 \times 1)+(3 \times 1 / 2)}{1+2+3}, \frac{(1 \times 0)+(2 \times 0)+(3 \times(\sqrt{3} / 2))}{1+2+3}\right)$

$=\left(\frac{7}{12}, \frac{3 \sqrt{3}}{12}\right)$ from the point B.
2. Let θ be the origin of the system

In the above figure
$m_{1}=1 \mathrm{gm}, \quad \mathrm{x}_{1}=-\left(0.96 \times 10^{-10}\right) \sin 52^{\circ} \quad \mathrm{y}_{1}=0$
$m_{2}=1 \mathrm{gm}, \quad x_{2}=-\left(0.96 \times 10^{-10}\right) \sin 52^{\circ} \quad y_{2}=0$

$$
x_{3}=0 \quad y_{3}=\left(0.96 \times 10^{-10}\right) \cos 52^{\circ}
$$

The position of centre of mass
$\left(\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}, \frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}}{m_{1}+m_{2}+m_{3}}\right)$

$=\left(\frac{-\left(0.96 \times 10^{-10}\right) \times \sin 52+\left(0.96 \times 10^{-10}\right) \sin 52+16 \times 0}{1+1+16}, \frac{0+0+16 \mathrm{y}_{3}}{18}\right)$
$=\left(0,(8 / 9) 0.96 \times 10^{-10} \cos 52^{\circ}\right)$
3. Let ' O ' $(0,0)$ be the origin of the system.

Each brick is mass ' M ' \& length ' L '.
Each brick is displaced w.r.t. one in contact by 'L/10'
\therefore The X coordinate of the centre of mass

$\bar{X}_{c m}=\frac{m\left(\frac{L}{2}\right)+m\left(\frac{L}{2}+\frac{L}{10}\right)+m\left(\frac{L}{2}+\frac{2 L}{10}\right)+m\left(\frac{L}{2}+\frac{3 L}{10}\right)+m\left(\frac{L}{2}+\frac{3 L}{10}-\frac{L}{10}\right)+m\left(\frac{L}{2}+\frac{L}{10}\right)+m\left(\frac{L}{2}\right)}{7 m}$
$=\frac{\frac{L}{2}+\frac{L}{2}+\frac{L}{10}+\frac{L}{2}+\frac{L}{5}+\frac{L}{2}+\frac{3 L}{10}+\frac{L}{2}+\frac{L}{5}+\frac{L}{2}+\frac{L}{10}+\frac{L}{2}}{7}$
$\frac{7 \mathrm{~L}}{2}+\frac{5 \mathrm{~L}}{10}+\frac{2 \mathrm{~L}}{5}$
$=\frac{\frac{\overline{2}+\frac{5}{10}+\frac{5}{5}}{7}=\frac{35 \mathrm{~L}+5 \mathrm{~L}+4 \mathrm{~L}}{10 \times 7}=\frac{44 \mathrm{~L}}{70}=\frac{11}{35} \mathrm{~L}, ~(2)}{7}$
4. Let the centre of the bigger disc be the origin.
$2 R=$ Radius of bigger disc
$R=$ Radius of smaller disc
$\mathrm{m}_{1}=\pi \mathrm{R}^{2} \times \mathrm{T} \times \rho$
$m_{2}=\pi(2 R)^{2} I T \times \rho$
where $\mathrm{T}=$ Thickness of the two discs
$\rho=$ Density of the two discs
\therefore The position of the centre of mass

$\left(\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}, \frac{m_{1} y_{1}+m_{2} y_{2}}{m_{1}+m_{2}}\right)$
$\mathrm{x}_{1}=\mathrm{R} \quad \mathrm{y}_{1}=0$
$\mathrm{x}_{2}=0 \quad \mathrm{y}_{2}=0$
$\left(\frac{\pi R^{2} T \rho R+0}{\pi R^{2} T \rho+\pi(2 R)^{2} T \rho}, \frac{0}{m_{1}+m_{2}}\right)=\left(\frac{\pi R^{2} T \rho R}{5 \pi R^{2} T \rho}, 0\right)=\left(\frac{R}{5}, 0\right)$
At R/5 from the centre of bigger disc towards the centre of smaller disc.
5. Let ' 0 ' be the origin of the system.
$R=$ radius of the smaller disc
$2 R=$ radius of the bigger disc
The smaller disc is cut out from the bigger disc
As from the figure

$$
\begin{array}{lll}
\mathrm{m}_{1}=\pi \mathrm{R}^{2} \mathrm{~T} \rho & \mathrm{x}_{1}=\mathrm{R} & \mathrm{y}_{1}=0 \\
\mathrm{~m}_{2}=\pi(2 \mathrm{R})^{2} \mathrm{~T} \rho & \mathrm{x}_{2}=0 & \mathrm{y}_{2}=0
\end{array}
$$

The position of C.M. $=\left(\frac{-\pi R^{2} T \rho R+0}{-\pi R^{2} T \rho+\pi(2 R)^{2} T \rho R}, \frac{0+0}{m_{1}+m_{2}}\right)$
$=\left(\frac{-\pi R^{2} T \rho R}{3 \pi R^{2} T \rho}, 0\right)=\left(-\frac{R}{3}, 0\right)$
C.M. is at R/3 from the centre of bigger disc away from centre of the hole.
6. Let m be the mass per unit area.
\therefore Mass of the square plate $=M_{1}=d^{2} m$
Mass of the circular disc $=M_{2}=\frac{\pi d^{2}}{4} m$
Let the centre of the circular disc be the origin of the system.
\therefore Position of centre of mass
$=\left(\frac{d^{2} m d+\pi\left(d^{2} / 4\right) m \times 0}{d^{2} m+\pi\left(d^{2} / 4\right) m}, \frac{0+0}{M_{1}+M_{2}}\right)=\left(\frac{d^{3} m}{d^{2} m\left(1+\frac{\pi}{4}\right)}, 0\right)=\left(\frac{4 d}{\pi+4}, 0\right)$

The new centre of mass is $\left(\frac{4 d}{\pi+4}\right)$ right of the centre of circular disc.
7. $\mathrm{m}_{1}=1 \mathrm{~kg}$. $\quad \vec{v}_{1}=-1.5 \cos 37 \hat{\mathrm{i}}-1.55 \sin 37 \hat{j}=-1.2 \hat{i}-0.9 \hat{j}$
$m_{2}=1.2 \mathrm{~kg} . \quad \vec{v}_{2}=0.4 \hat{j}$
$\mathrm{m}_{3}=1.5 \mathrm{~kg} \quad \vec{v}_{3}=-0.8 \hat{i}+0.6 \hat{j}$
$\mathrm{m}_{4}=0.5 \mathrm{~kg} \quad \vec{v}_{4}=3 \hat{\mathrm{i}}$
$\mathrm{m}_{5}=1 \mathrm{~kg} \quad \vec{v}_{5}=1.6 \hat{\mathrm{i}}-1.2 \hat{\mathrm{j}}$
So, $\vec{v}_{c}=\frac{m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+m_{3} \vec{v}_{3}+m_{4} \vec{v}_{4}+m_{5} \vec{v}_{5}}{m_{1}+m_{2}+m_{3}+m_{4}+m_{5}}$

$=\frac{1(-1.2 \hat{i}-0.9 \hat{j})+1.2(0.4 \hat{j})+1.5(-0.8 \hat{i}+0.6 \hat{j})+0.5(3 \hat{i})+1(1.6 \hat{i}-1.2 \hat{j})}{5.2}$
$=\frac{-1.2 \hat{i}-0.9 \hat{j}+4.8 \hat{j}-1.2 \hat{i}+.90 \hat{j}+1.5 \hat{i}+1.6 \hat{i}-1.2 \hat{j}}{5.2}$
$=\frac{0.7 \hat{\mathrm{i}}}{5.2}-\frac{0.72 \hat{\mathrm{j}}}{5.2}$

8. Two masses $m_{1} \& m_{2}$ are placed on the X-axis
$m_{1}=10 \mathrm{~kg}, \quad m_{2}=20 \mathrm{~kg}$.
The first mass is displaced by a distance of 2 cm
$\therefore \overline{\mathrm{X}}_{\mathrm{cm}}=\frac{\mathrm{m}_{1} \mathrm{x}_{1}+\mathrm{m}_{2} \mathrm{x}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=\frac{10 \times 2+20 \mathrm{x}_{2}}{30}$
$\Rightarrow 0=\frac{20+20 x_{2}}{30} \Rightarrow 20+20 x_{2}=0$
$\Rightarrow 20=-20 x_{2} \Rightarrow x_{2}=-1$.
\therefore The $2^{\text {nd }}$ mass should be displaced by a distance 1 cm towards left so as to kept the position of centre of mass unchanged.
9. Two masses $m_{1} \& m_{2}$ are kept in a vertical line
$m_{1}=10 \mathrm{~kg}, \quad \mathrm{~m}_{2}=30 \mathrm{~kg}$
The first block is raised through a height of 7 cm .
The centre of mass is raised by 1 cm .
$\therefore 1=\frac{\mathrm{m}_{1} \mathrm{y}_{1}+\mathrm{m}_{2} \mathrm{y}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=\frac{10 \times 7+30 \mathrm{y}_{2}}{40}$
$\Rightarrow 1=\frac{70+30 \mathrm{y}_{2}}{40} \Rightarrow 70+30 \mathrm{y}_{2}=40 \Rightarrow 30 \mathrm{y}_{2}=-30 \Rightarrow \mathrm{y}_{2}=-1$.
The 30 kg body should be displaced 1 cm downward inorder to raise the centre of mass through 1 cm .
10. As the hall is gravity free, after the ice melts, it would tend to acquire a spherical shape. But, there is no external force acting on the system. So, the centre of mass of the system would not move.
11. The centre of mass of the blate will be on the symmetrical axis.

$\Rightarrow \overline{\mathrm{y}}_{\mathrm{cm}}=\frac{\left(\frac{\pi \mathrm{R}_{2}{ }^{2}}{2}\right)\left(\frac{4 \mathrm{R}_{2}}{3 \pi}\right)-\left(\frac{\pi \mathrm{R}_{1}{ }^{2}}{2}\right)\left(\frac{4 \mathrm{R}_{1}}{3 \pi}\right)}{\frac{\pi \mathrm{R}_{2}{ }^{2}}{2}-\frac{\pi \mathrm{R}_{1}{ }^{2}}{2}}$
$=\frac{(2 / 3) R_{2}{ }^{3}-(2 / 3) R_{1}{ }^{3}}{\pi / 2\left(R_{2}{ }^{2}-R_{1}{ }^{2}\right)}=\frac{4}{3 \pi} \frac{\left(R_{2}-R_{1}\right)\left(R_{2}{ }^{2}+R_{1}{ }^{2}+R_{1} R_{2}\right)}{\left(R_{2}-R_{1}\right)\left(R_{2}+R_{1}\right)}$

$=\frac{4}{3 \pi} \frac{\left(R_{2}{ }^{2}+R_{1}{ }^{2}+R_{1} R_{2}\right)}{R_{1}+R_{2}}$ above the centre.
12. $m_{1}=60 \mathrm{~kg}, \quad m_{2}=40 \mathrm{~kg}, m_{3}=50 \mathrm{~kg}$,

Let A be the origin of the system.
Initially Mr. Verma \& Mr. Mathur are at extreme position of the boat.
\therefore The centre of mass will be at a distance
$=\frac{60 \times 0+40 \times 2+50 \times 4}{150}=\frac{280}{150}=1.87 \mathrm{~m}$ from ' A '
When they come to the mid point of the boat the CM lies at $2 m$ from ' A '.
\therefore The shift in CM $=2-1.87=0.13 \mathrm{~m}$ towards right.

But as there is no external force in longitudinal direction their CM would not shift.
So, the boat moves 0.13 m or 13 cm towards right.
13. Let the bob fall at A,. The mass of $b o b=m$.

The mass of cart = M.
Initially their centre of mass will be at
$\frac{m \times L+M \times 0}{M+m}=\left(\frac{m}{M+m}\right) L$
Distance from P
When, the bob falls in the slot the CM is at a distance ' O ' from P.

Shift in $C M=0-\frac{m L}{M+m}=-\frac{m L}{M+m}$ towards left

$$
=\frac{\mathrm{mL}}{\mathrm{M}+\mathrm{m}} \text { towards right. }
$$

But there is no external force in horizontal direction.
So the cart displaces a distance $\frac{\mathrm{mL}}{\mathrm{M}+\mathrm{m}}$ towards right.
14. Initially the monkey \& balloon are at rest.

So the CM is at ' P '
When the monkey descends through a distance ' L '
The CM will shift
$t_{0}=\frac{m \times L+M \times 0}{M+m}=\frac{m L}{M+m}$ from P
So, the balloon descends through a distance $\frac{m L}{M+m}$

15. Let the mass of the to particles be $m_{1} \& m_{2}$ respectively

$$
\mathrm{m}_{1}=1 \mathrm{~kg}, \quad \mathrm{~m}_{2}=4 \mathrm{~kg}
$$

\therefore According to question
$1 / 2 m_{1} v_{1}{ }^{2}=1 / 2 m_{2} v_{2}{ }^{2}$
$\Rightarrow \frac{m_{1}}{m_{2}}=\frac{v_{2}{ }^{2}}{v_{1}{ }^{2}} \Rightarrow \frac{v_{2}}{v_{1}}=\sqrt{\frac{m_{1}}{m_{2}}} \Rightarrow \frac{v_{1}}{v_{2}}=\sqrt{\frac{m_{2}}{m_{1}}}$
Now, $\frac{m_{1} v_{1}}{m_{2} v_{2}}=\frac{m_{1}}{m_{2}} \times \sqrt{\frac{m_{2}}{m_{1}}}=\frac{\sqrt{m_{1}}}{\sqrt{m_{2}}}=\frac{\sqrt{1}}{\sqrt{4}}=1 / 2$
$\Rightarrow \frac{\mathrm{m}_{1} \mathrm{v}_{1}}{\mathrm{~m}_{2} \mathrm{v}_{2}}=1: 2$
16. As uranium 238 nucleus emits a α-particle with a speed of $1.4 \times 10^{7} \mathrm{~m} / \mathrm{sec}$. Let v_{2} be the speed of the residual nucleus thorium 234.
$\therefore \mathrm{m}_{1} \mathrm{v}_{1}=\mathrm{m}_{2} \mathrm{v}_{2}$
$\Rightarrow 4 \times 1.4 \times 10^{7}=234 \times \mathrm{v}_{2}$
$\Rightarrow v_{2}=\frac{4 \times 1.4 \times 10^{7}}{234}=2.4 \times 10^{5} \mathrm{~m} / \mathrm{sec}$.
17. $m_{1} v_{1}=m_{2} v_{2}$
$\Rightarrow 50 \times 1.8=6 \times 10^{24} \times v_{2}$
$\Rightarrow \mathrm{v}_{2}=\frac{50 \times 1.8}{6 \times 10^{24}}=1.5 \times 10^{-23} \mathrm{~m} / \mathrm{sec}$
so, the earth will recoil at a speed of $1.5 \times 10^{-23} \mathrm{~m} / \mathrm{sec}$.
18. Mass of proton $=1.67 \times 10^{-27}$

Let ' V ' be the velocity of proton

Given momentum of electron $=1.4 \times 10^{-26} \mathrm{~kg} \mathrm{~m} / \mathrm{sec}$
Given momentum of antineutrino $=6.4 \times 10^{-27} \mathrm{~kg} \mathrm{~m} / \mathrm{sec}$
a) The electron \& the antineutrino are ejected in the same direction. As the total momentum is conserved the proton should be ejected in the opposite direction.
$1.67 \times 10^{-27} \times V_{p}=1.4 \times 10^{-26}+6.4 \times 10^{-27}=20.4 \times 10^{-27}$
$\Rightarrow \mathrm{V}_{\mathrm{p}}=(20.4 / 1.67)=12.2 \mathrm{~m} / \mathrm{sec}$ in the opposite direction.
b) The electron \& antineutrino are ejected \perp^{r} to each other.

Total momentum of electron and antineutrino,
$=\sqrt{(14)^{2}+(6.4)^{2}} \times 10^{-27} \mathrm{~kg} \mathrm{~m} / \mathrm{s}=15.4 \times 10^{-27} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
Since, $1.67 \times 10^{-27} V_{p}=15.4 \times 10^{-27} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
So $V_{p}=9.2 \mathrm{~m} / \mathrm{s}$

19. Mass of man $=M$, Initial velocity $=0$

Mass of bad = m
Let the throws the bag towards left with a velocity v towards left. So, there is no external force in the horizontal direction.
The momentum will be conserved. Let he goes right with a velocity
$\mathrm{mv}=\mathrm{MV} \Rightarrow \mathrm{V}=\frac{\mathrm{mv}}{\mathrm{M}} \Rightarrow \mathrm{v}=\frac{\mathrm{MV}}{\mathrm{m}}$
Let the total time he will take to reach ground $=\sqrt{2 H / g}=t_{1}$

Let the total time he will take to reach the height $h=t_{2}=\sqrt{2(H-h) / g}$
Then the time of his flying $=t_{1}-t_{2}=\sqrt{2 H / g}-\sqrt{2(H-h) / g}=\sqrt{2 / g}(\sqrt{H}-\sqrt{H-h})$
Within this time he reaches the ground in the pond covering a horizontal distance x
$\Rightarrow \mathrm{x}=\mathrm{V} \times \mathrm{t} \Rightarrow \mathrm{V}=\mathrm{x} / \mathrm{t}$
$\therefore v=\frac{M}{m} \frac{x}{t}=\frac{M}{m} \times \frac{\sqrt{g}}{\sqrt{2}(\sqrt{H}-\sqrt{H-h})}$
As there is no external force in horizontal direction, the x-coordinate of CM will remain at that position.
$\Rightarrow 0=\frac{\mathrm{M} \times(\mathrm{x})+\mathrm{m} \times \mathrm{x}_{1}}{\mathrm{M}+\mathrm{m}} \Rightarrow \mathrm{x}_{1}=-\frac{\mathrm{M}}{\mathrm{m}} \mathrm{x}$
\therefore The bag will reach the bottom at a distance $(\mathrm{M} / \mathrm{m}) \mathrm{x}$ towards left of the line it falls.
20. Mass $=50 \mathrm{~g}=0.05 \mathrm{~kg}$
$v=2 \cos 45^{\circ} \hat{i}-2 \sin 45^{\circ} \hat{j}$
$v_{1}=-2 \cos 45^{\circ} \hat{i}-2 \sin 45^{\circ} \hat{j}$
a) change in momentum $=m \vec{v}-m \vec{v}_{1}$
$=0.05\left(2 \cos 45^{\circ} \hat{i}-2 \sin 45^{\circ} \hat{j}\right)-0.05\left(-2 \cos 45^{\circ} \hat{i}-2 \sin 45^{\circ} \hat{j}\right)$
$=0.1 \cos 45^{\circ} \hat{i}-0.1 \sin 45^{\circ} \hat{j}+0.1 \cos 45^{\circ} \hat{i}+0.1 \sin 45^{\circ} \hat{j}$
$=0.2 \cos 45^{\circ} \hat{i}$
\therefore magnitude $=\sqrt{\left(\frac{0.2}{\sqrt{2}}\right)^{2}}=\frac{0.2}{\sqrt{2}}=0.14 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

c) The change in magnitude of the momentum of the ball
$-\left|\vec{P}_{i}\right|-\left|\vec{P}_{f}\right|=2 \times 0.5-2 \times 0.5=0$.
21. $\vec{P}_{\text {incidence }}=(h / \lambda) \cos \theta \hat{i}-(h / \lambda) \sin \theta \hat{j}$
$P_{\text {Reflected }}=-(h / \lambda) \cos \theta \hat{i}-(h / \lambda) \sin \theta \hat{j}$
The change in momentum will be only in the x-axis direction. i.e.
$|\Delta P|=(h / \lambda) \cos \theta-((h / \lambda) \cos \theta)=(2 h / \lambda) \cos \theta$

22. As the block is exploded only due to its internal energy. So net external force during this process is 0 . So the centre mass will not change.
Let the body while exploded was at the origin of the co-ordinate system.
If the two bodies of equal mass is moving at a speed of $10 \mathrm{~m} / \mathrm{s}$ in $+x \&+y$ axis direction respectively,
$\sqrt{10^{2}+10^{2}+210.10 \cos 90^{\circ}}=10 \sqrt{2} \mathrm{~m} / \mathrm{s} 45^{\circ}$ w.r.t. $+x$ axis

If the centre mass is at rest, then the third mass which have equal mass with other two, will move in the opposite direction (i.e. 135° w.r.t. $+x$ - axis) of the resultant at the same velocity.
23. Since the spaceship is removed from any material object \& totally isolated from surrounding, the missions by astronauts couldn't slip away from the spaceship. So the total mass of the spaceship remain unchanged and also its velocity.
24. $d=1 \mathrm{~cm}, \quad v=20 \mathrm{~m} / \mathrm{s}, \quad u=0, \quad \rho=900 \mathrm{~kg} / \mathrm{m}^{3}=0.9 \mathrm{gm} / \mathrm{cm}^{3}$
volume $=(4 / 3) \pi r^{3}=(4 / 3) \pi(0.5)^{3}=0.5238 \mathrm{~cm}^{3}$
\therefore mass $=\mathrm{v} \rho=0.5238 \times 0.9=0.4714258 \mathrm{gm}$
\therefore mass of 2000 hailstone $=2000 \times 0.4714=947.857$
\therefore Rate of change in momentum per unit area $=947.857 \times 2000=19 \mathrm{~N} / \mathrm{m}^{3}$
\therefore Total force exerted $=19 \times 100=1900 \mathrm{~N}$.
25. A ball of mass m is dropped onto a floor from a certain height let ' h '.
$\therefore \mathrm{v}_{1}=\sqrt{2 \mathrm{gh}}, \quad \mathrm{v}_{1}=0, \mathrm{v}_{2}=-\sqrt{2 \mathrm{gh}} \& \mathrm{v}_{2}=0$
\therefore Rate of change of velocity :-
$F=\frac{m \times 2 \sqrt{2 g h}}{t}$
$\therefore v=\sqrt{2 g h}, s=h, \quad v=0$
$\Rightarrow v=u+a t$
$\Rightarrow \sqrt{2 g h}=g t \Rightarrow t=\sqrt{\frac{2 h}{g}}$
\therefore Total time $2 \sqrt{\frac{2 h}{t}}$
$\therefore F=\frac{m \times 2 \sqrt{2 g h}}{2 \sqrt{\frac{2 h}{g}}}=m g$
26. A railroad car of mass M is at rest on frictionless rails when a man of mass m starts moving on the car towards the engine. The car recoils with a speed v backward on the rails.
Let the mass is moving with a velocity x w.r.t. the engine.
\therefore The velocity of the mass w.r.t earth is $(\mathrm{x}-\mathrm{v})$ towards right
$\mathrm{V}_{\mathrm{cm}}=0$ (Initially at rest)
$\therefore 0=-\mathrm{Mv}+\mathrm{m}(\mathrm{x}-\mathrm{v})$
$\Rightarrow M v=m(x-v) \Rightarrow m x=M v+m v \Rightarrow x=\left(\frac{M+m}{m}\right) v \Rightarrow x=\left(1+\frac{M}{m}\right) v$
27. A gun is mounted on a railroad car. The mass of the car, the gun, the shells and the operator is 50 m where m is the mass of one shell. The muzzle velocity of the shells is $200 \mathrm{~m} / \mathrm{s}$.
Initial, $\mathrm{V}_{\mathrm{cm}}=0$.
$\therefore 0=49 \mathrm{~m} \times \mathrm{V}+\mathrm{m} \times 200 \Rightarrow \mathrm{~V}=\frac{-200}{49} \mathrm{~m} / \mathrm{s}$
$\therefore \frac{200}{49} \mathrm{~m} / \mathrm{s}$ towards left.
When another shell is fired, then the velocity of the car, with respect to the platform is,
$\Rightarrow V^{\circ}=\frac{200}{49} \mathrm{~m} / \mathrm{s}$ towards left.
When another shell is fired, then the velocity of the car, with respect to the platform is,
$\Rightarrow v^{`}=\frac{200}{48} \mathrm{~m} / \mathrm{s}$ towards left
\therefore Velocity of the car w.r.t the earth is $\left(\frac{200}{49}+\frac{200}{48}\right) \mathrm{m} / \mathrm{s}$ towards left.
28. Two persons each of mass m are standing at the two extremes of a railroad car of mass m resting on a smooth track.
Case - I
Let the velocity of the railroad car w.r.t the earth is V after the jump of the left man.
$\therefore 0=-m u+(M+m) V$
$\Rightarrow \mathrm{V}=\frac{m u}{M+m}$ towards right
Case - II
When the man on the right jumps, the velocity of it w.r.t the car is u.
$\therefore \mathbf{0}=\mathbf{m u}-\mathbf{M v}{ }^{\prime}$
$\Rightarrow v^{\prime}=\frac{\mathrm{mu}}{\mathrm{M}}$

(V^{\prime} is the change is velocity of the platform when platform itself is taken as reference assuming the car to be at rest)
\therefore So, net velocity towards left (i.e. the velocity of the car w.r.t. the earth)
$=\frac{m v}{M}-\frac{m v}{M+m}=\frac{m M u+m^{2} v-M m u}{M(M+m)}=\frac{m^{2} v}{M(M+m)}$
29. A small block of mass m which is started with a velocity V on the horizontal part of the bigger block of mass M placed on a horizontal floor.
Since the small body of mass m is started with a velocity V in the horizontal direction, so the total initial momentum at the initial position in the horizontal direction will remain same as the total final momentum at the point A on the bigger block in the horizontal direction.
From L.C.K. m:
$m v+M \times O=(m+M) v \Rightarrow v^{\prime}=\frac{m v}{M+m}$
30. Mass of the boggli $=200 \mathrm{~kg}, \quad \mathrm{~V}_{\mathrm{B}}=10 \mathrm{~km} /$ hour.
\therefore Mass of the boy $=2.5 \mathrm{~kg} \& \mathrm{~V}_{\text {Boy }}=4 \mathrm{~km} / \mathrm{hour}$.
If we take the boy $\&$ boggle as a system then total momentum before the process of sitting will remain constant after the process of sitting.
$\therefore \mathrm{m}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}}=\mathrm{m}_{\text {boy }} \mathrm{V}_{\text {boy }}=\left(\mathrm{m}_{\mathrm{b}}+\mathrm{m}_{\text {boy }}\right) \mathrm{v}$
$\Rightarrow 200 \times 10+25 \times 4=(200+25) \times v$
$\Rightarrow v=\frac{2100}{225}=\frac{28}{3}=9.3 \mathrm{~m} / \mathrm{sec}$
31. Mass of the ball $=m_{1}=0.5 \mathrm{~kg}$, velocity of the ball $=5 \mathrm{~m} / \mathrm{s}$

Mass of the another ball $m_{2}=1 \mathrm{~kg}$
Let it's velocity $=\mathrm{v}^{\prime} \mathrm{m} / \mathrm{s}$
Using law of conservation of momentum,
$0.5 \times 5+1 \times v^{\prime}=0 \Rightarrow v^{\prime}=-2.5$
\therefore Velocity of second ball is $2.5 \mathrm{~m} / \mathrm{s}$ opposite to the direction of motion of $1^{\text {st }}$ ball.
32. Mass of the man $=m_{1}=60 \mathrm{~kg}$

Speed of the man $=v_{1}=10 \mathrm{~m} / \mathrm{s}$
Mass of the skater $=m_{2}=40 \mathrm{~kg}$
let its velocity $=\mathrm{v}^{\prime}$
$\therefore 60 \times 10+0=100 \times \mathrm{v}^{\prime} \Rightarrow \mathrm{v}^{\prime}=6 \mathrm{~m} / \mathrm{s}$
loss in K.E. $=(1 / 2) 60 \times(10)^{2}-(1 / 2) \times 100 \times 36=1200 \mathrm{~J}$
33. Using law of conservation of momentum.
$m_{1} u_{1}+m_{2} u_{2}=m_{1} v(t)+m_{2} v^{\prime}$
Where $v^{\prime}=$ speed of $2^{\text {nd }}$ particle during collision.
$\Rightarrow \mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}=\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{1}+(\mathrm{t} / \Delta \mathrm{t})\left(\mathrm{v}_{1}-\mathrm{u}_{1}\right)+\mathrm{m}_{2} \mathrm{v}^{\prime}$
$\Rightarrow \frac{m_{2} u_{2}}{m^{2}}-\frac{m_{1}}{m 2} \frac{t}{\Delta t}\left(v_{1}-u_{1}\right) v^{\prime}$
$\therefore \mathrm{v}^{\prime}=\mathrm{u}_{2}-\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}} \frac{\mathrm{t}}{\Delta \mathrm{t}}\left(\mathrm{v}_{1}-\mathrm{u}\right)$
34. Mass of the bullet $=m$ and speed $=v$

Mass of the ball $=M$
$\mathrm{m}^{\prime}=$ frictional mass from the ball.

Using law of conservation of momentum,
$m v+0=\left(m^{\prime}+m\right) v^{\prime}+\left(M-m^{\prime}\right) v_{1}$
where $v^{\prime}=$ final velocity of the bullet + frictional mass
$\Rightarrow \mathrm{v}^{\prime}=\frac{\mathrm{mv}-\left(\mathrm{M}+\mathrm{m}^{\prime}\right) \mathrm{V}_{1}}{\mathrm{~m}+\mathrm{m}^{\prime}}$
35. Mass of $1^{\text {st }}$ ball $=m$ and speed $=v$

Mass of $2^{\text {nd }}$ ball $=m$
Let final velocities of $1^{\text {st }}$ and $2^{\text {nd }}$ ball are v_{1} and v_{2} respectively
Using law of conservation of momentum,
$\mathrm{m}\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)=\mathrm{mv}$.
$\Rightarrow v_{1}+v_{2}=v$
Also
$v_{1}-v_{2}=e v$
Given that final K.E. $=3 / 4$ Initial K.E.
$\Rightarrow 1 / 2 m v_{1}^{2}+1 / 2 m v_{2}^{2}=3 / 4 \times 1 / 2 m v^{2}$
$\Rightarrow v_{1}{ }^{2}+v_{2}{ }^{2}=3 / 4 v^{2}$
$\Rightarrow \frac{\left(v_{1}+v_{2}\right)^{2}+\left(v_{1}-v_{2}\right)^{2}}{2}=\frac{3}{4} v^{2}$
$\Rightarrow \frac{\left(1+e^{2}\right) v^{2}}{2}=\frac{3}{4} v^{2} \Rightarrow 1+e^{2}=\frac{3}{2} \Rightarrow e^{2}=\frac{1}{2} \Rightarrow e=\frac{1}{\sqrt{2}}$
36. Mass of block $=2 \mathrm{~kg}$ and speed $=2 \mathrm{~m} / \mathrm{s}$

Mass of $2^{\text {nd }}$ block $=2 \mathrm{~kg}$.
Let final velocity of $2^{\text {nd }}$ block $=v$
using law of conservation of momentum.
$2 \times 2=(2+2) v \Rightarrow v=1 \mathrm{~m} / \mathrm{s}$
\therefore Loss in K.E. in inelastic collision
$=(1 / 2) \times 2 \times(2)^{2} v-(1 / 2)(2+2) \times(1)^{2}=4-2=2 J$
b) Actual loss $=\frac{\text { Maximum loss }}{2}=1 \mathrm{~J}$
$(1 / 2) \times 2 \times 2^{2}-(1 / 2) 2 \times v_{1}{ }^{2}+(1 / 2) \times 2 \times v_{2}{ }^{2}=1$
$\Rightarrow 4-\left(v_{1}{ }^{2}+v_{2}{ }^{2}\right)=1$
$\Rightarrow 4-\frac{\left(1+\mathrm{e}^{2}\right) \times 4}{2}=1$
$\Rightarrow 2\left(1+e^{2}\right)=3 \Rightarrow 1+e^{2}=\frac{3}{2} \Rightarrow e^{2}=\frac{1}{2} \Rightarrow e=\frac{1}{\sqrt{2}}$
37. Final K.E. $=0.2 \mathrm{~J}$

Initial K.E. $=1 / 2 \mathrm{mV}_{1}{ }^{2}+0=1 / 2 \times 0.1 \mathrm{u}^{2}=0.05 \mathrm{u}^{2}$
$m v_{1}=m v_{2}{ }^{\prime}=m u$
Where v_{1} and v_{2} are final velocities of $1^{\text {st }}$ and $2^{\text {nd }}$ block respectively.
$\Rightarrow v_{1}+v_{2}=u$
$\left(v_{1}-v_{2}\right)+\ell\left(a_{1}-u_{2}\right)=0 \Rightarrow \ell a=v_{2}-v_{1}$
$u_{2}=0, \quad u_{1}=u$.

Adding Eq.(1) and Eq.(2)
$2 \mathrm{v}_{2}=(1+\ell) \mathrm{u} \Rightarrow \mathrm{v}_{2}=(\mathrm{u} / 2)(1+\ell)$
$\therefore \mathrm{v}_{1}=\mathrm{u}-\frac{\mathrm{u}}{2}-\frac{\mathrm{u}}{2} \ell$
$v_{1}=\frac{u}{2}(1-\ell)$
Given (1/2) $\mathrm{mv}_{1}{ }^{2}+(1 / 2) \mathrm{mv}_{2}{ }^{2}=0.2$
$\Rightarrow v_{1}{ }^{2}+v_{2}{ }^{2}=4$
$\Rightarrow \frac{u^{2}}{4}(1-\ell)^{2}+\frac{u^{2}}{4}(1+\ell)^{2}=4 \quad \Rightarrow \frac{u^{2}}{2}\left(1+\ell^{2}\right)=4 \quad \Rightarrow u^{2}=\frac{8}{1+\ell^{2}}$
For maximum value of u, denominator should be minimum,
$\Rightarrow \ell=0$.
$\Rightarrow u^{2}=8 \Rightarrow u=2 \sqrt{2} \mathrm{~m} / \mathrm{s}$
For minimum value of u, denominator should be maximum,
$\Rightarrow \ell=1$

$$
u^{2}=4 \Rightarrow u=2 \mathrm{~m} / \mathrm{s}
$$

38. Two friends $A \& B$ (each 40 kg) are sitting on a frictionless platform some distance d apart A rolls a ball of mass 4 kg on the platform towards B, which B catches. Then B rolls the ball towards A and A catches it. The ball keeps on moving back \& forth between A and B. The ball has a fixed velocity $5 \mathrm{~m} / \mathrm{s}$.
a) Case - I :- Total momentum of the man A \& the ball will remain constant
$\therefore 0=4 \times 5-40 \times v$
$\Rightarrow v=0.5 \mathrm{~m} / \mathrm{s}$ towards left
b) Case - II :- When B catches the ball, the momentum between the B \& the ball will remain constant.
$\Rightarrow 4 \times 5=44 \mathrm{v} \Rightarrow \mathrm{v}=(20 / 44) \mathrm{m} / \mathrm{s}$
Case - III :- When B throws the ball, then applying L.C.L.M
$\Rightarrow 44 \times(20 / 44)=-4 \times 5+40 \times v \quad \Rightarrow v=1 \mathrm{~m} / \mathrm{s}$ (towards right)

Case - IV :- When a Catches the ball, the applying L.C.L.M.
$\Rightarrow-4 \times 5+(-0.5) \times 40=-44 v \quad \Rightarrow v=\frac{10}{11} \mathrm{~m} / \mathrm{s}$ towards left.
c) Case -V :- When A throws the ball, then applying L.C.L.M.
$\Rightarrow 44 \times(10 / 11)=4 \times 5-40 \times V \quad \Rightarrow V=60 / 40=3 / 2 \mathrm{~m} / \mathrm{s}$ towards left.
Case $-\mathrm{VI}:-$ When B receives the ball, then applying L.C.L.M
$\Rightarrow 40 \times 1+4 \times 5=44 \times v \quad \Rightarrow v=60 / 44 \mathrm{~m} / \mathrm{s}$ towards right.
Case - VII :-When B throws the ball, then applying L.C.L.M.
$\Rightarrow 44 \times(66 / 44)=-4 \times 5+40 \times V \quad \Rightarrow V=80 / 40=2 \mathrm{~m} / \mathrm{s}$ towards right.
Case - VIII :- When A catches the ball, then applying L.C.L.M
$\Rightarrow-4 \times 5-40 \times(3 / 2)=-44 \mathrm{v} \quad \Rightarrow \mathrm{v}=(80 / 44)=(20 / 11) \mathrm{m} / \mathrm{s}$ towards left.
Similarly after 5 round trips
The velocity of A will be $(50 / 11)$ \& velocity of B will be $5 \mathrm{~m} / \mathrm{s}$.
d) Since after 6 round trip, the velocity of A is $60 / 11$ i.e.
$>5 \mathrm{~m} / \mathrm{s}$. So, it can't catch the ball. So it can only roll the ball six.
e) Let the ball \& the body A at the initial position be at origin.

$$
\therefore X_{C}=\frac{40 \times 0+4 \times 0+40 \times \mathrm{d}}{40+40+4}=\frac{10}{11} d
$$

39. $u=\sqrt{2 g h}=$ velocity on the ground when ball approaches the ground.
$\Rightarrow u=\sqrt{2 \times 9.8 \times 2}$
$v=$ velocity of ball when it separates from the ground.
$\vec{v}+\ell \vec{u}=0$
$\Rightarrow \ell \overrightarrow{\mathrm{u}}=-\overrightarrow{\mathrm{v}} \Rightarrow \ell=\frac{\sqrt{2 \times 9.8 \times 1.5}}{\sqrt{2 \times 9.8 \times 2}}=\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}$

40. K.E. of Nucleus $=(1 / 2) \mathrm{mv}^{2}=(1 / 2) m\left(\frac{E}{m c}\right)^{2}=\frac{E^{2}}{2 m c^{2}}$

Energy limited by Gamma photon $=\mathrm{E}$.
Decrease in internal energy $=E+\frac{E^{2}}{2 m^{2}{ }^{2}}$
linear momentum $=E / c$

41. Mass of each block M_{A} and $M_{B}=2 \mathrm{~kg}$.

Initial velocity of the $1^{\text {st }}$ block, $(V)=1 \mathrm{~m} / \mathrm{s}$
$V_{A}=1 \mathrm{~m} / \mathrm{s}, \quad V_{B}=0 \mathrm{~m} / \mathrm{s}$
Spring constant of the spring $=100 \mathrm{~N} / \mathrm{m}$.
The block A strikes the spring with a velocity $1 \mathrm{~m} / \mathrm{s} /$
After the collision, it's velocity decreases continuously and at a instant the whole system (Block A + the compound spring + Block B) move together with a common velocity.
Let that velocity be V .
Using conservation of energy, (1/2) $M_{A} V_{A}{ }^{2}+(1 / 2) M_{B} V_{B}{ }^{2}=(1 / 2) M_{A} v^{2}+(1 / 2) M_{B} v^{2}+(1 / 2) k x^{2}$.
$(1 / 2) \times 2(1)^{2}+0=(1 / 2) \times 2 \times v^{2}+(1 / 2) \times 2 \times v^{2}+(1 / 2) x^{2} \times 100$
(Where $x=$ max. compression of spring)
$\Rightarrow 1=2 v^{2}+50 x^{2}$
As there is no external force in the horizontal direction, the momentum should be conserved.
$\Rightarrow M_{A} V_{A}+M_{B} V_{B}=\left(M_{A}+M_{B}\right) V$.
$\Rightarrow 2 \times 1=4 \times v$
$\Rightarrow \mathrm{V}=(1 / 2) \mathrm{m} / \mathrm{s}$.
Putting in eq.(1)
$1=2 \times(1 / 4)+50 x+2+$
$\Rightarrow(1 / 2)=50 x^{2}$
$\Rightarrow x^{2}=1 / 100 m^{2}$
$\Rightarrow x=(1 / 10) m=0.1 \mathrm{~m}=10 \mathrm{~cm}$.
42. Mass of bullet $m=0.02 \mathrm{~kg}$.

Initial velocity of bullet $\mathrm{V}_{1}=500 \mathrm{~m} / \mathrm{s}$

Mass of block, $M=10 \mathrm{~kg}$.
Initial velocity of block $\mathrm{u}_{2}=0$.
Final velocity of bullet $=100 \mathrm{~m} / \mathrm{s}=\mathrm{v}$.
Let the final velocity of block when the bullet emerges out, if block $=v^{\prime}$.
$\mathrm{mv}_{1}+\mathrm{Mu}_{2}=\mathrm{mv}+\mathrm{Mv}^{\prime}$
$\Rightarrow 0.02 \times 500=0.02 \times 100+10 \times v^{\prime}$
$\Rightarrow \mathrm{v}^{\prime}=0.8 \mathrm{~m} / \mathrm{s}$
After moving a distance 0.2 m it stops.
\Rightarrow change in K.E. $=$ Work done
$\Rightarrow 0-(1 / 2) \times 10 \times(0.8)^{2}=-\mu \times 10 \times 10 \times 0.2 \Rightarrow \mu=0.16$
43. The projected velocity $=u$.

The angle of projection $=\theta$.
When the projectile hits the ground for the $1^{\text {st }}$ time, the velocity would be the same i.e. u.
Here the component of velocity parallel to ground, $u \cos \theta$ should remain constant. But the vertical component of the projectile undergoes a change after the collision.
$\Rightarrow \mathrm{e}=\frac{\mathrm{u} \sin \theta}{\mathrm{v}} \Rightarrow \mathrm{v}=\mathrm{eu} \sin \theta$.
Now for the $2^{\text {nd }}$ projectile motion,
$U=$ velocity of projection $=\sqrt{(u \cos \theta)^{2}+(e u \sin \theta)^{2}}$

and Angle of projection $=\alpha=\tan ^{-1}\left(\frac{e u \sin \theta}{\operatorname{a\operatorname {cos}\theta } \theta}\right)=\tan ^{-1}(e \tan \theta)$
or $\tan \alpha=\mathrm{e} \tan \theta \quad \ldots(2)$
Because, $\mathrm{y}=\mathrm{x} \tan \alpha-\frac{\mathrm{gx}^{2} \sec ^{2} \alpha}{2 \mathrm{u}^{2}}$..
Here, $y=0, \tan \alpha=e \tan \theta, \sec ^{2} \alpha=1+e^{2} \tan ^{2} \theta$
And $u^{2}=u^{2} \cos ^{2} \theta+e^{2} \sin ^{2} \theta$
Putting the above values in the equation (3),
$x e \tan \theta=\frac{g x^{2}\left(1+e^{2} \tan ^{2} \theta\right)}{2 u^{2}\left(\cos ^{2} \theta+e^{2} \sin ^{2} \theta\right)}$
$\Rightarrow x=\frac{2 \mathrm{eu}^{2} \tan \theta\left(\cos ^{2} \theta+\mathrm{e}^{2} \sin ^{2} \theta\right)}{\mathrm{g}\left(1+\mathrm{e}^{2} \tan ^{2} \theta\right)}$
$\Rightarrow x=\frac{2 e u^{2} \tan \theta-\cos ^{2} \theta}{g}=\frac{e u^{2} \sin 2 \theta}{\mathrm{~g}}$
\Rightarrow So, from the starting point O , it will fall at a distance
$=\frac{u^{2} \sin 2 \theta}{g}+\frac{e u^{2} \sin 2 \theta}{g}=\frac{u^{2} \sin 2 \theta}{g}(1+e)$
44. Angle inclination of the plane $=\theta$
M the body falls through a height of h,
The striking velocity of the projectile with the indined plane $v=\sqrt{2 g h}$
Now, the projectile makes on angle $\left(90^{\circ}-2 \theta\right)$
Velocity of projection $=u=\sqrt{2 g h}$
Let $A B=L$.
So, $x=\ell \cos \theta, y=-\ell \sin \theta$
From equation of trajectory,
$y=x \tan \alpha-\frac{\mathrm{gx}^{2} \sec ^{2} \alpha}{2 \mathrm{u}^{2}}$
$-\ell \sin \theta=\ell \cos \theta \cdot \tan \left(90^{\circ}-2 \theta\right)-\frac{g \times \ell^{2} \cos ^{2} \theta \sec ^{2}\left(90^{\circ}-2 \theta\right)}{2 \times 2 \mathrm{gh}}$
$\Rightarrow-\ell \sin \theta=\ell \cos \theta \cdot \cot 2 \theta-\frac{\mathrm{g} \ell^{2} \cos ^{2} \theta \operatorname{cosec}^{2} 2 \theta}{4 \mathrm{gh}}$
So, $\frac{\ell \cos ^{2} \theta \operatorname{cosec}^{2} 2 \theta}{4 \mathrm{~h}}=\sin \theta+\cos \theta \cot 2 \theta$
$\Rightarrow \ell=\frac{4 \mathrm{~h}}{\cos ^{2} \theta \operatorname{cosec}^{2} 2 \theta}(\sin \theta+\cos \theta \cot 2 \theta)=\frac{4 \mathrm{~h} \times \sin ^{2} 2 \theta}{\cos ^{2} \theta}\left(\sin \theta+\cos \theta \times \frac{\cos 2 \theta}{\sin 2 \theta}\right)$
$=\frac{4 \mathrm{~h} \times 4 \sin ^{2} \theta \cos ^{2} \theta}{\cos ^{2} \theta}\left(\frac{\sin \theta \times \sin 2 \theta+\cos \theta \cos 2 \theta}{\sin 2 \theta}\right)=16 \mathrm{~h} \sin ^{2} \theta \times \frac{\cos \theta}{2 \sin \theta \cos \theta}=8 \mathrm{~h} \sin \theta$
45. $\mathrm{h}=5 \mathrm{~m}, \quad \theta=45^{\circ}, \quad \mathrm{e}=(3 / 4)$

Here the velocity with which it would strike $=v=\sqrt{2 g \times 5}=10 \mathrm{~m} / \mathrm{sec}$
After collision, let it make an angle β with horizontal. The horizontal component of velocity $10 \cos 45^{\circ}$ will remain unchanged and the velocity in the perpendicular direction to the plane after wllisine.
$\Rightarrow V_{y}=e \times 10 \sin 45^{\circ}$
$=(3 / 4) \times 10 \times \frac{1}{\sqrt{2}}=(3.75) \sqrt{2} \mathrm{~m} / \mathrm{sec}$
$V_{x}=10 \cos 45^{\circ}=5 \sqrt{2} \mathrm{~m} / \mathrm{sec}$
So, $u=\sqrt{V_{x}{ }^{2}+V_{y}{ }^{2}}=\sqrt{50+28.125}=\sqrt{78.125}=8.83 \mathrm{~m} / \mathrm{sec}$
Angle of reflection from the wall $\beta=\tan ^{-1}\left(\frac{3.75 \sqrt{2}}{5 \sqrt{2}}\right)=\tan ^{-1}\left(\frac{3}{4}\right)=37^{\circ}$

\Rightarrow Angle of projection $\alpha=90-(\theta+\beta)=90-\left(45^{\circ}+37^{\circ}\right)=8^{\circ}$
Let the distance where it falls $=L$
$\Rightarrow x=L \cos \theta, y=-L \sin \theta$
Angle of projection $(\alpha)=-8^{\circ}$

Using equation of trajectory, $\mathrm{y}=\mathrm{x} \tan \alpha-\frac{\mathrm{gx}^{2} \sec ^{2} \alpha}{2 \mathrm{u}^{2}}$
$\Rightarrow-\ell \sin \theta=\ell \cos \theta \times \tan 8^{\circ}-\frac{g}{2} \times \frac{\ell \cos ^{2} \theta \sec ^{2} 8^{\circ}}{u^{2}}$
$\Rightarrow-\sin 45^{\circ}=\cos 45^{\circ}-\tan 8^{\circ}-\frac{10 \cos ^{2} 45^{\circ} \sec 8^{\circ}}{(8.83)^{2}}(\ell)$
Solving the above equation we get,
$\ell=18.5 \mathrm{~m}$.
46. Mass of block

Block of the particle $=m=120 \mathrm{gm}=0.12 \mathrm{~kg}$.
In the equilibrium condition, the spring is stretched by a distance $x=1.00 \mathrm{~cm}=0.01 \mathrm{~m}$.
$\Rightarrow 0.2 \times \mathrm{g}=\mathrm{K} . \mathrm{x}$.
$\Rightarrow 2=\mathrm{K} \times 0.01 \Rightarrow \mathrm{~K}=200 \mathrm{~N} / \mathrm{m}$.
The velocity with which the particle m will strike M is given by u
$=\sqrt{2 \times 10 \times 0.45}=\sqrt{9}=3 \mathrm{~m} / \mathrm{sec}$.
So, after the collision, the velocity of the particle and the block is

$V=\frac{0.12 \times 3}{0.32}=\frac{9}{8} \mathrm{~m} / \mathrm{sec}$.
Let the spring be stretched through an extra deflection of δ.
$0-(1 / 2) \times 0.32 \times(81 / 64)=0.32 \times 10 \times \delta-\left(1 / 2 \times 200 \times(\delta+0.1)^{2}-(1 / 2) \times 200 \times(0.01)^{2}\right.$
Solving the above equation we get
$\delta=0.045=4.5 \mathrm{~cm}$
47. Mass of bullet $=25 \mathrm{~g}=0.025 \mathrm{~kg}$.

Mass of pendulum $=5 \mathrm{~kg}$.
The vertical displacement $h=10 \mathrm{~cm}=0.1 \mathrm{~m}$
Let it strike the pendulum with a velocity u.
Let the final velocity be v.
$\Rightarrow \mathrm{mu}=(\mathrm{M}+\mathrm{m}) \mathrm{v}$.
$\Rightarrow v=\frac{m}{(M+m)} u=\frac{0.025}{5.025} \times u=\frac{u}{201}$
Using conservation of energy.
$0-(1 / 2)(M+m) \cdot V^{2}=-(M+m) g \times h \Rightarrow \frac{u^{2}}{(201)^{2}}=2 \times 10 \times 0.1=2$
$\Rightarrow u=201 \times \sqrt{2}=280 \mathrm{~m} / \mathrm{sec}$.
48. Mass of bullet $=M=20 \mathrm{gm}=0.02 \mathrm{~kg}$.

Mass of wooden block $M=500 \mathrm{gm}=0.5 \mathrm{~kg}$
Velocity of the bullet with which it strikes $u=300 \mathrm{~m} / \mathrm{sec}$.
Let the bullet emerges out with velocity V and the velocity of block $=\mathrm{V}^{\prime}$
As per law of conservation of momentum.
$\mathrm{mu}=\mathrm{Mv}^{\prime}+\mathrm{mv}$
Again applying work - energy principle for the block after the collision,
$0-(1 / 2) M \times V^{\prime 2}=-M g h($ where $h=0.2 m)$
$\Rightarrow \mathrm{V}^{\prime 2}=2 \mathrm{gh}$
$\mathrm{V}^{\prime}=\sqrt{2 \mathrm{gh}}=\sqrt{20 \times 0.2}=2 \mathrm{~m} / \mathrm{sec}$
Substituting the value of V^{\prime} in the equation (1), we get \backslash
$0.02 \times 300=0.5 \times 2+0.2 \times v$
$\Rightarrow \mathrm{V}=\frac{6.1}{0.02}=250 \mathrm{~m} / \mathrm{sec}$.
49. Mass of the two blocks are m_{1}, m_{2}.

Initially the spring is stretched by x_{0}
Spring constant K.
For the blocks to come to rest again, Let the distance travelled by $m_{1} \& m_{2}$

Be x_{1} and x_{2} towards right and left respectively.
As o external forc acts in horizontal direction,
$m_{1} x_{1}=m_{2} x_{2}$
Again, the energy would be conserved in the spring.
$\Rightarrow(1 / 2) k \times x^{2}=(1 / 2) k\left(x_{1}+x_{2}-x_{0}\right)^{2}$
$\Rightarrow \mathrm{x}_{\mathrm{o}}=\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{0}$
$\Rightarrow x_{1}+x_{2}=2 x_{0}$
$\Rightarrow x_{1}=2 x_{0}-x_{2}$ similarly $x_{1}=\left(\frac{2 m_{2}}{m_{1}+m_{2}}\right) x_{0}$
$\Rightarrow m_{1}\left(2 x_{0}-x_{2}\right)=m_{2} x_{2} \quad \Rightarrow 2 m_{1} x_{0}-m_{1} x_{2}=m_{2} x_{2} \quad \Rightarrow x_{2}=\left(\frac{2 m_{1}}{m_{1}+m_{2}}\right) x_{0}$
50. a) \therefore Velocity of centre of mass $=\frac{\mathrm{m}_{2} \times \mathrm{v}_{0}+\mathrm{m}_{1} \times 0}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=\frac{\mathrm{m}_{2} \mathrm{v}_{0}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$
b) The spring will attain maximum elongation when both velocity of two blocks will attain the velocity of centre of mass.
d) $x \rightarrow$ maximum elongation of spring.

Change of kinetic energy $=$ Potential stored in spring.
$\Rightarrow(1 / 2) m_{2} v_{0}{ }^{2}-(1 / 2)\left(m_{1}+m_{2}\right)\left(\left(\frac{m_{2} v_{0}}{m_{1}+m_{2}}\right)^{2}=(1 / 2) k x^{2}\right.$

$\Rightarrow m_{2} v_{0}{ }^{2}\left(1-\frac{m_{2}}{m_{1}+m_{2}}\right)=k x^{2} \quad \Rightarrow x=\left(\frac{m_{1} m_{2}}{m_{1}+m_{2}}\right)^{1 / 2} \times v_{0}$
51. If both the blocks are pulled by some force, they suddenly move with some acceleration and instantaneously stop at same position where the elongation of spring is maximum.
\therefore Let $\mathrm{x}_{1}, \mathrm{x}_{2} \rightarrow$ extension by block m_{1} and m_{2}
Total work done $=F x_{1}+F x_{2} \quad \ldots(1)$
\therefore Increase the potential energy of spring $=(1 / 2) K\left(x_{1}+x_{2}\right)^{2}$
Equating (1) and (2)
$F\left(x_{1}+x_{2}\right)=(1 / 2) K\left(x_{1}+x_{2}\right)^{2} \Rightarrow\left(x_{1}+x_{2}\right)=\frac{2 F}{K}$
Since the net external force on the two blocks is zero thus same force act on opposite direction.
$\therefore \mathrm{m}_{1} \mathrm{x}_{1}=\mathrm{m}_{2} \mathrm{x}_{2}$
And $\left(x_{1}+x_{2}\right)=\frac{2 F}{K}$
$\therefore \mathrm{x}_{2}=\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}} \times 1$

Substituting $\frac{m_{1}}{m_{2}} \times 1+x_{1}=\frac{2 F}{K}$
$\Rightarrow x_{1}\left(1+\frac{m_{1}}{m_{2}}\right)=\frac{2 F}{K} \quad \Rightarrow x_{1}=\frac{2 F}{K} \frac{m_{2}}{m_{1}+m_{2}}$
Similarly $x_{2}=\frac{2 F}{K} \frac{m_{1}}{m_{1}+m_{2}}$
52. Acceleration of mass $m_{1}=\frac{F_{1}-F_{2}}{m_{1}+m_{2}}$

Similarly Acceleration of mass $m_{2}=\frac{F_{2}-F_{1}}{m_{1}+m_{2}}$
Due to F_{1} and F_{2} block of mass m_{1} and m_{2} will experience different acceleration and experience an inertia force.
\therefore Net force on $\mathrm{m}_{1}=\mathrm{F}_{1}-\mathrm{m}_{1} \mathrm{a}$

Similarly Net force on $m_{2}=F_{2}-m_{2}$ a
$=F_{2}-m_{2} \times \frac{F_{2}-F_{1}}{m_{1}+m_{2}}=\frac{m_{1} F_{2}+m_{2} F_{2}-m_{2} F_{2}+F_{1} m_{2}}{m_{1}+m_{2}}=\frac{m_{1} F_{2}+m_{2} F_{2}}{m_{1}+m_{2}}$
\therefore If m_{1} displaces by a distance x_{1} and x_{2} by m_{2} the maximum extension of the spring is $\mathrm{x}_{1}+\mathrm{m}_{2}$.
\therefore Work done by the blocks = energy stored in the spring.,
$\Rightarrow \frac{m_{2} F_{1}+m_{1} F_{2}}{m_{1}+m_{2}} \times x_{1}+\frac{m_{2} F_{1}+m_{1} F_{2}}{m_{1}+m_{2}} \times x_{2}=(1 / 2) K\left(x_{1}+x_{2}\right)^{2}$
$\Rightarrow x_{1}+x_{2}=\frac{2}{K} \frac{m_{2} F_{1}+m_{1} F_{2}}{m_{1}+m_{2}}$
53. Mass of the man $\left(\mathrm{M}_{\mathrm{m}}\right)$ is 50 kg .

Mass of the pillow $\left(M_{p}\right)$ is 5 kg .
When the pillow is pushed by the man, the pillow will go down while the man goes up. It becomes the external force on the system which is zero.
\Rightarrow acceleration of centre of mass is zero
\Rightarrow velocity of centre of mass is constant
\therefore As the initial velocity of the system is zero.
$\therefore \mathrm{M}_{\mathrm{m}} \times \mathrm{V}_{\mathrm{m}}=\mathrm{M}_{\mathrm{p}} \times \mathrm{V}_{\mathrm{p}}$
Given the velocity of pillow is $80 \mathrm{ft} / \mathrm{s}$.
Which is relative velocity of pillow w.r.t. man.
$\vec{V}_{p / m}=\vec{V}_{p}-\vec{V}_{m}=V_{p}-\left(-V_{m}\right)=V_{p}+V_{m} \Rightarrow V_{p}=V_{p / m}-V_{m}$
Putting in equation (1)
$M_{m} \times V_{m}=M_{p}\left(V_{p / m}-V_{m}\right)$
$\Rightarrow 50 \times \mathrm{V}_{\mathrm{m}}=5 \times\left(8-\mathrm{V}_{\mathrm{m}}\right)$
$\Rightarrow 10 \times \mathrm{V}_{\mathrm{m}}=8-\mathrm{V}_{\mathrm{m}} \Rightarrow \mathrm{V}_{\mathrm{m}}=\frac{8}{11}=0.727 \mathrm{~m} / \mathrm{s}$

\therefore Absolute velocity of pillow $=8-0.727=7.2 \mathrm{ft} / \mathrm{sec}$.
\therefore Time taken to reach the floor $=\frac{\mathrm{S}}{\mathrm{v}}=\frac{8}{7.2}=1.1 \mathrm{sec}$.
As the mass of wall >>> then pillow
The velocity of block before the collision = velocity after the collision.
\Rightarrow Times of ascent $=1.11 \mathrm{sec}$.
\therefore Total time taken $=1.11+1.11=2.22 \mathrm{sec}$.
54. Let the velocity of $A=u_{1}$.

Let the final velocity when reaching at B becomes collision $=v_{1}$.
$\therefore(1 / 2) \mathrm{mv}_{1}{ }^{2}-(1 / 2) \mathrm{mu}_{1}{ }^{2}=\mathrm{mgh}$
$\Rightarrow \mathrm{v}_{1}{ }^{2}-\mathrm{u}_{1}{ }^{2}=2 \mathrm{gh}$

$$
\begin{equation*}
\Rightarrow \mathrm{v}_{1}=\sqrt{2 \mathrm{gh}-\mathrm{u}_{1}^{2}} \tag{1}
\end{equation*}
$$

When the block B reached at the upper man's head, the velocity of B is just zero.
For B, block
$\therefore(1 / 2) \times 2 m \times 0^{2}-(1 / 2) \times 2 m \times v^{2}=m g h \quad \Rightarrow v=\sqrt{2 g h}$
\therefore Before collision velocity of $\mathrm{u}_{\mathrm{A}}=\mathrm{v}_{1}, \quad \mathrm{u}_{\mathrm{B}}=0$.
After collision velocity of $\mathrm{v}_{\mathrm{A}}=\mathrm{v}$ (say) $\quad \mathrm{v}_{\mathrm{B}}=\sqrt{2 \mathrm{gh}}$
Since it is an elastic collision the momentum and K.E. should be coserved.
$\therefore \mathrm{m} \times \mathrm{v}_{1}+2 \mathrm{~m} \times 0=\mathrm{m} \times \mathrm{v}+2 \mathrm{~m} \times \sqrt{2 g h}$
$\Rightarrow \mathrm{v}_{1}-\mathrm{v}=2 \sqrt{2 \mathrm{gh}}$
Also, $(1 / 2) \times m \times v_{1}{ }^{2}+(1 / 2) I 2 m \times 0^{2}=(1 / 2) \times m \times v^{2}+(1 / 2) \times 2 m \times(\sqrt{2 g h})^{2}$
$\Rightarrow v_{1}{ }^{2}-v^{2}=2 \times \sqrt{2 g h} \times \sqrt{2 g h}$
Dividing (1) by (2)
$\frac{\left(v_{1}+v\right)\left(v_{1}-v\right)}{\left(v_{1}+v\right)}=\frac{2 \times \sqrt{2 g h} \times \sqrt{2 g h}}{2 \times \sqrt{2 g h}} \Rightarrow v_{1}+v=\sqrt{2 g h}$
Adding (1) and (3)
$2 \mathrm{v}_{1}=3 \sqrt{2 \mathrm{gh}} \Rightarrow \mathrm{v}_{1}=\left(\frac{3}{2}\right) \sqrt{2 \mathrm{gh}}$
But $v_{1}=\sqrt{2 g h+u^{2}}=\left(\frac{3}{2}\right) \sqrt{2 g h}$
$\Rightarrow 2 g h+u^{2}=\frac{9}{4} \times 2 g h$
$\Rightarrow \mathrm{u}=2.5 \sqrt{2 \mathrm{gh}}$
So the block will travel with a velocity greater than $2.5 \sqrt{2 \mathrm{gh}}$ so awake the man by B.
55. Mass of block $=490 \mathrm{gm}$.

Mass of bullet $=10 \mathrm{gm}$.
Since the bullet embedded inside the block, it is an plastic collision.
Initial velocity of bullet $\mathrm{v}_{1}=50 \sqrt{7} \mathrm{~m} / \mathrm{s}$.
Velocity of the block is $\mathrm{v}_{2}=0$.
Let Final velocity of both $=\mathrm{v}$.
$\therefore 10 \times 10^{-3} \times 50 \times \sqrt{7}+10^{-3} \times 19010=(490+10) \times 10^{-3} \times V_{A}$
$\Rightarrow V_{A}=\sqrt{7} \mathrm{~m} / \mathrm{s}$.
When the block losses the contact at ' D ' the component mg will act on it.

$$
\begin{equation*}
\frac{m\left(V_{B}\right)^{2}}{r}=m g \sin \theta \Rightarrow\left(V_{B}\right)^{2}=g r \sin \theta \tag{1}
\end{equation*}
$$

Puttin work energy principle
$(1 / 2) m \times\left(V_{B}\right)^{2}-(1 / 2) \times m \times\left(V_{A}\right)^{2}=-m g(0.2+0.2 \sin \theta)$
$\Rightarrow(1 / 2) \times \mathrm{gr} \sin \theta-(1 / 2) \times(\sqrt{7})^{2}=-\mathrm{mg}(0.2+0.2 \sin \theta)$
$\Rightarrow 3.5-(1 / 2) \times 9.8 \times 0.2 \times \sin \theta=9.8 \times 0.2(1+\sin \theta)$
$\Rightarrow 3.5-0.98 \sin \theta=1.96+1.96 \sin \theta$
$\Rightarrow \sin \theta=(1 / 2) \Rightarrow \theta=30^{\circ}$
\therefore Angle of projection $=90^{\circ}-30^{\circ}=60^{\circ}$.

\therefore time of reaching the ground $=\sqrt{\frac{2 h}{g}}$
$=\sqrt{\frac{2 \times\left(0.2+0.2 \times \sin 30^{\circ}\right)}{9.8}}=0.247 \mathrm{sec}$.
\therefore Distance travelled in horizontal direction.
$\mathrm{s}=\mathrm{V} \cos \theta \times \mathrm{t}=\sqrt{\mathrm{gr} \sin \theta} \times \mathrm{t}=\sqrt{9.8 \times 2 \times(1 / 2)} \times 0.247=0.196 \mathrm{~m}$
\therefore Total distance $=\left(0.2-0.2 \cos 30^{\circ}\right)+0.196=0.22 \mathrm{~m}$.
56. Let the velocity of m reaching at lower end $=V_{1}$

From work energy principle.
$\therefore(1 / 2) \times \mathrm{m} \times \mathrm{V}_{1}{ }^{2}-(1 / 2) \times \mathrm{m} \times 0^{2}=\mathrm{mg} \ell$
$\Rightarrow \mathrm{v}_{1}=\sqrt{2 \mathrm{~g} \ell}$.
Similarly velocity of heavy block will be $\mathrm{v}_{2}=\sqrt{2 \mathrm{gh}}$.
$\therefore \mathrm{v}_{1}=\mathrm{V}_{2}=\mathrm{u}$ (say)
Let the final velocity of m and $2 m v_{1}$ and v_{2} respectively.
According to law of conservation of momentum.
$m \times x_{1}+2 m \times V_{2}=m v_{1}+2 m v_{2}$
$\Rightarrow m \times u-2 m u=m v_{1}+2 m v_{2}$
$\Rightarrow \mathrm{v}_{1}+2 \mathrm{v}_{2}=-\mathrm{u}$
Again, $\mathrm{v}_{1}-\mathrm{v}_{2}=-\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
$\Rightarrow v_{1}-v_{2}=-[u-(-v)]=-2 V$
Subtracting.
$3 \mathrm{v}_{2}=\mathrm{u} \Rightarrow \mathrm{v}_{2}=\frac{\mathrm{u}}{3}=\frac{\sqrt{2 \mathrm{~g} \ell}}{3}$

Substituting in (2)
$\mathrm{v}_{1}-\mathrm{v}_{2}=-2 \mathrm{u} \Rightarrow \mathrm{v}_{1}=-2 \mathrm{u}+\mathrm{v}_{2}=-2 \mathrm{u}+\frac{\mathrm{u}}{3}=-\frac{5}{3} \mathrm{u}=-\frac{5}{3} \times \sqrt{2 \mathrm{~g} \ell}=-\frac{\sqrt{50 \mathrm{~g} \ell}}{3}$
b) Putting the work energy principle
$(1 / 2) \times 2 \mathrm{~m} \times 0^{2}-(1 / 2) \times 2 \mathrm{~m} \times\left(\mathrm{v}_{2}\right)^{2}=-2 \mathrm{~m} \times \mathrm{g} \times \mathrm{h}$
[$\mathrm{h} \rightarrow$ height gone by heavy ball]
$\Rightarrow(1 / 2) \frac{2 \mathrm{~g}}{9}=\ell \times \mathrm{h} \quad \Rightarrow \mathrm{h}=\frac{\ell}{9}$
Similarly, $(1 / 2) \times m \times 0^{2}-(1 / 2) \times m \times v_{1}{ }^{2}=m \times g \times h_{2}$
[height reached by small ball]
$\Rightarrow(1 / 2) \times \frac{50 \mathrm{~g} \ell}{9}=\mathrm{g} \times \mathrm{h}_{2} \Rightarrow \mathrm{~h}_{2}=\frac{25 \ell}{9}$
Someh $_{2}$ is more than 2ℓ, the velocity at height point will not be zero. And the ' m ' will rise by a distance 2ℓ.
57. Let us consider a small element at a distance ' x ' from the floor of length 'dy' .

So, $d m=\frac{M}{L} d x$
So, the velocity with which the element will strike the floor is, $\mathrm{v}=\sqrt{2 \mathrm{gx}}$
\therefore So, the momentum transferred to the floor is,
$M=(d m) v=\frac{M}{L} \times d x \times \sqrt{2 g x} \quad$ [because the element comes to rest]

So, the force exerted on the floor change in momentum is given by,
$F_{1}=\frac{d M}{d t}=\frac{M}{L} \times \frac{d x}{d t} \times \sqrt{2 g x}$
Because, $v=\frac{d x}{d t}=\sqrt{2 g x}$ (for the chain element)
$F_{1}=\frac{M}{L} \times \sqrt{2 g x} \times \sqrt{2 g x}=\frac{M}{L} \times 2 g x=\frac{2 M g x}{L}$
Again, the force exerted due to ' x ' length of the chain on the floor due to its own weight is given by,
$W=\frac{M}{L}(x) \times g=\frac{M g x}{L}$
So, the total forced exerted is given by,
$F=F_{1}+W=\frac{2 M g x}{L}+\frac{M g x}{L}=\frac{3 M g x}{L}$

58. $\mathrm{V}_{1}=10 \mathrm{~m} / \mathrm{s} \quad \mathrm{V}_{2}=0$
$\mathrm{V}_{1}, \mathrm{v}_{2} \rightarrow$ velocity of ACB after collision.
a) If the edlision is perfectly elastic.
$m V_{1}+m V_{2}=m v_{1}+m v_{2}$
$\Rightarrow 10+0=v_{1}+v_{2}$
$\Rightarrow \mathrm{v}_{1}+\mathrm{v}_{2}=10$
Again, $v_{1}-v_{2}=-\left(u_{1}-v_{2}\right)=-(10-0)=-10$

Subtracting (2) from (1)
$2 \mathrm{v}_{2}=20 \Rightarrow \mathrm{v}_{2}=10 \mathrm{~m} / \mathrm{s}$.
The deacceleration of $B=\mu \mathrm{g}$
Putting work energy principle
$\therefore(1 / 2) \times \mathrm{m} \times 0^{2}-(1 / 2) \times \mathrm{m} \times \mathrm{v}_{2}{ }^{2}=-\mathrm{m} \times \mathrm{a} \times \mathrm{h}$
$\Rightarrow-(1 / 2) \times 10^{2}=-\mu \mathrm{g} \times \mathrm{h} \quad \Rightarrow \mathrm{h}=\frac{100}{2 \times 0.1 \times 10}=50 \mathrm{~m}$
b) If the collision perfectly in elastic.
$\mathrm{m} \times \mathrm{u}_{1}+\mathrm{m} \times \mathrm{u}_{2}=(\mathrm{m}+\mathrm{m}) \times \mathrm{v}$
$\Rightarrow \mathrm{m} \times 10+\mathrm{m} \times 0=2 \mathrm{~m} \times \mathrm{v} \quad \Rightarrow \mathrm{v}=\frac{10}{2}=5 \mathrm{~m} / \mathrm{s}$.
The two blocks will move together sticking to each other.
\therefore Putting work energy principle.
$(1 / 2) \times 2 m \times 0^{2}-(1 / 2) \times 2 m \times v^{2}=2 m \times \mu \mathrm{g} \times \mathrm{s}$
$\Rightarrow \frac{5^{2}}{0.1 \times 10 \times 2}=\mathrm{s}$
$\Rightarrow \mathrm{s}=12.5 \mathrm{~m}$.
59. Let velocity of 2 kg block on reaching the 4 kg block before collision $=\mathrm{u}_{1}$.

Given, $\mathrm{V}_{2}=0$ (velocity of 4 kg block).
\therefore From work energy principle,
$(1 / 2) m \times u_{1}{ }^{2}-(1 / 2) m \times 1^{2}=-m \times u g \times s$
$\Rightarrow \frac{u_{1}{ }^{2}-1}{2}=-2 \times 5 \quad \Rightarrow-16=\frac{u_{1}{ }^{2}-1}{4}$

$\Rightarrow 64 \times 10^{-2}=u_{1}{ }^{2}-1 \quad \Rightarrow u_{1}=6 \mathrm{~m} / \mathrm{s}$
Since it is a perfectly elastic collision.
Let $\mathrm{V}_{1}, \mathrm{~V}_{2} \rightarrow$ velocity of 2 kg \& 4 kg block after collision.
$m_{1} V_{1}+m_{2} V_{2}=m_{1} V_{1}+m_{2} v_{2}$
$\Rightarrow 2 \times 0.6+4 \times 0=2 \mathrm{v}_{1}+4 \mathrm{v}_{2} \quad \Rightarrow \mathrm{v}_{1}+2 \mathrm{v}_{2}=0.6$
Again, $\mathrm{V}_{1}-\mathrm{V}_{2}=-\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right)=-(0.6-0)=-0.6$
Subtracting (2) from (1)
$3 \mathrm{v}_{2}=1.2 \quad \Rightarrow \mathrm{v}_{2}=0.4 \mathrm{~m} / \mathrm{s}$.
$\therefore \mathrm{v}_{1}=-0.6+0.4=-0.2 \mathrm{~m} / \mathrm{s}$
\therefore Putting work energy principle for $1^{\text {st }} 2 \mathrm{~kg}$ block when come to rest.
$(1 / 2) \times 2 \times 0^{2}-(1 / 2) \times 2 \times(0.2)^{2}=-2 \times 0.2 \times 10 \times \mathrm{s}$
$\Rightarrow(1 / 2) \times 2 \times 0.2 \times 0.2=2 \times 0.2 \times 10 \times \mathrm{s} \quad \Rightarrow S_{1}=1 \mathrm{~cm}$.
Putting work energy principle for 4 kg block.
$(1 / 2) \times 4 \times 0^{2}-(1 / 2) \times 4 \times(0.4)^{2}=-4 \times 0.2 \times 10 \times \mathrm{s}$
$\Rightarrow 2 \times 0.4 \times 0.4=4 \times 0.2 \times 10 \times \mathrm{s} \quad \Rightarrow \mathrm{S}_{2}=4 \mathrm{~cm}$.
Distance between $2 \mathrm{~kg} \& 4 \mathrm{~kg}$ block $=\mathrm{S}_{1}+\mathrm{S}_{2}=1+4=5 \mathrm{~cm}$.
60. The block ' m ' will slide down the inclined plane of mass M with acceleration $a_{1} g \sin \alpha$ (relative) to the inclined plane.
The horizontal component of a_{1} will be, $\mathrm{a}_{\mathrm{x}}=\mathrm{g} \sin \alpha \cos \alpha$, for which the block M will accelerate towards left. Let, the acceleration be a_{2}.
According to the concept of centre of mass, (in the horizontal direction external force is zero).
$m a_{x}=(M+m) a_{2}$
$\Rightarrow \mathrm{a}_{2}=\frac{\mathrm{ma}}{\mathrm{x}} \mathrm{M}+\mathrm{m}=\frac{\mathrm{mg} \sin \alpha \cos \alpha}{\mathrm{M}+\mathrm{m}}$
So, the absolute (Resultant) acceleration of ' m ' on the block ' M ' along the direction of the incline will be, $a=g \sin \alpha-a_{2} \cos \alpha$
$=g \sin \alpha-\frac{m g \sin \alpha \cos ^{2} \alpha}{M+m}=g \sin \alpha\left[1-\frac{m \cos ^{2} \alpha}{M+m}\right]$
$=g \sin \alpha\left[\frac{M+m-m \cos ^{2} \alpha}{M+m}\right]$

So, $a=g \sin \alpha\left[\frac{M+m \sin ^{2} \alpha}{M+m}\right]$
Let, the time taken by the block ' m ' to reach the bottom end be ' t '.
Now, $S=u t+(1 / 2) a t^{2}$
$\Rightarrow \frac{h}{\sin \alpha}=(1 / 2){a t^{2}}^{2} \quad \Rightarrow t=\sqrt{\frac{2}{a \sin \alpha}}$

So, the velocity of the bigger block after time ' t ' will be.
$V_{m}=u+a_{2} t=\frac{m g \sin \alpha \cos \alpha}{M+m} \sqrt{\frac{2 h}{a \sin \alpha}}=\sqrt{\frac{2 m^{2} g^{2} h \sin ^{2} \alpha \cos ^{2} \alpha}{(M+m)^{2} a \sin \alpha}}$
Now, subtracting the value of a from equation (2) we get,
$V_{M}=\left[\frac{2 m^{2} g^{2} h \sin ^{2} \alpha \cos ^{2} \alpha}{(M+m)^{2} \sin \alpha} \times \frac{(M+m)}{g \sin \alpha\left(M+m \sin ^{2} \alpha\right)}\right]^{1 / 2}$
or $V_{M}=\left[\frac{2 m^{2} g^{2} h \cos ^{2} \alpha}{(M+m)\left(M+m \sin ^{2} \alpha\right)}\right]^{1 / 2}$
61.

The mass ' m ' is given a velocity ' v ' over the larger mass M.
a) When the smaller block is travelling on the vertical part, let the velocity of the bigger block be v_{1} towards left.
From law of conservation of momentum, (in the horizontal direction)
$m v=(M+m) v_{1}$
$\Rightarrow v_{1}=\frac{m v}{M+m}$
b) When the smaller block breaks off, let its resultant velocity is v_{2}.

From law of conservation of energy,
$(1 / 2) m v^{2}=(1 / 2) M v_{1}{ }^{2}+(1 / 2) m v_{2}{ }^{2}+m g h$
$\Rightarrow v_{2}{ }^{2}=v^{2}-\frac{M}{m} v_{1}{ }^{2}-2 g h$
$\Rightarrow v_{2}^{2}=v^{2}\left[1-\frac{M}{m} \times \frac{m^{2}}{(M+m)^{2}}\right]-2 g h$
$\Rightarrow v_{2}=\left[\frac{\left(m^{2}+M m+m^{2}\right)}{(M+m)^{2}} v^{2}-2 g h\right]^{1 / 2}$
e) Now, the vertical component of the velocity v_{2} of mass ' m ' is given by,
$v_{\mathrm{y}}{ }^{2}=\mathrm{v}_{2}{ }^{2}-\mathrm{v}_{1}{ }^{2}$
$=\frac{\left(M^{2}+M m+m^{2}\right)}{(M+m)^{2}} v^{2}-2 g h-\frac{m^{2} v^{2}}{(M+m)^{2}}$
$\left[\therefore \mathrm{v}_{1}=\frac{\mathrm{mv}}{\mathrm{M}+\mathrm{v}}\right]$
$\Rightarrow v_{y}^{2}=\frac{M^{2}+M m+m^{2}-m^{2}}{(M+m)^{2}} v^{2}-2 g h$
$\Rightarrow \mathrm{v}_{\mathrm{y}}{ }^{2}=\frac{\mathrm{Mv}^{2}}{(\mathrm{M}+\mathrm{m})}-2 \mathrm{gh}$
To find the maximum height (from the ground), let us assume the body rises to a height ' h ', over and above ' h '.
Now, (1/2) $\mathrm{mv}_{\mathrm{y}}{ }^{2}=\mathrm{mgh}_{1} \Rightarrow \mathrm{~h}_{1}=\frac{\mathrm{v}_{\mathrm{y}}{ }^{2}}{2 \mathrm{~g}}$.
So, Total height $=\mathrm{h}+\mathrm{h}_{1}=\mathrm{h}+\frac{\mathrm{v}_{\mathrm{y}}{ }^{2}}{2 \mathrm{~g}}=\mathrm{h}+\frac{\mathrm{mv}^{2}}{(\mathrm{M}+\mathrm{m}) 2 \mathrm{~g}}-\mathrm{h}$
[from equation (2) and (3)]
$\Rightarrow H=\frac{m v^{2}}{(M+m) 2 g}$
d) Because, the smaller mass has also got a horizontal component of velocity ' v_{1} ' at the time it breaks off from ' M ' (which has a velocity v_{1}), the block ' m ' will again land on the block ' M ' (bigger one).
Let us find out the time of flight of block ' m ' after it breaks off.
During the upward motion (BC),
$0=v_{y}-\mathrm{gt}_{1}$
$\Rightarrow \mathrm{t}_{1}=\frac{\mathrm{v}_{\mathrm{y}}}{\mathrm{g}}=\frac{1}{\mathrm{~g}}\left[\frac{\mathrm{Mv}^{2}}{(\mathrm{M}+\mathrm{m})}-2 \mathrm{gh}\right]^{1 / 2} \quad \ldots(4)$ [from equation (2)]
So, the time for which the smaller block was in its flight is given by,
$\mathrm{T}=2 \mathrm{t}_{1}=\frac{2}{\mathrm{~g}}\left[\frac{\mathrm{M} \mathrm{v}^{2}-2(\mathrm{M}+\mathrm{m}) \mathrm{gh}}{(\mathrm{M}+\mathrm{m})}\right]^{1 / 2}$
So, the distance travelled by the bigger block during this time is,
$S=v_{1} T=\frac{m v}{M+m} \times \frac{2}{g} \frac{\left[M v^{2}-2(M+m) g h\right]^{1 / 2}}{(M+m)^{1 / 2}}$
or $S=\frac{2 m v\left[M v^{2}-2(M+m) g h\right]^{1 / 2}}{g(M+m)^{3 / 2}}$
62. Given $h \lll R$.
$\mathrm{G}_{\text {mass }}=6 \mathrm{I} 10^{24} \mathrm{~kg}$.
$\mathrm{M}_{\mathrm{b}}=3 \times 10^{24} \mathrm{~kg}$.
Let $\mathrm{V}_{\mathrm{e}} \rightarrow$ Velocity of earth
$\mathrm{V}_{\mathrm{b}} \rightarrow$ velocity of the block.
The two blocks are attracted by gravitational force of attraction. The gravitation potential energy stored will be the K.E. of two blocks.
$\bar{G}^{\text {pim }}\left[\frac{1}{R+(h / 2)}-\frac{1}{R+h}\right]=(1 / 2) m_{e} \times v_{e}{ }^{2}+(1 / 2) m_{b} \times v_{b}{ }^{2}$
Again as the an internal force acts.
$M_{e} V_{e}=m_{b} V_{b} \quad \Rightarrow V_{e}=\frac{m_{b} V_{b}}{M_{e}}$

Putting in equation (1)
$G_{m e} \times m_{b}\left[\frac{2}{2 R+h}-\frac{1}{R+h}\right]$
$=(1 / 2) \times M_{e} \times \frac{m_{b}{ }^{2} v_{b}{ }^{2}}{M_{e}{ }^{2}} \times v_{e}{ }^{2}+(1 / 2) M_{b} \times V_{b}{ }^{2}$
$=(1 / 2) \times m_{b} \times V_{b}{ }^{2}\left(\frac{M_{b}}{M_{e}}+1\right)$
$\Rightarrow \mathrm{GM}\left[\frac{2 \mathrm{R}+2 \mathrm{~h}-2 \mathrm{R}-\mathrm{h}}{(2 \mathrm{R}+\mathrm{h})(\mathrm{R}+\mathrm{h})}\right]=(1 / 2) \times \mathrm{V}_{\mathrm{b}}{ }^{2} \times\left(\frac{3 \times 10^{24}}{6 \times 10^{24}}+1\right) \Rightarrow\left[\frac{\mathrm{GM} \times \mathrm{h}}{2 \mathrm{R}^{2}+3 \mathrm{Rh}+\mathrm{h}^{2}}\right]=(1 / 2) \times \mathrm{V}_{\mathrm{b}}{ }^{2} \times(3 / 2)$
As $h \lll R$, if can be neglected
$\Rightarrow \frac{G M \times h}{2 R^{2}}=(1 / 2) \times V_{b}^{2} \times(3 / 2) \quad \Rightarrow V_{b}=\sqrt{\frac{2 g h}{3}}$
63. Since it is not an head on collision, the two bodies move in different dimensions. Let $V_{1}, V_{2} \rightarrow$ velocities of the bodies vector collision. Since, the collision is elastic. Applying law of conservation of momentum on X-direction.
$m u_{1}+m x o=m v_{1} \cos \alpha+m v_{2} \cos \beta$
$\Rightarrow v_{1} \cos a+v_{2} \cos b=u_{1}$
Putting law of conservation of momentum in y direction.
$0=m v_{1} \sin \alpha-m v_{2} \sin \beta$
$\Rightarrow v_{1} \sin \alpha=v_{2} \sin \beta$
Again $1 / 2 m u_{1}{ }^{2}+0=1 / 2 m v_{1}{ }^{2}+1 / 2 m \times v_{2}{ }^{2}$
$\Rightarrow \mathrm{u}_{1}{ }^{2}=\mathrm{v}_{1}{ }^{2}+\mathrm{v}_{2}{ }^{2}$
Squaring equation(1)
$u_{1}{ }^{2}=v_{1}{ }^{2} \cos ^{2} \alpha+v_{2}{ }^{2} \cos ^{2} \beta+2 v_{1} v_{2} \cos \alpha \cos \beta$

Equating (1) \& (3)
$v_{1}{ }^{2}+v_{2}{ }^{2}=v_{1}{ }^{2} \cos ^{2} \alpha+v_{2}{ }^{2} \cos ^{2} \beta+2 v_{1} v_{2} \cos \alpha \cos \beta$
$\Rightarrow v_{1}{ }^{2} \sin ^{2} \alpha+v_{2}{ }^{2} \sin ^{2} \beta=2 v_{1} v_{2} \cos \alpha \cos \beta$
$\Rightarrow 2 \mathrm{v}_{1}{ }^{2} \sin ^{2} \alpha=2 \times \mathrm{v}_{1} \times \frac{\mathrm{v}_{1} \sin \alpha}{\sin \beta} \times \cos \alpha \cos \beta$
$\Rightarrow \sin \alpha \sin \beta=\cos \alpha \cos \beta \quad \Rightarrow \cos \alpha \cos \beta-\sin \alpha \sin \beta=0$
$\Rightarrow \cos (\alpha+\beta)=0=\cos 90^{\circ} \quad \Rightarrow(\alpha+\beta)=90^{\circ}$
64.

Let the mass of both the particle and the spherical body be ' m '. The particle velocity ' v ' has two components, $\mathrm{v} \cos \alpha$ normal to the sphere and $\mathrm{v} \sin \alpha$ tangential to the sphere.
After the collision, they will exchange their velocities. So, the spherical body will have a velocity $\mathrm{v} \cos \alpha$ and the particle will not have any component of velocity in this direction.
[The collision will due to the component $v \cos \alpha$ in the normal direction. But, the tangential velocity, of the particle $v \sin \alpha$ will be unaffected]
So, velocity of the sphere $=v \cos \alpha=\frac{v}{r} \sqrt{r^{2}-\rho^{2}}$ [from (fig-2)]
And velocity of the particle $=v \sin \alpha=\frac{\mathrm{v} \rho}{\mathrm{r}}$

